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Abstract. We address the problem of designing distributed algorithms
for large scale networks that are robust to Byzantine faults. We consider
a message passing, full information model: the adversary is malicious,
controls a constant fraction of processors, and can view all messages in a
round before sending out its own messages for that round. Furthermore,
each bad processor may send an unlimited number of messages. The only
constraint on the adversary is that it must choose its corrupt processors
at the start, without knowledge of the processors’ private random bits.

A good quorum is a set of O(log n) processors, which contains a majority
of good processors. In this paper, we give a synchronous algorithm which
uses polylogarithmic time and Õ(

√
n) bits of communication per proces-

sor to bring all processors to agreement on a collection of n good quorums,
solving Byzantine agreement as well. The collection is balanced in that
no processor is in more than O(log n) quorums. This yields the first so-
lution to Byzantine agreement which is both scalable and load-balanced
in the full information model.

The technique which involves going from situation where slightly more
than 1/2 fraction of processors are good and and agree on a short string
with a constant fraction of random bits to a situation where all good
processors agree on n good quorums can be done in a fully asynchronous
model as well, providing an approach for extending the Byzantine agree-
ment result to this model.

As an additional result, we present a fully asynchronous algorithm that
can go from a situation where slightly more than 1/2 fraction of pro-
cessors are good and and agree on a short string with a constant frac-
tion of random bits, to a situation where all good processors agree on
n good quorums, and can do this in a load balanced way. This provides
an approach for extending the Byzantine agreement result above to the
asynchronous model, with an additional log n factor in the number of
bits communicated.
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1 Introduction

The last fifteen years have seen computer scientists slowly come to terms with the
following alarming fact: not all users of the Internet can be trusted. While this
fact is hardly surprising, it is alarming. If the size of the Internet is unprecedented
in the history of engineered systems, then how can we hope to address the
challenging problem of scalability and also the challenging problem of resistance
to malicious users?

Recent work attempts to address both of these problems concurrently. In
the last few years, almost everywhere Byzantine agreement, i.e., coordination
between all but a o(1) fraction of processors, was shown to be possible with no
more than polylogarithmic bits of communication per processor and polyloga-
rithmic time [13]. More recently, scalable everywhere agreement was shown to
be possible if a small set of processors took on the brunt of each communicating
Ω(n3/2) bits to the remaining processors [11], or if private channels are assumed
[12].

In this paper, we give the first load-balanced, scalable method for agreeing
on a bit in the synchronous, full information model. In particular, our algorithm
requires each processor to send only Õ(

√
n) bits. Our technique also yields an

agreement on a collection of n good quorum gateways (referred to as quorums
from now on), that is, sets of processors of size O(log n) each of which contains
a majority of good processors, and a 1-1 mapping of processors to quorums. The
collection is balanced in that no processor is in more than O(log n) quorums. Our
usage of the quorum terminology is similar to that in the peer-to-peer literature
[17,6,1,3,5,8], where quorums are of O(log n) size each having a majority of
good processors, and allow for containment of adversarial behavior via majority
filtering. Quorums are useful in an environment with malicious processors as they
can act as a gateway to filter messages from by bad processors. For example,
a bad processor x can be limited in the number of messages it sends if other
processors only accept messages sent by a majority of processors in x’s quorum,
and the majority only agree to forward a limited number of messages from x.

The number of bits of communication required per processor is polylogarith-
mic to bring all but o(1) processors to agreement and Õ(

√
n) per processor for

everywhere agreement on the composition of the n quorums. Our result is with
an adversary that controls up to a 1/3 − ε fraction of processors, for any fixed
ε > 0, and which has full information, i.e., it knows the content of all messages
passed between good processors. However, the adversary is non-adaptive, that
is, it cannot choose dynamically which processors to corrupt based on its ob-
servations of the protocol’s execution. Bad processors are allowed to send an
unlimited number of bits and messages, and defense against a denial of service
attack is one of the features of our protocol.

