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Abstract—A group of n players wants to run a distributed
protocol P over a network where communication occurs via
private point-to-point channels. Unfortunately, an adversary, who
knows P, is able to maliciously flip bits on the channels. Can we
efficiently simulate 7 in the presence of such an adversary?

‘We show that this is possible, even when L, the number of bits
sent in P, and 7', the number of bits flipped by the adversary
are not known in advance. In particular, we show how to create
a robust version of P, P’ such that 1) P’ fails with probability
at most ¢, for any 6 > 0; and 2) P’ sends O(L + T') bits, where
the O notation hides a log(nL/§) term multiplying L. Critically,
our result requires that P be a protocol that runs correctly in
an asynchronous network; in contrast, our protocol 7’ must run
in a synchronous network.

Additionally, we show how to improve this result when the
average message size is not constant. In particular, we show how
to create a protocol P’ that sends O(L(1+ (1/a)log(nL/§))+T)
bits, where « is the average message size. This new P’ is adaptive
in that it does not require a priori knowledge of c. We note that
if o is Q (log(nL/J)), then this improved algorithm sends only
O(L+T) bits, and is therefore within a constant factor of optimal.

Index Terms—Interactive Communication, Private channels,
Key Exchange

I. INTRODUCTION

How can we compute in the presence of noise? The problem
of interactive communication formalizes this problem [40], [37],
[1]. In this problem, n players are in a network connected by
point-to-point binary symmetric channels, and we want to
simulate a distributed protocol P, even when an adversary can
flip bits on any of the channels at any time. Our goal is to
create a new protocol P’ that correctly simulates P even in
the presence of such adversarial bit flipping.

Under certain special conditions on P, it is already known
how to create a P’ with a multiplicative blowup in the number
of bits sent that is O(logn) [37], or even O(1) for certain
network topologies [1], [29], [28]. However, the conditions
on P are strong: it must be a protocol that sends exactly 1
bit over every channel in every time step. Unfortunately, in
a complete network, where the average number of messages
sent per round in P is only O(n), the multiplicative blowup
can become Q(n) This is much too high for practitioners who
need noise-tolerant distributed algorithms.
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In this paper, we take a first step toward designing an
algorithm with costs that scale well for any network topology.
In particular, if an adversary flips 7" bits, then our algorithm
sends O(L + T') bits, where L is the number of bits sent in
‘P. Importantly, our algorithm requires no a priori knowledge
of T or L.

To obtain this result, we make two key simplifying assump-
tions over [37], [1], [12], [28]. First, we assume all channels
are private and that the adversary does not know the private
random bits of any player; this assumption is also in [15], [16].
Second, we assume that P is asynchronous: it runs correctly
even with arbitrary message delays.

There exist many examples of asynchronous algorithms
known for common problems that need to be solved in noisy
networks including: leader election [17], minimum spanning
tree [4], shortest paths [3], maximal independent set [2],
stochastic gradient descent [43], and dominating set [44]. Our
result allows using any asynchronous algorithm to design a
new synchronous algorithm that is robust to channel noise.
This new algorithm sends significantly fewer bits compared
to prior work, which sends Q(nL) bits [37], [1], [12], [28].
Additionally, when T' = O(L), the new algorithm sends only

O(L) bits.

A. Model Details

We now describe some details of our model. We refer
the reader to [31], [42] for more details on synchrony and
asynchrony in distributed computing.

Asynchrony of ‘P. Different from past work, we require that
‘P runs correctly in an asynchronous network. Recall that an
asynchronous network allows for adversarial delay of messages.

Synchrony of P’. Following past work, we require that P’ is
run in a synchronous network. A synchronous network assumes
that the amount of time needed to deliver a message over any
channel is fixed and known. We define a time step as the
amount of time that it takes to send one bit over a channel.

Binary Channels. In each time step, a bit value is set for every
channel. This is the value received by any player listening on
the channel. In any contiguous sequence of time steps where
no player sends a bit, the adversary sets the bits, and pays a
cost of 1 for each time it changes the value. For example, if
there are 3 such contiguous time steps, the adversary can set



the bit values to “000" or “111" at cost 0, or to “010" at cost
2. This cost model follows that in [16].

Additional Assumptions. As in prior work [37], [1], we assume
that all players know the value n. However, we do not assume
players know the values L, T and «. We assume private
channels, but otherwise make no cryptographic assumptions.
Finally, in the case where we want an error probability that
is smaller than a polynomial in n, we require that all players
know a desired error probability 4.

B. Our Result

Our main result is summarized in the following theorem. The
latency of protocol P’ is the total number of time steps that
elapse until all processors in P’ terminate. A communication
path in an asynchronous simulation of P is a directed path
over the players such that (1) any edge (w,v) in the path
represents a message sent from player u to player v; and (2)
for any two successive edges (u,v) and (v, w) in the path, the
message associated with edge (u,v) was received by v prior
to v sending the message associated with edge (v, w).

Theorem 1. Let P be an asynchronous protocol for n > 2
players that sends a total of L bits. Let o be the average
message length in P. Let § > 0. Then we can create a
synchronous protocol P’ (via Algorithm 3 in Section IIl) with
the following properties.

1) For any number T of adversarial bit flips, , P’ succeeds
with probability at least 1 — . That is, each player stops
after a finite number of time steps, and outputs a valid
transcript of its run of P.

2) The number of bits sent is O (L (1 + é log (%)) + T).

3) The total latency is

0 (e, 1+ Loe (22} 43

where p ranges over all communication paths in the
asynchronous simulation of P, A, is the latency of p,
and T, is the total number of bits flipped by the adversary
on channels in p.

We make several observations about this result. First, P’
always sends O(L + T) bits, where the O notation hides a
logarithmic term in n, L and J; if the desired ¢ is polynomially
(or even sub-polynomially) small in n, then the O notation
hides a logarithmic (polylogarithmic) term just in n and L.
Second, if « is Q (log(nL/¢)), P’ sends only O(L + T') bits,
and is thus within a constant factor of optimal. Finally, P’
requires no a priori knowledge of L, T, o, or the network
topology.! However, it does require all nodes know n, and that
they agree on some desired §.

C. High-level Overview

At a high level, our approach is as follows. For every
channel that connects two players, each of these players runs

'We note that all prior interactive communication results assumes a priori
knowledge of L.

two protocols for that channel, one for sending messages
(Algorithm 1) and one for receiving messages (Algorithm 2).
Additionally, each player simulates P by running Algorithm 3.
Algorithm 3 coordinates the actions of the player based on
messages received through all instances that player is running
of Algorithm 2. These actions may include sending messages
via instances of Algorithm 1.

A naive idea is to run the 2-player algorithm of Dani et
al. [16] over each communication channel. Unfortunately, this
fails. In particular, the protocol of [16] assumes that a player
sends a bit on the channel in each time step. However, in
the multiparty problem, there may be many time steps where,
for many channels, neither player on the channel sends a bit.
This can happen because delay due to noise on one channel
is holding up the protocol on all other channels, or simply
because both players connected by a channel are waiting for
messages from other players before using that channel.

We note that we do make use of two key ideas from [16].
First, we use Algebraic Manipulation Detection (AMD)
Codes [14]. These codes enable detection of any bit flips in a
code word with probability of error that is exponentially small
in the number of bits added to the message word. Second,
similarly to [16], we use error-correcting encoding of AMD
code words to ensure that when we have to resend a message,
our costs are linear in the number of bits flipped by the
adversary (see Section III-A for details).

D. Technical Challenges
Below are the key techniques used in our algorithm.

Accepting Messages. Notifying others of errors when there are
n > 2 players can be costly since errors can propagate through
the network quickly. Thus, in contrast to [16], upon accepting
a message, our protocol commits irrevocably to it.

This gives rise to two problems. First, we need to keep the
total error probability small even when we do not know in
advance the number of bits that will be sent in P. To solve
this, we carefully decrease error probabilities for each message
sent over time, by slowly increasing codeword lengths. We do
this in such a way that our total error probability is bounded
by a sufficiently small geometric sum (see Section A-A).

Second, suppose a player receives the message m twice in a
row from the same sender. We now must distinguish between
two cases: (1) m is sent twice in a row in P; and (2) the
acknowledgement sent by the receiver of m was corrupted,
and so the sender sent m again. We address this problem via a
parity bit, similar to [19], which we use in our message send
and receive protocols. See Section III-B for details.

