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Abstract
We consider the classical secret sharing problem in the case where all agents are selfish but

rational. In recent work, Kol and Naor show that in the non-simultaneous communciation model
(i.e. when rushing is possible), there is no Nash equilibrium that ensures all agents learn the
secret. However, they describe a mechanism for this problem that is an ε-Nash equilibrium, i.e.
it is close to an equilibrium in the sense that no player can gain more than ε utility by deviating
from it.

Unfortunately, the Kol and Naor mechanism, and, to the best of our knowledge, all previous
mechanisms for this problem require each agent to send O(n) messages in expectation, where
n is the number of agents. This may be problematic for some applications of rational secret
sharing such as secure multiparty computation and simulation of a mediator.

We address this issue by describing a mechanism for rational n-out-of-n secret sharing that
is an ε-Nash equilibrium, and is scalable in the sense that it requires each agent to send only
an expected O(1) messages and polylogarithmic number of bits. Moreover, the latency of our
mechanism is O(log n) in expectation, compared to O(n) expected latency for the Kol and Naor
result. We also design scalable mechanisms for a relaxed variant of rational m-out-of-n secret
sharing where m = θ(n). Our mechanisms are non-cryptographic, and are not susceptible to
backwards induction.

“Three can keep a secret if two are dead.” - Benjamin Franklin
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1 Introduction

Secret sharing is one of the most fundamental problems in security, and is an important primitive
in many cryptographic protocols, including secure multiparty computation. Recently, there has
been interest in solving rational secret sharing [8, 4, 5, 1, 11]. In this setting, there are n selfish but
rational agents, and we want to distribute shares of a secret to each agent, and design a protocol
for the agents ensures that: 1) if any group of m agents follow the protocol they will all learn the
secret; and 2) knowledge of less than m of the shares reveals nothing about the secret. Moreover,
we want our protocol to be a Nash equilibrium in the sense that no player can improve their utility
by deviating from the protocol, given that all other players are following the protocol.

Unfortunately, all previous solutions to this problem require each agent to send O(n) messages
in expectation, and so do not scale to large networks. Rational secret sharing is a primitive
for rational multiparty computation, which can be used to compute an arbitrary function in a
completely decentralized manner, without a trusted external party. A typical application of rational
multiparty computation might be to either run an auction, or to hold a lottery to assign resources
in a network. It is easy to imagine such applications where the number of players is large, and
where it is important to have algorithms whose bandwidth and latency costs scale well with the
number of players. Moreover, in a game theoretic setting, standard tricks to circumvent scalability
issues, like running the protocol only on a small subset of the players, may be undesirable since
they could lead to increased likelihood of bribery attacks.

In this paper, we address this issue by designing scalable mechanisms for rational secret sharing.
Our main result is a protocol for rational n-out-of-n secret sharing that 1) requires each agent to
send only an expected O(1) messages and polylogarithmic bits; and 2) has O(log n) expected
latency. We also design scalable mechanisms for a relaxed variant of m-out-of-n rational secret
sharing in the case where m is θ(n).

1.1 The Problem

We assume there are n rational but selfish player. The players’ utility functions are such that they
prefer to learn the secret, but also prefer that other players not learn the secret. Following previous
work [8, 4, 5, 11], we assume all the players have the same utility function, which is specified by
three constants U+, U , and U−. Here U+ is the utility to a player if he alone learns the secret, U
is the utility if he learns the secret but at least one other player learns it as well, and finally U− is
the utility when the player does not learn the secret. We further assume that U+ > U > U−, so
that the players’ preferences are strict. We note that, as in previous work, the utility function does
not distinguish the cases where different numbers of other players may learn the secret.

We will assume that the secret is an arbitrary element of a large (fixed) finite set S. The shares
are provided to the players by a dealer, who is active only once, at the beginning of the game. The
players must then communicate with each other in order to reconstruct the secret.

We assume that the communication between the players is point-to-point and through private
channels. In other words, if player A sends a message to player B, then a third player C is not privy
to the message that was sent, or indeed even to the fact of a message having been sent. We assume
communication is synchronous in that there is an upperbound known on the maximum amount of
time required to send a message from one player to another. However, we assume non-simultaneous
communication, and thus allow for the possibility of rushing, where a player may receive messages
from other players in a round before sending out its own messages.

Our goal is to provide protocols for the dealer and rational players such that the players following
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the protocol can reconstruct the secret. Moreover, we want a protocol that is scalable in the sense
that the amount of communication and the latency of the protocol should be a slow growing function
of the number of players.