As an additional result, we present an asynchronous algorithm that can go
from a situation where, for any positive constant γ, 1/2+γ fraction of processors
are good and agree on a single string of length O(log n) with a constant fraction
of random bits to a situation where all good processors agree on n good quorums.
This algorithm is load-balanced in that it requires each processor to send only
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Õ(
√

n) bits, and the resulting quorums are balanced in that no processor is in
more than O(log n) quorums.

1.1 Methodology

Our synchronous protocol builds on a previous protocol which brings all but
o(1) processors to agreement on a set of s = O(log n) processors of which no
more than a 1/3− ε fraction are bad, using a sparse overlay network [14]. Being
few in number, these processors can run a heavyweight protocol requiring all-
to-all communication to also agree on a string globalstr which contains a bit (or
multiple bits) from each processor, such that a 2/3 + ε fraction of the bits are
randomly set. This string can be communicated scalably to almost all processors
using a communication tree formed as a byproduct of the protocol (See [13,14]).

When a clear majority of good processors agree on a value, a processor should
be able to learn that value, with high probability, by polling O(log n) processors.
However the bad processors can thwart this approach by flooding all processors
with requests. Even if there are few bad processors, in the full information model,
the bad processors can target processors on specific good processors’ poll lists to
isolate these processors. To address this problem, we use the globalstr to build
quorums to limit the number of effective requests. We also restrict the design
of poll lists, preserving enough randomness that they are reliable, but limit the
adversary’s ability to target.

Key to our work here is that we show the existence of an averaging sampler
type function, H, which is known at the start by all the processors and which with
high probability, when given an O(log n) length string with a constant fraction
of random bits, and a processor ID, produces a good quorum for every ID. Our
protocol then uses the fact that almost all processors agree on a collection of good
quorums to bring all processors to agree on the string in a load balanced manner,
and hence the collection of quorums. Similarly, to solve Byzantine agreement, a
single bit agreed to by the initial small set can be agreed to by all the processors.
We also show the existence of a function J which uses individually generated
random strings and a processor’s ID to output a O(log n) poll list, so that the
distribution of poll lists has desired properties.

These techniques can be extended to the asynchronous model assuming a
scalable implementation of [10]. That work shows that a set of size O(log log n)
processors with 2/3 + ε good processors can be agreed to almost everywhere
with probability 1 − o(1). Bringing these processors to agreement on a string
with some random bits is trickier in the asynchronous full information model,
where the adversary can prevent a fraction of the good processors from being
heard based on their random bits. However, [10] shows that it is possible to bring
such a set to agreement on a string with some randomness, which we show is
enough to provide a good input to H.
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1.2 Related work

Several papers are mentioned above with related results. Most closely related is
the algorithm in [11] which similarly starts with almost everywhere agreement
on a bit and a small representative set of processors from [13,14] and produces
everywhere agreement. However it is not load balanced, and does not create
quorums or require the use of specially designed functions H and J . With private
channels, load balancing in the presence of an adaptive adversary is achievable
with Õ(

√
n) bits of communication per processor [12].

Awerbuch and Scheidler have done important work in the area of maintaining
quorums [3,4,5,6]. They show how to scalably support a distributed hash table
(DHT) using quorums of size O(log n), where processors are joining and leaving,
a functionality our method does not support. The adversary they consider is
nonadaptive in the sense that processors cannot spontaneously be corrupted; the
adversary can only decide to cause a good processor to drop out and decide if an
entering processor is good or bad. A critical difference between their results and
ours is that while they can maintain a system that starts in a good configuration,
they cannot initialize such a system unless the starting processors are all good.
This is because an entering processor must start by contacting a good processor
in a good quorum. The quorum uses secret sharing to produce a random number
to assign or reassign new positions in a sparse overlay network (using the cuckoo
rule [15]). These numbers and positions are created using a method for secret
sharing involving private channels and cryptographic hardness assumptions.

In older work, Upfal, Dwork, Peleg and Pippenger addressed the problem
of solving almost-everywhere agreement on a bounded degree network [16,7].
However, the algorithms described in these papers are not scalable. In particular,
both algorithms require each processor to send at least a linear number of bits
(and sometimes an exponential number).