Cost-Efficient Key Exchange. For n > 2 players, for any
channel, there can be many time steps where neither player
is sending on that channel. The adversary can try to forge
messages during these time steps. To prevent this, we use a
key-exchange protocol.

2These protocols are run “in parallel” via multiplexing over the binary
symmetric channel connecting the two players.



Naive key exchanges for our problem fail to be cost-efficient.
For example, if only the sender sends a key, then during
time steps when the sender is not sending, the adversary can
forge messages from the sender. Thus, both the sender and the
receiver must exchange keys.

Additionally, if the sender does not first send a message
to initiate the key exchange, then the receiver does not know
when to start receiving a message in P. Then the receiver
may unnecessarily send key-exchange messages on the channel
even though the sender is not using the channel. Thus, our key
exchange protocol has keys for sender and receiver, and also
includes a key request phase.

Finally, some care must be taken to design the protocol so
that (1) it works correctly when the sender is sending and the
receiver is listening; and (2) when only the receiver is active,
it learns this quickly, so that the number of bits sent by the
players grows slowly with the number of bits flipped by the
adversary. See Section III and Figure 1 for details.

Adjusting for Average Message Lengths. Finally, as an addi-
tional result, we show how to reduce resource costs when the
average message length is high, even if it is not known in
advance. We do this by dividing long messages into smaller
chunks, which are sent in order. However, since we increase
the codeword lengths over time, this gives rise to the following
problem. If a chunk = of message m needs resending due to
adversarial bit flips, then the resend in the following round
will not only include the bits in z, but also some extra bits
from m to make up for the increased codeword length. This
introduces two challenges: (1) the sender of the message must
decide how the message should be divided into chunks prior to
sending it; and (2) the receiver of the message must eventually
piece the chunks back together into the correct message.

On the sender side, we handle this by extracting the next
chunk only when the current chunk has been correctly received,
and no further resends are attempted. On the receiver side, we
replace the local copy of the chunk received in round r with
its resend received in round r 4+ 1 to account for the extra
bits that the latter will contain. Additionally, the receiver must
disambiguate a chunk resend from a repeated chunk using a
parity bit. See Section C for details.

E. Paper Organization

The rest of this paper is organized as follows. In section II,
we discuss some prior work that is related to our problem
statement and results. In section III, we describe our main
algorithm which handles the worst case where all messages
in P are exactly 1 bit in length. We prove this algorithm is
correct and analyze resource costs in Section A. In Section B,
we describe our algorithm for the case where messages in P
are of an arbitrary average size. We analyze this algorithm for
resource costs and correctness in Section C. To better compare
with past work, we discuss the notion of coding rate, and
calculate it for our algorithm in Section IV. We conclude and
give directions for future work in Section V.

II. RELATED WORK

In this section, we survey related work on Interactive
Communication and Rateless Codes. There has been significant
interest in Interactive communication over the last several years,
so for conciseness, we discuss only the most relevant work,
with a focus on algorithms that are robust to adversarial noise.
For a detailed survey of the field, we refer the reader to the
excellent survey by Ran Gelles [21].

A. Interactive Communication (n = 2)

The problem of interactive communication was first posed by
Schulman [39], [41], who describes a deterministic method for
simulating interactive protocols on noisy channels with only a
constant-factor increase in the total communication complexity.
This initial work spurred vigorous interest in the area (see [7],
[21] for some excellent surveys).

Schulman’s scheme tolerates an adversarial noise rate of
1/240, even when channels are public and the adversary knows
all information. It critically depends on the notion of a tree
code for which an exponential-time construction was originally
provided. This exponential construction time motivated work
on more efficient constructions [8], [36], [33]. There were
also efforts to create alternative codes [22], [34]. Recently,
elegant computationally-efficient schemes that tolerate a con-
stant adversarial noise rate have been demonstrated [5], [24].
Additionally, a large number of results have improved the
tolerable adversarial noise rate [6], [11], [25], [20], [9], as
well as tuning the communication costs to a known, but not
necessarily constant, adversarial noise rate [26].

B. Interactive Communication (n > 2)

Arbitrary Topologies. As noted previously, Rajagopalan and
Schulman [37] have shown how to obtain a O(logn) blowup
in the number of bits sent when P is an algorithm that sends
exactly 1 bit over every channel in every time step. Their result
holds when the fraction of bits corrupted by an adversary on
any channel is constant, and even when all channels are public.
Recently, Braverman et al [10] show this blowup is essentially
tight in this model, by giving a lower bound for any interactive
communication protocol running on a star network. In particular,
they show that a blowup of ( @% is necessary when
the fraction of corrupted bits is constant, even when the noise
is stochastic.

Recent work by Censor-Hillel, Gelles and Haeupler [12]
shows how to make any asynchronous distributed protocol
robust against adversarial noise. The multiplicative bandwidth
blowup for their protocols is O(n log? n). Critically, their robust
protocol is asynchronous in contrast to our robust protocol
which is synchronous. We can use the techniques in [12]
to make our robust protocol asynchronous at the cost of a
multiplicative bandwidth blowup of O(nlog?n).

We note that all of the above protocols tolerate up to
a O(1/n) fraction of message corruptions. This is optimal
since, with public channels, if more than a 1/n fraction of
messages are corrupted, the adversary can simply cut off all



communication to a particular player. We discuss how we can
tolerate a higher amount of noise with private channels in
Section II-C.

Special Topologies. Alon et al. [1] present an algorithm that
achieves a constant bit blowup for the special case of a complete
network, or any network with constant mixing time. Hoza
and Schulman [28] describe an algorithm that has constant
bandwidth blowup for networks with O(n) edges. However,
their algorithm can have multiplicative bandwidth blowup of
(nlogn) when the number of edges in the network is 6(n?).
We note that the algorithm of Jain, Kalai and Lewko [29]
consider networks where one node is connected to every other
node. They describe an algorithm with constant multiplicative
bandwidth blowup for these networks. Finally, Gelles and
Kalai [23] show that in a ring topology, logarithmic bandwidth
blowup is necessary and sufficient (for asynchronous protocols).

We note that these previous results achieve an error proba-
bility that is exponentially small in the latency of P.

C. How is our Model Different?

Most prior results for interactive communication give the
coding rate, which is the blowup in the number of bits sent,
as a function of the error-rate, which is the fraction of bits
flipped. To better compare our result with past work, we make
a similar calculation in Section IV.

Our work is not directly comparable to most past results
because we do not quantify our results in terms of the fraction
of messages that are corrupted, and more importantly, we
assume that communication takes place over private channels.

The stronger assumption of private channels means that up
to a 1/log(nL) fraction of message bits can be corrupted, and
our algorithm is still likely to succeed with a cost overhead
that is only O(log(nL)).

In our setting, the adversarial strategy of trying to cut off all
communications to and from a single player requires corruption
of much more than a 1/n fraction of bits. This is true since our
protocol can detect the noise, and then increase the fraction of
the total communication involving the beleaguered player.

Finally, to the best of our knowledge, all prior work
on Interactive Communications assumes players know L in
advance. We are able to remove this assumption of a priori
knowledge of L.

D. Interactive Communication with Private Channels

Our paper builds on a result for 2-player interactive com-
munication over a private channel by Dani et al [16]. Like
our paper, their work tolerates an unknown by finite number
of adversarial bit flips, 7. They show that private channels
are necessary in order to tolerate unknown 7. Their algorithm
assumes that both players know L. Their algorithm sends

L+0 ( L(T+1)logL + T) bits in expectation. We note
that for n = 2 players, our protocol sends O (L log(L/d) + T')
bits, which is larger for any choice of 4.

E. Rateless Codes

Rateless error correcting codes enable generation of poten-
tially an infinite number of encoding symbols from a given set
of source symbols, with the property that given any subset of
a sufficient number of encoding symbols, the original source
symbols can be recovered. These codes can tolerate an unknown
amount of channel noise.

Fountain codes [32] and LT codes [35], [30], [27] are two
classic examples of rateless codes. They employ feedback for
stopping transmission [35], [30] and for error detection [27]
at the receiver. Critically, the feedback channel is typically
assumed to be noise free. We differ from this model in that
we allow the adversary to flip bits on the feedback channel.
Additionally, we tolerate bit flips, while most rateless codes
tolerate only bit erasures. Not surprisingly, these codes incur
a smaller constant blowup in the number of bits sent when
compared to our results.