1.3 Model

We assume a fully connected network of n processors, whose IDs are common
knowledge. Each processor has a private coin. Communication channels are au-
thenticated, in the sense that whenever a processor sends a message directly
to another, the identity of the sender is known to the recipient, but we other-
wise make no cryptographic assumptions. We assume a nonadaptive (sometimes
called static) adversary. That is, the adversary chooses the set of tn bad proces-
sors at the start of the protocol, where t is a constant fraction, namely, 1/3− ε
for any positive constant ε. The adversary is malicious: bad processors can en-
gage in any kind of deviations from the protocol, including false messages and
collusion, or crash failures, and bad processors can send any number of mes-
sages. Moreover, the adversary chooses the input bits of every processor. The
good processors are those that follow the protocol.

We consider both synchronous and asynchronous models of communication.
In the synchronous model, communication proceeds in rounds; messages are all
sent out at the same time at the start of the round, and then received at the same



5

time at the end of the same round; all processors have synchronized clocks. The
time complexity is given by the number of rounds. In the asynchronous model,
each communication can take an arbitrary and unknown amount of time, and
there is no assumption of a joint clock as in the synchronous model. The adver-
sary can determine the delay of each message and the order in which they are
received. We follow [2] in defining the running time of an asynchronous protocol
as the time of execution, where the maximum delay of a message between the
time it is sent and the time it is processed is assumed to be one unit.

We assume full information: in the synchronous model, the adversary is rush-
ing, that is, it can view all messages sent by the good processors in a round
before the bad processors send their messages in the same round. In the case
of the asynchronous model, the adversary can view any sent message before its
delay is determined.

1.4 Results

We use the phrase with high probability to mean that an event happens with
probability at least 1− 1/nc, for any constant c and sufficiently large n.

We show:

Theorem 1 (Synchronous Byzantine Agreement). Let n be the number
of processors in a synchronous full information message passing model with a
nonadaptive, rushing adversary that controls less than 1/3− ε fraction of proces-
sors. For any positive constant ε, there exists a protocol which w.h.p. computes
Byzantine agreement, runs in polylogarithmic time, and uses Õ(

√
n) bits of com-

munication per processor.

This result follows from the application of the load balanced protocol in [14],
followed by the synchronous protocol introduced in Section 3 of this paper.

Theorem 2 (Almost everywhere to everywhere–asynchronous). Let n
be the number of processors in a fully asynchronous full information message
passing model with a nonadaptive adversary. Assume that (1/2 + γ)n good pro-
cessors agree on a string of length O(log n) which has a constant fraction of ran-
dom bits, and where the remaining bits are fixed by a malicious adversary after
seeing the random bits. Then for any positive constant γ, there exists a protocol
which w.h.p. brings all good processors to agreement on n good quorums; runs
in polylogarithmic time; and uses Õ(

√
n) bits of communication per processor.

Furthermore, if we assume that same set of good processors have agreed on an
input bit (to the Byzantine agreement problem) then this same protocol can bring
all good processors to agreement on that bit.

A scalable implementation of the protocol in [10] following the lines of [14]
would create the conditions in the assumptions of this theorem with probability
1−O(1/ log n) in polylogarithmic time and bits per processor with an adversary
that controls less than 1/3 − ε fraction of processors. Then this theorem would
yield an algorithm to solve asynchronous Byzantine agreement with probability
1−O(1/ log n). The protocol is introduced in Section 4 of this paper.
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2 Combinatorial Lemmas

Before presenting our protocol, we discuss here the properties of some combina-
torial objects we shall use in our protocol.

Let [r] denote the set of integers {1, . . . , r}, and [s]d the multisets of size d
consisting of elements of [s]. Let H : [r] → [s]d be a function assigning multisets
of size d to integers. We define the intersection of a multiset A and a set B to
be the number of elements of A which are in B. H is a (θ, δ) sampler if at most
a δ fraction of all inputs x have |H(x)∩S|

d > |S|
s + θ.

Let r = nc+1. Let i ∈ [nc] and j ∈ [n]. Then we define H(i, j) to be H(in+j)
and H(i, ∗) to be the collection of subsets H(i + 1),H(i + 2), ...,H(i + n).