III. OUR ALGORITHM

We discuss the overall idea and technical aspects of our main
algorithm in this section. The detailed steps are presented in
Algorithm 3 in Section III-D, which uses Algorithms 1 and 2
as subroutines. We also provide a flowchart to illustrate the
different steps for communication over a single channel in
Figure 1.

For now, we assume that P consists of one-bit messages.
We remove this assumption to handle arbitrary message lengths
in Section B.

A. Notation and Definitions

Some helper functions and notation used in our algorithm
as follows. For a string s, we use the notation s[i] to denote
the i bit of s and s[i, j] to denote the substring (s[i], s[i +
1],...,8[j — 1]). We let |s| denote the length of string s, and
use the conventions that s = (s[0], s[1],..., s[|s| — 1]), and
for j > |s|, s[i,j] = sli,|s|]. We use & to denote the XOR
operation on bit strings. We assume that all logarithms used
in this paper are of base two.

Algebraic Manipulation Detection Codes. Our algorithm
makes use of Algebraic Manipulation Detection (AMD) codes
from [14]. For a given n > 0, these codes provide three
functions: amdEnc, amdDec and I sCodeword. The function
amdEnc (m,n) creates an AMD encoding of a message m.
The function IsCodeword (m,n) takes a message m and
returns true if and only if there exists some message m’ such
that amdEnc (m/, ) = m. The function amdDec (m, ) takes
a message m, checks if IsCodeword (m,n) is true and if so,
returns a message m’ such that amdEnc (m’,n) = m. Else, it
returns a dummy message, denoted L, indicating failure. AMD
codes do not make any cryptographic assumptions and only
require that the communication happens on private channels.

We summarize the results from [14] to highlight the
important properties of these functions in the following lemma.

Theorem 2. There exist functions amdEnc, amdDec and
IsCodeword, such that for any n € (07 %] and any bit string
m of length x:



1) amdEnc (m,n) is a string of length x + 2log (%)
2) IsCodeword(amdEnc(m,n),n) = true and

amdDec (amdEnc (m,n),n) = m.
3) For any bit string s # 0 of length x, we have
Pr(IsCodeword(amdEnc (m,n)® s,n)) <.

With respect to these properties, we will refer to 7 as the
strength or security of the encoding or AMD failure probability,
depending on the context.

%—Error—correcting Codes. These codes enable us to encode a

message so that it can be completely recovered if the adversary

corrupts up to a third of the total number of bits in the message.

We will denote the encoding and decoding functions by ecEnc
and ecDec, respectively. The following theorem, established
by the results in [38], gives the properties of these functions.

Theorem 3. There exists a constant Cy > 0 such that for any
message m, we have |ecEnc (m)| = C.|m|. Moreover, if m’
differs from ecEnc(m) in at most one third of its bits, then
ecDec(m') = m.

We observe that the linearity of ecEnc and ecDec ensures
that when the error correction is composed with the AMD
code, the resulting code has the following properties:

1) If at most a third of the bits of the message are flipped,
then the original message can be uniquely reconstructed
by rounding to the nearest codeword in the range of
ecknc.

2) Even if an arbitrary set of bits is flipped, the probability
of the change not being recognized is at most 7, i.e. the
same guarantee as for the plain AMD codes.

This is because the error-correcting code is linear, so that
when noise 7 is XOR’ed by the adversary to the codeword =z,
effectively what happens is that the decoding function rounds
the noise to the nearest codeword. Thus, ecDec (z ®1n) =
ecDec (x) @ ecDec (1) = m @ ecDec (1), where m is the
AMD-encoded message. But now ecDec (1) is an obliviously
selected string added to the AMD-encoded codeword, and
hence the result is very unlikely to be a valid message unless
ecDec (n) = 0.

Silence. We define the function IsSilence (s) to return true
iff the string s has fewer than |s|/3 bit alternations. We also
define .7 = {s € {0,1}¢ | IsSilence (s)}. We drop the
subscript when ¢ is clear from the context.

B. Algorithm Overview

Our algorithm proceeds in rounds, each of which consists of
the following steps. For convenience, our presentation assumes
two bidirectional channels between each pair of (neighboring)
players, one for each player to initiate a round with the other.
We can simulate these two channels by multiplexing over a
single channel, at the cost of a factor 2 increase in the number
of time steps.

1) If u has a message for v, it initiates a message exchange
by asking v for a key. We use the keyword KEY? to
denote this request for the key.

2) Upon receipt of this key, u sends the message along with
the key.

3) v terminates the message exchange upon successful
authentication and retrieval of the message.

4) w terminates the message exchange upon hearing silence
from v.

This goes on until all the messages in P have been communi-
cated to the intended recipients.

Rounds. For each message m in P that needs to be sent from
some player u to his neighbor v, we communicate m through
a sequence of exchanges between players u, referred to as
Alice, and v, referred to as Bob, in P’ using Algorithms 1
and 2, respectively. As mentioned above, the sequence of time
steps corresponding to steps 1-4 of the algorithm overview
constitute what we call a round. Thus, each round of P
consists of exactly four words, one for each of the steps 1-4.
The length of each word in round r is denoted w,. This
depends on the round number r and is therefore a function of
the current time step, which can be computed independently
by each player using the global clock. We make w, gradually
increase with 7 (the exact dependence will be provided shortly).

Since each message in P is just a single bit, it takes
exactly one round to be communicated in P’, if no successful
corruption happens, and more otherwise. If a round for some
message m is corrupted, we attempt resending m in the
subsequent round, which provides higher security due to a
larger word length.

At the beginning of each round, Bob must listen for a key
request during the first w, time steps. If no valid request is
received, he idles until the start of the next round. Thus Bob
is active in every round. For her part, Alice only participates
in a round if, in P, she has a message to send to Bob.

Farity Bit. Observe that it is possible that Alice and Bob have
different views on whether a particular round was successful.
More concretely, if Bob encounters two progressive rounds that
contain the same message, with no silent round in between,
he needs to distinguish between whether Alice is resending
the message or whether Alice’s next message happens to be
the same as the previous one. To disambiguate these cases,
Alice appends a bit b to each message m that she sends to
Bob, where b is the parity of the index of m. We will refer to
b as the parity bit for m and use the notation (m, b) to denote
this augmented message.

Word Generation. Both Alice and Bob generate their words
for round r using a function &, (z, k), described below, which
returns the encoding of the word’s content x using the key &
based on the security settings for round r. Here z may be the
message m from P, a special keyword KEY? used by Alice to
request Bob’s key, or Bob’s key for the round. The key k, for
round r, is a string of length 2 |log 4%T—‘ bits. This key length,
and other corresponding encoding parameters, are chosen to
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Fig. 1: Flowchart for Alice and Bob during each round. Here w denotes the word length in the current round.



ensure the failure events for our algorithm occur within the
given error tolerance, d (See Section A-A for details).

In Alice’s first call to &, k is a random string. In Bob’s call,
k is the key he received from Alice in the previous word, but x
is a random string of the appropriate length. In Alice’s second
call, k is the key she received from Bob in the previous word.
Alice and Bob generate fresh random keys for each round in
which they desire to send a message.

The function &, (x, k) is formally defined as follows. The

function first appends the content x with a key k of length x, =
4nmr

2 [log 22
bits with an AMD code using 7, = ﬁ Then, it encodes
this AMD codeword with a (1/3)-error-correcting code. Finally,
it pads 38 [log 2:7; random bits to the ECC codeword. These
random bits are added to ensure that players are unlikely to
confuse words with silence and that the adversary is unlikely
to flip bits of a word to forge silence. As a result, the word
length for round r is given as w, = O (log %").

Similar to &, (z, k), we define a function &, (m) which
returns either a pair (2/, k') such that &, (2, k) = m or returns
(L, 1), if no such (z', k") exists. It begins by stripping off the
padding at the end of m to obtain a shorter string m’. Then
it decodes the error correction, computing m” = ecDec (m’).
If IsCodeword (m”,n,), then 2 outputs amdDec (m”, ),
otherwise it returns (L, L).

Failure Events: There are certain events which may cause
our algorithm to fail. More specifically, it is possible that the
adversary (1) converts one AMD codeword to another, so that
the decoded content is different from the content intended;
(2) converts a non-silence word into silence; and (3) correctly
guesses some player’s key and uses it to communicate bits
that are not in P. We will discuss these failure events in detail
in Section III-E and analyze their probabilities of occurrence
in Section A-A.

bits. Then, it encodes this concatenated string of

C. Round Details

We will now describe various scenarios for what may happen
in a round during the execution of the algorithm, for a particular
bidirectional channel. There are O(n?) such channels, and the
same round may have different scenarios enacted on it on
different channels. Moreover, the views of Alice and Bob may
differ on which scenario was enacted. For the sake of simplicity,
we assume that none of the failure events as described above
happen for the remainder of this section.

Silent Rounds: These are rounds in which Bob hears
silence when he listens to the first word of the round on the
channel. Since the adversary cannot tamper with messages
from Alice to look like silence, such a round can happen only
when Alice had no message for Bob. Thus, nothing further
happens in the round and both Alice and Bob stay silent. This
way, both views agree that the round was silent.

Progressive Rounds: These are rounds in which the
number of bits flipped by the adversary is small enough that it is
handled by the error-correction codes, so that encoded messages

Algorithm 1 Message exchange algorithm for the sender.
Send-Message is only called at the beginning of a round.

1: procedure SEND-MSG(m)

2: > b is a persistent variable for the parity bit. On the
first call to SEND-MSG, b is set to 0. On subsequent calls
it is whatever it was set to on the previous call.

3: while true do

Generate random key k4 of length x,
current round number..

Send &, (KEY?,k4).

M, < w, bits from the receiver.

if IsSilence (M;) then > assume the receiver
has already terminated.

Stay silent for 2w, time steps and return
9: else

> r is the

10: (z,k) < 2, (M)

11: if k # k4 then

12: Stay silent for 2w, time steps.
13: else

14: kp < x

15: Send &, ((m,b),kp).

16: My + w, bits from the receiver.
17: if IsSilence (M) then

18: b < —b and return

Algorithm 2 Message exchange algorithm for the receiver.
Receive-Message is only called at the beginning of a round.

1: procedure RECEIVE-MSG()

2: >bisa persistent variable for the parity bit. On the
first call to RECEIVE-MSG, b is set to 0. On subsequent
calls it is whatever it was set to on the previous call.

3: M + w, bits from the sender.

4: if IsSsilence (M) then

5: Stay silent for 3w, time steps. > r is the current
round number.

6 else

7: (@', k) « 2. (M7)

8 if 2/ £ KEY? then

9 Send noise for w, time steps.

10: Stay silent for 2w, time steps.

11: else

12: ka <+ K.

13: Generate random key kp of length k;.

14: Send g,- (k’B, kA).

15: MY « w, bits from the sender.

16: (", k") + D, (M})

17: if k" # kp then

18: Send noise for w, time steps.

19: else

20: (m/, b)) « "

21 if ' # b different from last message then

22: Set b+ b and record the message m’
from the sender.

23: Stay silent for w, time steps.




are successfully recovered upon receipt. Furthermore, when
Bob is silent (after successful authentication of the message
from Alice), the adversary is unable to set sufficiently many

bits on the channel from Bob to make Alice believe otherwise.

This allows Alice to decide that Bob has successfully received
her message. Hence, when the round ends, both Alice and Bob
agree that the round was successful.

Corrupted Rounds: These are rounds in which the
adversary is able to successfully corrupt one or more of the
words in the round. The following cases are possible.

1) Alice is silent, but the adversary sends Bob a key request.

Following this, Bob samples a key and sends it to
Alice. But she is not expecting a message from Bob
and hence, remains silent. At this point the adversary
can say whatever he wants on the channel. However, since
he does not know Bob’s key3, he cannot authenticate his
message. Thus, Bob receives an invalid communication
and responds with noise. Again, since Alice is not
expecting any message from Bob at this point, she
remains silent and does nothing. Thus, such a round
is corrupted in Bob’s view, but silent in Alice g4

2) The adversary corrupts Alice’s key request. Bob, upon
receipt of this invalid key request, remains silent in the
rest of the round. The adversary may now say whatever
he wants on the channel from Bob. In particular, he may
try to impersonate Bob and send Alice a key. However,
since he cannot reproduce Alice’s key from the request
that she originally sent to Bob, the adversary is unable
to authenticate himself as Bob. Thus, Alice receives an
invalid communication, and stays silent until the end of
the round.

3) Bob receives Alice’s key request, but the adversary
corrupts Bob’s reply, which contains his key. However,
since the adversary cannot corrupt one AMD codeword
into another, Alice is unable to decode the message
into a key for Bob, causing her to remain silent for the
remainder of the round. Again, the adversary cannot
forge a message from Alice since he cannot reproduce
Bob’s key.

4) The adversary is inactive for the first half of the round
until Alice receives Bob’s key. After that, the adversary
corrupts Alice’ communication of her message to Bob.
This will disable Bob to decode the message at his end
and consequently, he injects noise into the channel. Since
the adversary cannot convert this noise into silence, Alice
knows that the round has failed, and of course, so does
Bob.

5) The round succeeds all the way to the point where Bob
decides that the round is successful and remains silent.
The adversary then injects noise onto the channel causing
Alice to think the round has failed. Thus, such a round

3Recall our assumption about private channels and the fact that the adversary
is oblivious to the private random bits of the players.

4Note that Bob may realize that the round was silent in Alice’s view at a
later stage, but we still account for this as a corrupted round, since Bob has
already incurred a cost for the corruption.

is corrupted in Alice’s view but progressive in Bob’s.
However, this is not a problem because when Alice
resends the message in the following round, she keeps
the parity bit unchanged to indicate to Bob that this is
a resend (and not a fresh message). Hence, Bob will
receive the message again in this round. At this stage,
of course, Bob realizes that the previous round was in
fact, corrupted, and disregards the message he believed
was successfully received in the previous round. There
is no other difference in Bob’s future actions.

D. The protocol P’

We now present our main protocol P’, described by Algo-
rithm 3.

As shown in [31] Chapter 14.1.1, any asynchronous
distributed algorithm can be represented as an I/O automaton
with certain properties. We make use of this definition to
represent P. This formulation will be helpful in proving the
required security properties of our protocol in Section A-B.

We assume that for each player u in the network, P provides
an I/O automaton P, with the following properties. °

¢ P, has a single initial state.

e P, has some subset of states that are termination states.
Each termination state may have a value for u to output.

o There is a set of transition relations, each from one state
to another state, each labeled with an action, where this
action may be either an input action (e.g. receiving a
message) or an output action (e.g. sending a message).
These transitions satisfy the property for every state s, for
every possible input action, a, there is a transition from
s to some other state that is labelled with a.

E. Failure Events

As mentioned before, there are certain events that can cause
catastrophic failure from which P’ cannot recover. These events
are described as follows.

1) The adversary’s bit flips happen to convert an AMD
codeword into another valid AMD codeword. In this case,
the decoded content differs from the intended content,
resulting in either authentication failure (when the content
was Bob’s key) or incorrect simulation of P (when the
content was Alice’s message).

2) The adversary’s bit flips on some (non-silent) word
are such that the resulting word looks like silence to
its recipient. If the noise sent by Bob in line 18 of
Algorithm 2 to request a resend is converted to silence,
then Alice incorrectly assumes that Bob has received
her message and stops transmitting it. This results in an
incorrect transcript of P. Other words being converted
to silence could result in a player being silent on the
following word, which in conjunction with guessing the

SWe use an 1/0 automaton to capture subtleties of simulating an asyn-
chronous protocol. For example, when player x sends a message to player vy,
we must show that either player y eventually receives this message, or that
player y terminates in P before receipt of the message.



Algorithm 3 Protocol P’, run at each node u

1: s <+ initial state of P,
2: while s is not a termination state do
3: if there is a transition relation from state s to state s’
in P, labeled with an output action to send message m
to neighbor v then
4: Schedule SEND-MSG(m) to run on the channel
to v.
If no call to SEND-MSG is currently running on
the channel, begin immediately.
Otherwise, set up the call to begin as soon as all
currently scheduled SEND-MSG
calls on this channel have finished running.

5: Transition to state s’ in Py; s < s'.

6: else

7: repeat

8: for each neighbor wv, in parallel run
RECEIVE-MSG() on the channel from v.