Lemma 1 ([[9], Lemma 4.7], [[18], Proposition 2.20]). For every s, θ, δ > 0
and r ≥ s/δ, there is a (θ, δ) sampler H : [r] → [s]d with d = O(log(1/δ)/θ2).

A corollary of the proof of this lemma shows that if one increases the constant
in the expression of d by a factor of c, we get the following:

Corollary 1 Let H[r] be constructed by randomly selecting with replacement d
elements of [s]. For every s, θ, δ, c > 0 and r ≥ s/δ, for d = O(log(1/δ)/θ2),
H(r) is a (θ, δ) sampler H : [r] → [s]d with probability 1− 1/nc.

Lemma 2. Let r = nc+1 and s = n. Let H : [r] → [s]d be constructed by
randomly selecting with replacement d elements of [s]. Call an element y ∈ [s]
overloaded by H if its inverse image under H contains more than a.d elements,
for some fixed element a ≥ 6. The probability that any y ∈ [s] is overloaded by
any H(i, ∗) is less than 1/2, for d = O(log n) and a = O(1).

Proof. Fix i. The probability that the size of the inverse image of y ∈ [s] ∈ H(i, ∗)
is a times its expected size of d is less than 2−ad, for a ≥ 6, by a standard Chernoff
bound. The probability that for any i that any y ∈ [s] is overloaded is less than
n(nc)2−ad < 1/2, by a union bound over all y ∈ [s] and all i for d = O(log n).

Let S be any subset of [n]. A quorum or poll list is a subset of [n] of size
O(log n) and a good quorum (resp., poll list) with respect to S ∈ [n] is a quorum
(resp., poll list) with greater than 1/2 elements in S. Taking the union bound
over the probabilities of the events given in the preceding corollary and lemma,
and applying the probabilistic method yields the existence of a mapping with
the desired properties:

Lemma 3. For any constant c, there exists a mapping H : [nc+1] → [n]d such
that for every i the inverse image of every element under H[i, ∗] is O(log n) and
for any choice of any subset S ⊂ n of size at least 1/2 + εn, with probability
1 − 1/nc over the choice of random numbers i ∈ [nc], H[i, ∗] contains all good
quorums.

The following lemma is needed to show results about the polling lists, which
are subsets of size O(log n) just like quorums, but are used for a different purpose
in the protocol.
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Lemma 4. There exists a mapping J : [1..., nc+1] → [n]d such that for any set
of 1/2 + ε fraction of good processors in [1 . . . n]:

1. At least nc+1 − n elements of L are mapped to a good PollList.
2. For any L′ ⊂ [nc+1], |L′| ≤ n, let R′ be any subset of [r], |R′| ≤ ε|L′|/e2 and

let L′ be the inverse image of R′ under J . Then
∑

x∈L′ |J(x)∩R′| < εd|L′|/2.
Hence |L′|/2 pollLists contain fewer than εd elements in R′.

Proof. Part 1: The probability that a randomly constructed J has this property
with probability greater than 1/2 follows from Lemma 3.

Part 2: Let J be constructed randomly as in the previous proofs. Fix L′, fix
R′.

Pr[
∑

x∈L′ |J(x)∩R′| ≥ εd|L′|] =
(

d|L′|
εd|L′|

)
(|R′|/n)εd|L′| ≤ [(e/ε)(|R′|/n)]εd|L

′| ≤
e−εd|L′|, for |R′| ≤ εn/e2

The number of ways of choosing a subset of size x and y from [nc] and [n],
resp., is bounded above by (enc/x)x∗(en/y)y = ex(c log n−log x+1)+y(log n−log y+1) <
e2|L′|c log n .

The union bound over all sizes of x ≤ n and y is less than 1/2 for d >
(2c log n)/ε + 1/ε|L|

Hence with probability less than 1/2,
∑

x∈L′ |J(x)∩R′| > εd|L′| for all subsets
L′ of size n or less in [nc] and all subsets R′ of size ε|L′|/e2.

Finally, by the union bound, a random J has both properites (1) and (2) with
probability greater than 0. By the probabilistic method, there exists a function
J with properties (1) and (2).

2.1 Using the Almost-everywhere agreement protocol in [13,14]

We observe that this protocol which uses polylogarithmic bits of communication
generates a representative set S of O(log n) processors which is agreed upon by
all but O(1/ log n) fraction of good processors, and any message agreed upon
by the processors is learned by all but O(1/ log n) fraction of good processors.
Hence we start in our current work from the point where there is an b log n bit
string globalstr agreed upon by all but O(1/ log n) fraction of good processors
such that 2/3+ε fraction of good processor in S have each generated c′/b random
bits (see below), and the remaining bits are generated by bad processors after
seeing the bits of good processors. The ordering of the bits is independent of
their value and is given by processor ID. globalstr is random enough:

Lemma 5. With probability at least 1 − 1/nc, for sufficiently large constant c′

and d = O log n), there is an H : [nc′+1] → [n]d such that H(globalstr , ∗) is a
collection of all good quorums.

Proof. By Lemma 3 there are nc good choices for globalstr and n bad choices.
We choose c′ to be a multiple of b which is greater than (3/2)c. Fix one bad
choice string. The probability of the random bits matching this string is less
than 2−(2/3c′ log n) and by a union bound, the probability of it matching any of
the n bad strings is less than 1/nc.
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3 Algorithm

In this section, we describe the protocol (Protocol 3.1) that reaches everywhere
agreement from almost everywhere agreement.

Given: Functions H (as described in Lemma 3), and J (as described in Lemma 4).

Part I: Setting up Candidate Lists.

1: for each processor p: do
2: Select uniformly at random a subset, samplelistp, of processor IDs where

|samplelistp| = c
√

n log(n).
3: p.send(samplelistp, < candstrp >).
4: Set candlistp ← candstrp .
5: For each processor r that sent < candstrr > to p, add candstrr to candlistp

with probability 1/
√

n.

Part II: Setting up Requests through quorums.

1: for each processor p: do
2: p generates a random string rstrp.
3: For each candidate string s ∈ candlistp, p.send(H(s, p), < rstrp >).
4: Let polllistp ← J(rstrp, p)
5: if processor z ∈ H(candstrz, p) ) and z.accept(p, < rstrp >) then
6: for each processor y ∈ polllistp do
7: z.send(H(candstrz, y), < p→ y >)
8: for Processor t ∈ H(candstr t, y) for any processor y do
9: Requestst(y) = {< p→ y > | received from p ’s quorum H(candstr t, p)}

Part III: Propagating globalstr to every processor.

1: for log n rounds in parallel do
2: if 0 < |Requestst(y)| < c′log(n) then
3: for < p→ y >∈ Requestst(y) do
4: t.send(y, < p→ y >)
5: set Requestst(y)← ∅.
6: if y.accept(H(candstry, y), < p→ y >) then
7: y.send(p, < candstry >)
8: y.send(H(candstry, p), < candstry >)
9: when for processor p, count of processors in polllistp sending candidate string

s over all rounds reaches a majority: Set candstrp ← s.
10: if when for processor z ∈ H(candstrz, p), count of processors in polllistp send-

ing string s over all rounds reaches a majority then
11: for Processor y ∈ polllistp such that y did not yet respond do
12: z.send(H(candstry, z), < Abort, p >)
13: if t ∈ H(candstr t, y) and t.accept(H(candstr t, p), < Abort, p > then
14: < p→ y > is removed from Requestst(y).

Protocol 3.1: Load balanced almost everywhere to everywhere
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3.1 Description of the algorithm

Precondition: Each processor p starts with a hypothesis of the global string,
candstrp; this hypothesis may or may not equal globalstr . However, we make
a critical assumption that at least 1/2 + γ fraction of processors are good and
knowledgable i.e. their candstr equals globalstr . Actually we can ensure that
2/3 + ε − O(1/ log n) fraction of processors are good and knowledgeable using
the almost-everywhere protocol from [13,14], but we need only have 1/2 + ε
fraction for our protocol to work.