9: until the RECEIVE-MSG calls have recorded some
non-empty set .S of messages

10: for each message m in S do

11: Let s’ be the target state on the transition
relation from s with input action m.

12: Transition to state s’ in Py; s < s’

13: Set player u’s output based on the termination state.
14: Continue executing any remaining scheduled SEND-MSG
calls until all have returned.

key (see below), could result in the adversary being able
to say whatever he wants on the channel.

3) In a round when Alice is silent in P, the adversary can
forge a key request on her channel to Bob. Ordinarily, this
is not a problem because when Bob responds with his key,
the adversary cannot read it, and therefore cannot send
Bob an authenticated message. However, if he happens
to guess Bob’s key, then he can send Bob a message
purporting to be from Alice, resulting in an incorrect
simulation of P.

We will show in Section A-A that our choice of word lengths
and encoding strengths over different rounds ensure that the
probability of such a catastrophic failure, caused by either (or
any combination of) of these failure events over the entire run
of the algorithm is within the given error tolerance, .

IV. CODING RATE OF OUR ALGORITHM

In most prior work it is assumed that the noise rate of the
channel(s) is known and may be used as a parameter in the
design of the algorithm. The parameter of interest then is the
rate of the designed code, or coding rate. The coding rate of
an interactive communication algorithm is the number of bits
sent in P’ divided by the number of bits sent in P.

In our work we do not assume that the noise rate is known in
advance, but only require that the adversary flip a finite number
of bits. In order to compare our result with other work, we
compute the coding rate of our algorithm as a function of the

a posteriori noise rate. Such a comparison is only meaningful
when the adversary’s total budget is less than L, the length of
‘P, so for this section we will assume that 7' < L.

Let L' denote the length of P’. Theorem 1 states that our
algorithm achieves L' < CL (1 + 1 log (%£)) +CT for some
constant C, where J is the permissible failure probability
for the algorithm and « is the average message length in
P. Furthermore, since T' < L this translates to the absolute
upper bound

L' < CL (2+110g (”L>> (1)
«a 4
<CL <2 + 1 log (n(L + T)>> (2
o 1)
<orL (2 + D og (2"L )) 3)
« 1)

Let ¢ = T/L' be the a posteriori noise rate. Then
T = eL’. Making this substitution for 7" in (2), and us-
ing (3) to bound the L’ inside the 103 we have L' <

n L jog( 2nL
CL (2 4 Ligg (mlEr=CL@ratos(H)) ) ) pividing by L,

’ n 5 1 log( 2L
we get - <20+ glog( e CL(H(;“] e )))) which

the same as saying that

L/

c
— < —
2C + log(nL/é) +

o (14 20+ Clsnisa) |

Finally, using log(1 + z) < z on the second logarithm in
this expression, we get £* < (2C + M) (1+=9).

To summarize, for the worst case where o« = 1, the above
shows that we achieve a coding rate that increases linearly with
the noise rate e and with the logarithm of nL/§. In particular,
the coding rate is O((1 4 ¢)log(nL/4)). For arbitrary o, we
achieve a coding rate of O((1 + ¢/a)log(nL/d)/a).

V. CONCLUSION AND FUTURE WORK

We have described the first algorithm in interactive communi-
cation for n players that deals with the case of unknown number
of bits sent by the protocol, while tolerating an unbounded
but finite amount of noise. Against an adversary that flips T’
bits, given an ¢ € (0, 1), our algorithm compiles a noise free
protocol P that sends L bits into a robust protocol P’ that
succeeds with probability 1—4, and upon successful termination,
sends O (L (1 + Llog (% + T') bits, where « is the
average message length in P. The blowup in the number of
bits is constant for long messages in P and within logarithmic
factors of the optimal, otherwise.

Several open problems remain including the following. First,
can we adapt our results to interactive communication where P
is a synchronous protocol? Second, can we handle an unknown
amount of stochastic noise more efficiently, while making no



assumption on the value of L or T'? Finally, for any algorithm,
what is the minimum number of private random bits required
to be hidden from the adversary to achieve robustness?
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APPENDIX A
ANALYSIS OF ALGORITHM 3

We now analyze the failure probability and total number of
bits sent in P’. We begin by computing the failure probability
for the algorithm, by considering the three bad events as before,
and then take a union bound over all the rounds. We will then
prove that the algorithm is correct and terminates in finitely
many time steps. Finally, we compute an upper bound on the
expected number of bits the algorithm sends.

A. Probability of Failure
We define three bad events for a round.

1) AMD Failure : The adversary is able to flip the bits
to convert the message into another valid word. In this
case, the affected players end their rounds either with
authentication failures or with knowledge of bits which
are not in P.

2) Conversion to Silence : The adversary is able to flip bits
in such a way that some player’s random bits look like
silence to his neighbor, resulting in the latter ending his
round without the knowledge of this failure.

3) Key Installation : The adversary installs a correct key
from Bob when Alice is silent (to successfully simulate
line 15 of Algorithm 1) or installs a correct key from
Alice when Bob is silent (to successfully simulate line 14
of Algorithm 2).

We bound the probabilities of each of these failure events
by 0/3 in Lemmas 1, 3 and 4, respectively. Finally, we use a
union bound in Lemma 5 to eventually prove that our algorithm
succeeds with probability at least 1 — J.

Lemma 1. In P, AMD Failure occurs with probability at
most 6/3.

Proof. Recall that in any round, four words are exchanged
between any pair of players, and that at most (;‘) < n? pairs of
players may be exchanging words with each other. Furthermore,
in a given round r, the AMD failure probability for a single
word is set to be at most 7, = (n7r) > 8/2, as discussed in
Section ITI-B. Now, for 1 < k<4, 1<i#j<mnandr >1,
define &; ;1. to be the event that in round r, AMD failure
occurs in the k** word exchanged between players i and j.
Then, Pr(&; j1.,) < (nmr)~> §/2. Hence, by a union bound,

4 n )
we get Pr <U1ﬁ,j7k,r &,j,k,r) <Dk Zid;_l Zer S =
25 1 5 7 O

72 r>172 = 3
Lemma 2. For b > 95, the probability that a b-bit string

sampled uniformly at random from {0,1}° has fewer than b/3
bit alternations is at most e~°/19,

Proof. Let s be a string sampled uniformly at random from
{0,1}", where b > 95. Denote by s[i] the i'" bit of s. Let
X; be the indicator random variable for the event that s[i] #
s[i +1], for 1 < 4 < b. Note that all X;’s are mutually
independent. Let X be the number of bit alternations in s.
Clearly, X = Y2071 X;, which gives E(X) = Y/ E(X;),

i=1
using the linearity of expectation. Since E(X;) = 1/2 for all

1<i<b weget E(X)=
version of Chernoff’s bound (see

(b —1)/2. Using a multiplicative
[18]), we have that for

0<t<+Vb-1,
Pr (X b_Tl —t b2_1> < e_t2/2.

To obtain Pr(X < b/3), we set t =

\/7 to get
a2
Pr(X <b/3) <e” 152D <e P19 forph> 95,

where the condition b > 95 comes from rounding the solution
to a quadratic equation. [

Lemma 3. In P’, Conversion to Silence occurs with probability
at most /3.

Proof. Recall that in round r, each encoded message includes
38 [log 2nzr —Lrandom bits at the end. Then, Lemma 2 tells

V3
us that the probability that adversary is able to flip these random

38|log( ZRAT
bits of a word to forge silence is at most Z’M <
(nmr) 2 §/4. Thus, similar to Lemma 1, for 1 < k < 4,1 <
i # j < nandr > 1, define &, to be the event that
in round r, the k" word exchanged between players i and
Jj is converted to silence, so that Pr(&; jx,r) < (nrr)~25/4.
Hence, by using a similar union bound as Lemma 1, we get
the desired bound. O

Lemma 4. In P/, the adversary is able to guess the key of
some player with probability at most §/3.

Proof. Recall that the keys are of length 2 {log (4:751">J in
round r. Each such key is generated uniformly at random
from the set of all binary strings of this length. Thus, the

probablllty of guessing this key is at most 2~ (1og(47\1/11 ﬂ <
(nmr) "2 6/16. Again, similar to Lemma 1, for 1 < k <
4,1 <i# j <nandr > 1, define & ;1 to be the event
that in round r, the adversary is able to guess the key in
the k" word exchanged between players 7 and j, so that
Pr(& jkr) < (nmr)” %6/16. Hence, by using a similar union
bound as Lemma 1, we get the desired bound. O

Lemma 5. With probability at least 1 — §, none of the failure
events happen during a run of P’.