Let candlistp be a list of candidate strings that p collects during the algo-
rithm. Further, we call H(candstrq, p) a quorum of p (or p’s quorum) according
to q. If a processor p is sending to a quorum for x then it is assumed to mean
that this is the quorum according to p, unless otherwise stated. Similarly, if t
is sending conditional on its being in a particular quorum, then we mean this
quorum according to t. Often, we shall denote a message within arrow brackets
( <>), in particular < p → y > is the message that p has requested information
from y. We call a quorum a legitimate quorum of p if it is generated by the
globalstr i.e. H(globalstr , p).

We also define the following primitives:

v.send(X, m): Processor v sends message m to all processors in set X.
v.accept(X, m): Processor v accepts the message m received from a majority

of the processors in the set X (which could be a singleton set), otherwise It
rejects it.

Rejection of excess: Every processor will reject messages received in excess of
the number of those messages dictated by the protocol in that round or stage
of execution of the protocol.

We assume each processor knows H and J. The key to achieving reliable
communication channels through quorums is to use the globalstr . To begin, each
processor p sends its candidate string candstrp directly to c

√
n log n randomly

selected processors (the samplelistp). It then generates its own list of candidates
candlistp for the globalstr including candstrp and every received string with
probability 1/

√
n. This ensures that p has at least one globalstr in its list.

The key to everywhere agreement is to be able to poll enough processors
reliably so as to be able to learn globalstr . Part II sets up these polling requests.
Each processor p generates a random string rstrp, which is used to generate
p’s poll list polllistp using the function J by both p and its quorums. All the
processors in the poll list are then contacted by p for their candidate string. In
line 2, p determines its quorum for each of the strings in its candlistp and sends
rstrp to the processors in the quorums. To prevent the adversary from targeting
groups of processors, the quorums do not accept the poll list but rather the
random string and then generate the poll list themselves. The important thing
to note here is that even if p sent a message to its quorum the processors in the
quorum will not accept the messages unless according to their own candidate
string, they are in p’s quorum. Hence, it is important to note that w.h.p. at least
one of these quorums is a legitimate quorum.
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p H(globalstr,p)rstr_p

H(globalstr,y1)

H(globalstr,y2)
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candstr_y2
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J(rstr_p,p)

p->y1

p->y2

p->y3

Fig. 1. Example run of Parts II and III of Algorithm 3.1

Since p sends to at least one legitimate quorum, and the processors in this
quorum will accept p’s request, this request will be forwarded. p’s quorum in turn
contacts processor y’s quorum for each y that was in p’s poll list. The processors
in y’s legitimate quorum gather all the requests meant for y in preparation for
the next part of the protocol.

Part III proceeds in log n rounds. The processors in y’s quorum only forward
the received requests if they number less than c′ log n for some fixed constant c′.
This prevents any processor from being overloaded. Once y accepts the requests
( in accordance with y.accept), it will send its candidate string directly to p and
also to p’ s quorum. When p gets the same string from a majority of processors in
its poll list, it sets its own candidate string to this string. This new string w.h.p.
is globalstr . There may be overloaded processors which have not yet answered p’s
requests. To release the congestion, p will send abort messages to these quorums,
which will now take the request off p’s request off their list. In each round, the
number of satisfied processors falls by at least half, so that no more than log n
rounds are needed. In this way, w.h.p. each processor decides the globalstr .

Figure 1 illustrates an example run of parts II and III of Algorithm 3.1.
For clarity, in this figure, all processors shown are assumed to be correct; only
messages sent to legitimate quorums are shown; and a single arrow to a quorum
illustrates a message sent to all processors in the quorum. The illustration begins
with processor p sending the message rstrp to the quorum H(globalstr , p). The
messages rstrp that are sent to H(s, p), for other s ∈ candlistp; s 6= globalstr are
not shown. In this example, J(rstrp, p) = {y1, y2, y3}, i.e. a set consisting of
just 3 processors. In the next step of the algorithm, processors in H(globalstr , p)
send the messages < p → y1 >, < p → y2 >, < p → y3 > to the quorums
H(globalstr , y1), H(globalstr , y2), H(globalstr , y3) respectively. Next these quo-
rums forward the messages to the appropriate processors in J(rstrp, p). Finally,
the processors in J(rstrp, p) send their candstr values directly to p.
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3.2 Proof of correctness

The conditions for the correctness of the protocol given in Protocol 3.1 are stated
as Lemma 10. To prove that, first we show the following supporting lemmas.

Lemma 6. W.h.p., at least one string in the candlistp of processor p is the
globalstr .

Proof. The proof of this follows from the birthday paradox. If there are n pos-
sible birthdays and O(

√
n) children, two will likely share a birthday. Adding an

O(log n) factor increases the probability for this to happen n times w.h.p.

Lemma 7. For processor p and its random string rstrp, a majority of the pro-
cessors y in polllistp are good and knowledgable, and they receive the request
< p → y >.

Proof. The poll list for processor p, polllistp is generated by the sampler J using
p’s random string rstrp and p’s ID. By Lemma 4, a majority of polllistp is good
and knowledgable.

From Lemmas 5 and 6, processor p will send its message for its poll lists
to at least one legitimate quorum. Since a majority of these are good and
knowledgable, they will forward the message < p → y > for each processor
y ∈ polllistp = J(rstrp, p) to at least one legitimate quorum of y. By Lemma 9,
y shall accept the message.

Observation 1 The messages sent by the bad processors, or good but not knowl-
edgable processors (having candstr 6= globalstr) do not affect the outcome of the
protocol.

Proof. All communication in Parts 2 and 3 is verified by a processor against its
quorums or poll list. Any communication received through the quorum or poll
list is influential if only a majority of processors in them have sent it (either using
the accept primitive or by counting total messages received). By Lemmas 6 and
7, majority of these lists are good and knowledgable.

Lemma 8. For the protocol, any processor sends no more than Õ(
√

n) bits.

Proof. Consider a good and knowledgeable processor p. In Part-I, line 3, p sends
c
√

n log n messages. For part II of the algorithm, consider p is in the quorum of
a processor z; p forwards O(log2 n) messages to the quorums of z’s poll list. In
part III, p forwards only O(log n) requests to z. The cost of aborting is no more
than the cost of sending. In addition, z answers no more than the number of
requests that its quorum forwards. By the rejection of excess primitive, no extra
messages are sent. Thus, p sends at most Õ(

√
n) bits over a run of the whole

protocol.

Lemma 9. By the end of part III, for each p, a majority of p’s poll list have
received p’s request to respond from their legitimate quorums.
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Proof. Quorums will forward requests provided their processors are not over-
loaded. We show by induction that if in round i, there were x processors making
requests to overloaded processors, there are no more than x/2 requests to over-
loaded processors in round i + 1, and thus in log n rounds, there shall be no
overloaded processors. Hence every processor will answer its requests. Refer to
Lemma 4: let Ri be the set of overloaded processors in round i (those that have
more than (4/ε)d requests). Consider the set Li of processors which made these
requests; |Li| ≥ 8/ε|Ri|. By part 2 of the lemma, half the processors in Li contain
less than ε fraction of their PollLists in Ri, and their requests will be satisfied
in the current round by a majority of good processors. Thus, there are now no
more than |Li|/2 such processors making requests to processors in Ri, and hence
to overloaded processors in round i + 1.

Lemma 10. Let n be the number of processors in a synchronous full information
message passing model with a nonadaptive rushing malicious adversary which
controls less than a 1

3 − ε fraction of processors, and more than 1
2 + γ fraction of

processors are good and knowledgable. For any positive constants ε, γ there exists
a protocol w.h.p. such that: 1) At the end of the protocol, each good processor
is also knowledgable, 2) The protocol takes no more than O(log n) rounds in
parallel, using no more than Õ(

√
n) messages per processor.

Proof. Part 1 follows from Lemmas 7 and observation 1; processor p hears back
from its poll list and becomes knowledgable. Part 2 follows directly from lem-
mas 9 (Protocol is completed in O(log n) rounds) and 8.