Proof. A run of protocol P’ fails if any of the three failure
events described above happen. From Lemmas 1, 3 and 4, the
total probability of failure is computed by using union bound
over the three failure events, which gives 6/3+46/3+46/3 = 4.
Hence, the run succeeds with probability at least 1 —¢§. [

Next, now show that P’ correctly simulates all valid runs
of P.

B. Correctness

All lemmas in this section assume that none of the failure
events occur. Without loss of generality, we also assume that
Alice and Bob generate their keys in every round. We use the



phrase terminated in P to mean finished executing line 13 of
Algorithm 3.

Lemma 6. Fix a round r of P’'. Let W be any of the four
sequences of w, bits on the channel from Alice to Bob or the
channel from Bob to Alice in this round and kf:), kg) be the
keys that Alice and Bob generate in this round. Then exactly
one of the following hold.
1) IsSilence (W) is true, in which case the sender on
the channel was silent as well.
2) 2, (W) =C #L. Then,
a) If C = (KEY?,k), then either Alice sent W with
key k = k(r), or Alice is silent and the adversary
sent W.
b) If C = (K, k<), then Bob has not terminated in
P yet, and he sent W with key k' = k;g).
c IfC = (x,kg)), then Alice sent W with content
z =m("), where m'") is Alice’s message for Bob
in round r.
d) Otherwise, the adversary sent W on a silent
channel.
3) Bob executed line 18 of Algorithm 2.
4) W is the outcome of adversarial tampering on the
channel.

Proof. In any given round r, whenever Alice or Bob send
a word to the other, this word does not convert to silence
because we assume that the failure event Conversion to Silence
does not occur. Hence, if silence is received on the channel,
then the sender on the channel must have been silent at that
time. This proves part (1) of our lemma.

If, however, a valid AMD codeword is received, which
decodes into C, the following cases are possible. Case 2(a) :
If C = (KEY?, k), then either Alice issued this key request to
Bob with her key kfp (line 5 of Algorithm 1), or she was
silent. In the former case, the adversary is unable to put a key
k # kf;") in the codeword since the failure event AMD Failure
does not occur, and hence, k = kx). In the latter case, since
the channel is silent, the adversary must have issued the key
request with some key k. Case 2(b) : If C = (¥, kzg)), then
since we assume that the failure event Key Installation does
not occur, it must be the case that Bob sent ¥ and not the
adversary. Thus, Bob must have included his own key k:g)
to the codeword along with a copy of Alice’s key (line 14
of Algoithm 2). This is only possible when Bob has not
terminated in P yet. Case 2(c) : If C = (=, kg)), then Alice
must have sent W since the the failure event Key Installation
does not occur. Also, since we assume that the failure event
AMD Failure does not occur, the adversary would have not
been able to convert m(") into another message successfully,
and hence, I/ must contain the message that Alice has for
Bob in this round. Case 2(d) : If the AMD codeword is neither
of the above three cases, then it must be the case that the
sender was on the channel at the time W was on the channel,
since AMD Failure does not occur. Hence, the adversary must

have sent W on a silent channel.

If neither silence nor an AMD codeword is received, then
W is noise. The only step in P’ where noise is intentionally
put on the channel is when Bob has to inform Alice that he
did not receive her message correctly (line 18 of Algorithm 2).
Thus, if Bob sent this noise, Case 3 of our lemma holds, else
Case 4 must hold where the adversary has tampered with the
bits on the channel so that TV becomes noise. O

Lemma 7. Assume Alice calls SEND-MSG(m) in some round
r1 for some message m and bit b. Then the following hold: (1)
Alice returns from SEND-MSG(m) in some round rs > r1; and
(2) either Bob records the message m (line 22 of Algorithm 2)
in exactly one round ro where r1 < ro < r3, or Bob does not
record the message m between rounds r1 and r3 because Bob
terminated in P.

Proof. We first show that if Alice calls SEND-MSG(m) in
round 1, then there must exist some round r3 > r{ in which
this call returns. Since the adversary’s budget is finite, there
must be some round, r4, after which no bits are ever flipped.
If the call returns before round r4, then part (1) is proven, so
we only consider the cases where the call extends past round
r4. In round r4 + 1, after Alice has sent a key request she
either hears silence, indicating that Bob has terminated in P,
and the call returns, or she correctly receives Bob’s key, and
uses it to send m which Bob correctly receives, and records
(since the bit b is different than the bit in the last message
recorded). Next, Alice hears silence from Bob. This ends the
call. Either way the call returns at the end of round r4 + 1.
Thus, in every case there is some round 73 > r; in which the
call to SEND-MSG(m) returns.

We now prove part (2) of our lemma. We first show that
the message m is recorded at most once by Bob in the rounds
r1 to r3. By Lemma 6 (2(c)), the bit b’ received by Bob in
line 20 of Algorithm 2 must be the same as the bit b sent by
Alice from rounds r; to r3. Since this bit never changes, Bob
will record a message at most once in rounds r; to rs.

If Bob terminated in P before round 3, then part (2) of
our lemma statement does not require Bob to record the
message m, and so that part or our lemma is trivially true.
Thus, for the remainder of the proof, we assume that Bob has
not terminated in P before round rj3.

Consider round 73 in which the call to SEND-MSG(m)
returns. Let M; be the string read by Alice on line 6
of Algorithm 1. Since Bob has not terminated, Lemma 6
(2(b)) guarantees that Bob sent M7, and therefore the call to
Algorithm 2 does not return on line 8. Hence, it returns on
line 18. Since this is the last round, M; must correctly decode
to (kp, ka) in Algorithm 1. Thus, Alice sends Bob m using kg
and hears silence subsequently. Thus, Bob must have actually
been silent at this time (Lemma 6 (1)), which only happens if



he has either now or previously recorded m. Hence, Bob must
have recorded the message m in some round ro < 3. O

Lemma 8. The following holds for P’. For any message m
that Bob records (line 22 of Algorithm 2) in some round rs,
Alice started a call to SEND-MSG with the message m, in
a round r1 < ro and returned from that call in some round
T3 Z T9.

Proof. Consider the round 7o in which the Bob records
a message m (line 22 of Algorithm 2). In round 79, in
line 20 of Algorithm 2, let &, (M7) = ((m,b), k). Thus, by
Lemma 6 (2(c)), Alice must have sent &, ((m,b), kp), during
the transmission of Mj. Hence, Alice must be in a call to
SEND-MSG with the message m, and this call must have
begun in some round r; < 7o.

Finally, we know by Lemma 7(1) that every call to
SEND-MSG ends in some round rs. Since, by the above,
Alice is in the call during round rs, it must be the case that
Alice returns from the call in some round r3 > 75. O

Lemma 9. Algorithm P’ terminates with a correct simulation
of an asynchronous run of P.

Proof. We show that for every pair of players v and v, protocol
P’ correctly simulates a FIFO message channel(see [31]
Chapter 14.1.2) from u to v during the simulation of . Then
a direct induction shows that for each player u, P, simulates
P, correctly.

Fix an arbitrary channel from u to v in the network. Let @, .,
be the queue of SEND-MSG procedures that are maintained
in P’ by u of messages to send to v.

We require the following facts:

1) In any time step, there is a transition in P, across a

transition relation with an output action to send a message
m to player v, if and only if the procedure SEND-MSG
for message m to player v is pushed on the queue @,
in that time step.

2) Every SEND-MSG procedure for message m on Q.
will eventually start at some round r; and end in some
round 73. Moreover, player v transitions across an input
transition relation for message m from player » at most
once in some round 79, 71 < 79 < 3. Moreover, if there
is no such input transition relation, than P,, has entered
a termination state before round rj3.

3) For any transition along a transition relation in P, with
an input action, in some round 7o, player w started a call
to SEND-MSG with the message m, in a round 71 < ro
and returned from that call in some round r3 > 75.

Fact (1) follows directly from Algorithm 3 steps 3-6. The
first sentence of Fact (2) follows by induction and Lemma 7,

and the remainder of the fact follows directly from Lemma 7.

Fact (3) follows from Lemma 8.

Together, the facts show that no matter what the actions
of the adversary, the protocol P’ correctly simulates a FIFO

message channel from player u to player v. In particular, we
have: 1) when a transition is taken in P, with output action to
send message m to player v, this message is put on a queue; 2)
all transitions in P, with an input action to receive a message
m from player u are associated with the removal of message
m from the queue; and 3) all messages are eventually removed
from the queue, triggering transitions across transition relations
with input actions in P, unless P, is already in a termination
state. O

C. Resource Costs

We now compute the expected number of bits sent and the
latency of P’.

Lemma 10. In P’, round r > 1 begins at time step 7(r) =
S} (r log (%))

Proof. For all » > 1, note that round r 4 1 begins as soon as
the number of time steps corresponding to four words of the
round r have passed. Hence, we can compute 7(r) using the re-
currence 7(r) = 7(r —1)+4w,_1, where 7(1) = 1. This gives
7(r) = 7(1)+4 X7Z] w;. Now, since w, = O(log(nr/5)) (as
discussed in Section III-B), using w; < C1 log (%) + Cs,
we get 7(r) < 1+ 4301 (C1log (%) + Cy). Finally,
using the fact that > logi = O(rlogr), we get 7(r) =
G} (r log (%)) O

Lemma 11. If 7(z) < z for some © > 1 and z > 1, then
x = 0(z/log (%))

Proof. We prove the bound on z for the case that 7(z) = z.
By Lemma 10, we know that 7(z) = C (x log ("()—””)) for some
constant C. Thus, we have z = Czlog (%), and we get (*)
z < z/(Clog (Z£)).

Note that z = Czlog (%) < Cxzlog x. Taking logs of both
sides, we get that log z < C'log x for some constant C’, which
implies that log (%) < C’log (%) Now plugging this back
into (*), we get that z < C"z/log (%) for some constant
c”.

Lemma 12. If P’ succeeds, then it has the following resource
Costs.

o The number of bits sent is O (L log (%) + T).

e The latency is O (m}z}x {Ap log (%) + T,,}),
where the maximum is taken over all communication
paths, p, in the asynchronous simulation of P, A, is the

latency of p, and T}, is the total number of bits flipped by
the adversary on edges in p.

Proof. To bound the number of bits sent, we assume pessimisti-
cally that in every round of P’, there is an attempt to send
exactly one message. This maximizes the number of bits sent
since word sizes increase with time.

Since each word in P’ is ECC encoded, the adversary must
flip a constant fraction of the bits to successfully corrupt the
word, and thereby compromise the round. Let x be the number
of rounds in which some word was successfully corrupted by
the adversary. Since the length of the words increases with



successive rounds, 7' must at least be a constant, C, times the
number of bits in the first 2 rounds of P’, and hence, we must
have 7(z) < (T +1)/C.

By Lemma 11, we know that x = O (m). Thus,
since P’ requires L progressive rounds, the total number of

rounds isr:L—&-O(m :

Hence the total number of bits sent is at most 7(r). By
Lemma 10,

T
7(r) =0 L+ —m—m M
") ( (++ s o7m)
n T
1 |\ L+ —=
o (5 ( +1og<n<T+1>/6>>)>
T n(L+T)
<O|((L 1
<0 ((t+ e ) )
L+T
) (Llog (’L(;)) +T>
L
=0 (Llog <n5> —l—T) .

The second line above follows from 71%(”(:,? 079) < T, and
the third line from the fact that if L = O(T), then log(L +
T) = O(logT). The final line above follows from the fact that
log(L +T) = log(L) +log(1+T/L) <log(L)+T/L, and
hence Llog(L+T) < Llog(L) -+ T. This bounds the number
of bits sent.

To bound the latency, we note that the argument above holds
for any communication path p in the asynchronous simulation
of P. For the p which achieves the maximum, it follows by
induction that all other required messages will have already

been received by the time they are needed, and so p determines
the overall latency. O

We are finally ready to complete the proof of Theorem 1.

Proof of Theorem I with « = 1. By Lemma 5, no failure
event happens with probability at least 1 — 4, and by Lemma 9,
in such a situation, P’ terminates with an asynchronous
simulation of P. Upon correct termination, the resource cost

bounds hold by Lemma 12. O
APPENDIX B
SIMULATING PROTOCOLS WITH MESSAGES OF ARBITRARY
LENGTH

We now show how to reduce resource costs when the average
message length in P is high, even if this average is unknown a
priori. For this section, we first change P so that all messages
of P are from a prefix-free language, and so it is possible to
detect when a message of P ends. This can be done with at
most constant bit blowup [13].

A. Algorithm

The main simulating algorithm P’ (Algorithm 3) remains
unchanged in this setting. Only the sending and receiving
algorithms need to change to reflect the fact that the message to
be sent may be longer than a single call to &;. (, ) can support. In
Algorithms 4 and 5 below, we highlight the necessary changes
in red. For any given round r, we denote by WORD-PARAMS(7)
the function which returns a tuple (w;, ,) where w, is the
word length in that round and &, is the key length in this round.
These values are computed in the same way as the previous
case. We analyze Algorithms 4 and 5 in Section C.

Algorithm 4 Message exchange algorithm for the sender.

1: procedure SEND-MSG(m)

2: > b is a persistent variable for the parity bit. On the
first call to SEND-MSG, b is set to 0. On subsequent calls
it is whatever it was set to on the previous call.

3 7+<0

4 while j < |m|

5 (wy, k) < WORD-PARAMS(7)

6: Generate random key k4 of length ;.

7 Send &, (KEY?,kA).

8 M, < w, bits from the receiver.

9: if IsSilence (M;) then

10: > Assume the receiver has already terminated.
11: b+ b

12: Stay silent for 2w, time steps and return
13: else

14: (x, k) — 2, (M)

15: if £ # k4 then

16: Stay silent for 2w, time steps.

17: else

18: kp+x

19: M < m[j,j+ k] > Next r; bits of m
20: Send &, ((M,b),kg).
21: M < w, bits from the receiver.
22: if IsSilence (M) then

23: j <— j + KRt
24: b <+ —b

25: return

APPENDIX C

ANALYSIS OF ALGORITHM 4 AND 5
A. Correctness

Lemma 13. Assume Alice calls SEND-MSG(m) in some round
r1 for some message m and bit b. Then the following hold: (1)
Alice returns from SEND-MSG(m) in some round rs > r1; and
(2) either Bob records the message m (line 34 of Algorithm 5)
in exactly one round ro where r1 < r9 < r3, or Bob does not
record the message m between rounds r1 and r3 because he
terminated in P.

Proof. We first show that if Alice calls SEND-MSG(m) in
round 71, then there must exist some round rg > 71 in which
this call returns. Since the adversary’s budget is finite, there



Algorithm 5 Message exchange algorithm for the receiver.

1: procedure RECEIVE-MSG( )

2: > b, 1, A are persistent variables for the parity bit, the
partially received message, and length of the recorded
message, respectively. On the first call to RECEIVE-MSG,
b+ 0, 1 I, A < 0. On subsequent calls these variables
are whatever they were set to on the previous call.

3 (wy, Kr) + WORD-PARAMS(7)

4 M + w, bits on the channel from the sender.

5: if IsSilence (M) then

6: Stay silent for 3w, time steps.

7 else

8 (' k') + 2, (M)

9 if 2/ # KEY? then

10: Send noise for w, time steps.

11: Stay silent for 2w, time steps.

12: else

13: ka <+ K.

14: Generate random key kp of length k.

15: Send &, (kp,ka).

16: MY, + w, bits on the channel from the sender.
17: (2", k") + D, (M)

18: if k" # kp then

19: Send noise for w, time steps.

20: else

21: (M"V) + "

22: if ;1 = & then

23: if ' # b then

24: A<+ | M|

25: w— M’

26: else

27: if o’ # b then

28: A | M|

29: Append M’ to p.

30: else

31 Replace last A bits of p with M.
32: A« |M’| do

33: if 11 is a completed message of .Z then
34: Record the message 1 from the sender.
35: M= %]

36: b0

37: Stay silent for w, time steps.

must be some round, 4, after which no bits are ever flipped.