4 Asynchronous version

The asynchronous protocol for Byzantine agreement relies on the globalstr being
generated by a scalable version of [10]. Such a string would have a reduced
constant fraction of random bits but there would still be sufficient randomness
to guarantee the properties needed. Note that the reduction in the fraction of
random bits needed in the string can be compensated for by increasing the length
of the string in the proof of Lemma 5.

The asynchronous protocol to bring all processors to agreement on the globalstr
can be constructed from the synchronous protocol by using the primitive asynchaccept
instead of accept and by changes to Part III. The modified Part III is shown as
Protocol 4.1. The primitive v.asynchaccept(X, m) is defined as : Processor v
waits until |X|/2 + 1 messages which agree on m are received and then takes
their value. In Part III, since there are no rounds, there is instead an end-of-
round signal for each “round” which is determined when enough processors have
decided. the quorums are organized in a tree structure which allows them to
simulate the synchronous rounds by explicitly counting the number of proces-
sors that become knowledgable. Round number is determined by the count of
quorums which have received n/2+1 answers to requests of their processor. The
quorum of a processor monitors the number of requests received and only for-
ward the requests to a processor when the current number of requests received
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in a round is sufficiently small. The asynchronous protocol incurs an additional
overhead of a log n factor in the number of messages.

The quorums are organized into a rooted binary tree T with their placement determined
by their processor’s ID, with a “root quorum” at the root.

Repeat each time an end-of-round signal is received while there are any non knowl-
edgable processors. Each execution is referred to as a round . Let n be number of non
knowledgable processors at beginning of a round:

1. Let Rt(y) = number of requests received in the current round by processor t in y’s
quorum, for y + overflow messages from previous round.

2. if (0 < Rt(y) < c′logn) then t.send(y, < p→ y >)
else accumulate incoming accepted messages to an overflow list for next round.

3. if y.asynchaccept(H(candstry, y), < p → y >) , then y.send(p, < candstry >) and
y.send(H(candstry, p), < candstry >)

4. if, for p, | processors in polllistp sending candidate string s | reaches (1/2)polllistp+1

(a) Set candstrp ← s.
(b) for all {Processor y ∈ polllistp that did not yet respond},

z.send(H(candstry, z), < Abort, p >) where z are the processors in p’s
gateway.

(c) if t ∈ H(candstr t, y) and t.accept(H(candstr t, p), < Abort, p >) then < p →
y > is removed from overflowlistt(y).

(d) p’s quorum’s sends a message (directly) to the root quorum.

5. When the root quorum hears from n/2 quorums, it sends an end-of-round signal
down the binary tree to all the quorums.

Protocol 4.1: Asynchronous Part-III

4.1 Proof of correctness and termination

If all processors decide on a value for the globalstr , then w.h.p. they decide
correctly. This follows from the proof for the synchronous model. The globalstr
can be extended to include an extra 1 bit which is the Byzantine agreement value
that was decided by the almost everywhere Byzantine agreement protocol. This
attachment is disregarded until the end of the protocol when the processors use
this value to decide on solution to the Byzantine agreement problem.

We now show that w.h.p. every processor decides. First note that Parts I
and II of the synchronous protocol are inherently asynchronous. That is, as
messages are received, they can be responded to in whatever order they arrive.
A “round” ends in the asynchronous Part III if sufficient number of quorums
receive answers to requests. Eventually all good processors which send messages
will have their messages delivered, and the number of quorums will reach n/2.
Finally the end-of-message signal will be successfully forwarded down to the
leaves of the binary tree since there is a majority of good processors in each
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quorum which will forward it. If we let the maximum time delay from sending
a message to delivery of the message be one time step, then each round in Part
III takes O(log n) time steps and polylogarithmic bits. The time is dominated
by the need to forward the end-of-round signal down the tree of quorums, which
is a binary tree of height log n.

5 Future work

Handling churn is an important concern. We note that the probability of suc-
cess of Awerbuch and Scheidler’s work is ensured for only a limited polynomial
number of joins and leaves. A natural interesting question to ask is whether our
techniques could be combined with those in [6] to create and maintain quorums
and a DHT indefinitely in the presence of churn, without relying on complexity
assumptions or private channels.
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