If the call returns before or during round ry4, then part (1) is

proven, so we only consider the cases where the call extends

past round r4. Let m/ be the part of the message that remains

to be sent. For 7 > 1 consider round r4 + ¢. There are two

possibilities:

(a) After Alice has sent a key request in round r4 + ¢, she
hears silence and the call returns, or;

(b) Alice correctly receives Bob’s key, and uses it to send
the next piece of m which Bob correctly receives. Next,
Alice hears silence from Bob. If this was the last piece of

the message, this ends the call. If not, the call continues

into round r4 + ¢ 4+ 1 with a shorter remaining message.
Since the message has finite length, eventually (a) occurs.
Thus, in every case there is some round 73 > r; in which the
call to SEND-MSG(m) returns.

We now prove part (2) of our lemma. We first show that
the message m is recorded at most once by Bob in the rounds
r1 to r3. By Lemma 6 (2(c)), the bit b’ corresponding to the
last partial message for m received by Bob in line 21 of
Algorithm 5 must be the same as the bit b sent by Alice for
this partial message from rounds r; to r3. Since this bit never
changes, Bob will record m (line 34 of Algorithm 5) at most
once in rounds 7 to r3.

If Bob terminated in P before round rj3, then part
(2) of our lemma statement does not require Bob to
record the message m, and so that part or our lemma is
trivially true. Thus, for the remainder of the proof, we
assume that Bob has not terminated in P before round r3
and we must show that he records the message m exactly once.

We do this by induction on the length of m. Note that since
m is a message from P, it belonged to .Z, so it is actually
possible for Bob to record m. If m is short enough to be
sent in one piece, then consider round 73 in which the call to
SEND-MSG(m) returns. Let M; be the string read by Alice
on line 8 of Algorithm 4. Since Bob has not terminated in P,
Lemma 6 (2(b)) guarantees that Bob sent M7, and therefore the
call to Algorithm 4 does not return on line 8. Hence, it returns
on line 25. Since this is the last round, M; must correctly
decode to (kp, k) in Algorithm 4. Thus, Alice sends Bob m
using kp and hears silence subsequently. Thus, Bob must have
actually been silent at this time (Lemma 6 (1)), which only
happens if he has either now or previously recorded m. Hence,
Bob must have recorded the message m in some round 75 < r3.

Now as an induction hypothesis suppose the conclusion
about Bob recording a message exactly once is true for all
strings s shorter than m. Suppose m requires more than one
piece to be sent. Then since Alice continues to resend the
first piece mg until she has received confirmation that Bob
has received it, there is some round ] < r3 in which Alice
receives this confirmation. Since the same parity bit b for this
piece has been sent in all rounds r < 7} , and received bit &’
agrees with b in each of these rounds, Bob stores the partial
message mg exactly once. Let m be the remaining portion of
m. Clearly it is shorter than m. Now let us examine the control
flow throughout the algorithm from round 7} onwards. This
looks exactly like a call to SEND-MSG(m) with the persistent
variable b now set to —b, together with a RECEIVE-MSG call
in which the persistent variables b set to —b, 1 set to mg, and A
set to |mg|. By induction hypothesis, there is exactly one round
ro with j < ro < ry during which Bob records mg o my,
which is in .Z. But since m = mg o mq, this concludes the
proof. O



Lemma 14. The following holds for protocol P’. For any
message m that Bob records (line 34 of Algorithm 5) in some
round 1o, Alice started a call to SEND-MSG(m) in a round
r1 < ro and returned from that call in some round r3 > ro.

Proof. Consider the round r; in which the Bob records a
message m (line 34 of Algorithm 5). Suppose y = @ when
RECEIVE-MSG was called in round r5. Then m arose in the
first component of 2, (M7) in line 21 of Algorithm 5, where
the second component correctly matched kp. Specifically the
first component must have been (m,b) for some b. Thus, by
Lemma 6 (2(c)), Alice must have sent &, ((m,b), kg), during
the transmission of M/. Hence, Alice must be in a call to
SEND-MSG with some message m from ., with m as a
contiguous substring, and this call must have begun in some
round 71 < ro. We must show that m = m. Suppose m is a
proper contiguous substring of m, i.e., M = mg o m o my
where at least one of mg and m; is not &. Then myg is not in
% (since it is a prefix of 7). Since Alice would not proceed
to sending m until she had confirmed that Bob had received
mo, she must have previously received that confirmation,
meaning that Bob previously received mg. But in that case,
Bob would have that stored as a partial message, contradicting
the assumption that ;1 = @ when RECEIVE-MSG was called
in round r5. Thus my = <. But that means that m is a
prefix of m. Since both m and m are in .Z, it follows
that m; = @ and m = m. Thus, Alice called SEND-MSG(m).

Next suppose 1 = s when RECEIVE-MSG was called in
round 7y, for some string s # @&. Then m = s o x, where
x is the string Bob decodes in round r5. We first induct on
the length of s to prove that Alice’s call to SEND-MSG had
as input, some message m from .Z, such that 7 contains
sox = m as a contiguous substring, i.e., 1 = mgomom;y for
some strings mg, m1. The case of s = @ was shown above.
Thus, assume there exist rounds pg < p; < ry and non-empty
strings sg and s;, with s = sg o s such that y = sy when
RECEIVE-MSG was called in round pg and p = s; when
RECEIVE-MSG was called in round p;. Here, py and p;
are the first rounds with this property. Then Bob decoded
Sp in round pg — 1 and s; in round p; — 1. Furthermore,
Bob has not decoded any other string between decoding
so and s;. Then, it follows from the induction hypothesis
that sp and s; came from Alice, so that Alice must be in
call to SEND-MSG during the course of which she sends
encoded strings s, S1, « in this order. Moreover, she cannot
have sent any other encoded strings in between, because had
she done so, she would not have moved on from it without
acknowledgement that Bob decoded it. Since we stipulate
that Bob did not decode any other strings, it follows that the
input to Alice’s call to SEND-MSG had m = sgos;ox as
a contiguous substring so that m = mgy o m o m; for some
strings mg, m1. Note that mq is not in .. Now, when Bob
decoded sg, the call to RECEIVE-MSG was passed &. Thus,
from the discussion in the beginning of the proof, it follows
that mo = @ and therefore m; = @ and m = m. Thus, in all

cases, Alice did actually have a call to SEND-MSG(m) that
began in some round r; < ro.

Finally, we know by Lemma 13(1) that every call to
SEND-MSG ends in some round r3. Since, by the above,
Alice is in the call during round rs, it must be the case that
Alice returns from the call in some round r3 > rs. O

B. Resource Costs

We now analyze the total number of bits sent by P’ when
the messages in P may be longer than a single bit. Let a be
the average message length in P.

Lemma 15. If P’ succeeds, then it has the following resource
costs.

o The number of bits sent is O (L (1 + élog (%) + T))

o The latency is O <H1;1X {Ap (1 + 4 log (M) + TP}))

where p is any communication path in the asynchronous
simulation of P, A, is the latency of p, and T}, is the
total number of bits flipped by the adversary on edges in
p.

Proof. Call a string M encoded in Step 20 of Algorithm 4
a submessage. To upper-bound the number of bits sent, we
assume pessimistically that in every round of P’, there is an
attempt to send exactly one submessage. This maximizes the
number of bits sent since word sizes increase with time.
Note that each message consists of at most 1 submessage
that is not of length some constant times the word length in
that round. Thus, the number of progressive rounds is no more
than the number of messages sent, L/, plus the largest integer
z such that the number of bits sent in  rounds equals c; L for
some constant ¢; > 1. By Lemma 11, z = O(L/ log %&).

The number of non-progressive rounds is O m ,

by the same argument as from the proof of Lemma 12.
Let the number of rounds

nL T
r=L/a+O(L/log—)+0 <1og(n(T+1)/6)>

Then by Lemma 10, we can bound 7(r) as

L nr
) < = -
7(r) < <L/a+0 (log(nL/6)> +z> (log 5 )
where z = O (m). Simplifying this, we get 7(r) =

Ogilog (%) +L+T).
inally, to bound the latency, we note that the argument
above holds for any communication path p in the asynchronous
simulation of P.

O

Proof of Theorem 1. By Lemma 5, no failure event happens
with probability at least 1 — §, and by Lemma 9, in such a
situation, P’ terminates with an asynchronous simulation of
‘P. Upon correct termination, the resource cost bounds hold by
Lemma 15. O
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