We are also concerned with the problem of rational multiparty computation, which is an im-
portant application of n-out-of-n rational secret sharing. In the problem of rational multiparty
computation, there are n rational agents, and each agent i has an input xi to a function f of n
variables. Each player prefers to learn the output of f , but also prefers that other players do not.
In particular, the utility functions are the same as for the secret sharing problem. The goal is to
design a protocol for rational players that will ensure that all players learn the output of f . As
described in [5], the algorithm from [3] can be used to solve the problem of rational multiparty
computation provided one has a solution to n-out-of-n rational secret sharing.

1.2 Our Results

In recent work, Kol and Naor show that in the non-simultaneous broadcast model (i.e. when
rushing is possible), there is no Nash equilibrium that ensures all agents learn the secret [8]. They
thus consider the case of designing an ε-Nash equilibrium for the problem in this communication
model, where an ε-Nash equilibrium is close to an equilibrium in the sense that no player can gain
more than ε utility by deviating from it. In addition, their protocol is Monte Carlo, succeeding
with probability 1− δ for any fixed positive δ.

Our main result is a scalable, Monte Carlo protocol for n-out-of-n rational secret sharing that
is also an ε-Nash equilibrium. This result is summarized in the following theorem.

Theorem 1.1. For any fixed positive ε, δ there exists a protocol for rational n-out-of-n secret
sharing that with probability 1− δ has the following properties:

• The protocol is an ε-Nash equilibrium

• All players learn the secret

• The protocol, in expectation, requires each player to send O(1) messages and O(log |S|) bits,
and has latency O(log n)

As discussed above, the n-out-of-n case for rational secret sharing is a critical component of
rational multiparty computation. Our result for n-out-of-n rational secret sharing enables a pro-
tocol for rational multiparty computation that is an ε-Nash equilibrium in the point-to-point,
synchronous, non-simultaneous communication model. Moreover, it reduces worst case bandwidth
by a multiplicative factor of n, and latency by a multiplicative factor of θ(n/ log n) over the rational
multiparty protocol in this communication model from [8].

In this paper, we also consider the problem of m-out-of-n rational secret sharing for the case
where m < n. Designing scalable algorithms for this problem is challenging because of the tension
between reduced communication, and the need to ensure that any active set of m players can
reconstruct the secret. For example, consider the case where each player sends O(log n) messages.
If m = o(n/ log n), even if the set of active players is chosen randomly, it is likely that there will be
some active player that will never receive a message from any other active player. Moreover, even
if m = θ(n), if the set of active players is chosen in a worst case manner, it is easy to see that a
small subset of the active players can easily be isolated so that they never receive messages from
the other active players, and are thus unable to reconstruct the secret.
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Despite the difficulty of the problem, scalable rational secret sharing for the m-out-of-n case
may still be of interest for applications like the Vanish peer-to-peer system [2]. To determine what
might at least be possible, we consider a significantly relaxed variant of the problem. In particular,
we require m = θ(n) and that the set of m active players be chosen independently of the random
bits of the dealer. Our result is given in the following theorem, whose sketch is given in Section A.

Theorem 1.2. For any fixed positive ε, δ, and m = θ(n), there exists a protocol for rational m-
out-of-n secret sharing, which with probability 1− δ has the following properties, provided that the
subset of active players is chosen independently of the random bits of the dealer:

• The protocol is a Nash equilibrium

• The protocol ensures that if at least a m/n + ε fraction of the players are active, all players
will learn the secret; and if less than a m/n − ε fraction of the players are active, then the
secret can not be recovered

• The protocol requires each player to send O(log n) messages, and O(log n log |S|) bits, and has
latency O(log n)

1.3 Our Approach

Our protocol shares many similarities with the approach of Kol and Naor in [8]. Following are the
techniques we use from their protocol. First, each player i receives a set of lists from the dealer,
and the j-th element of each list is used in round j. Second, we make use of two lists from [8]: 1)
the list Li that contains potential secrets, for some value t∗, the t∗-th element in each of these lists
is the true secret; and 2) the list Si that contains shares of an indicator sequence, for each round
j, that reveals whether or not the j-th round is the t∗-th round. Finally, we make use of a clever
technique from [8] to avoid backwards induction. In particular, one player, chosen uniformly at
random by the dealer, is designated the short player and the remaining players are designated the
long players. The length of the short players lists is determined by geometric distributions, and the
length of the long players’ lists exceeds the length of the short player’s list by an amount that is
geometrically distributed. This scheme protects against backwards induction by making it difficult
for any player to know exactly how many rounds the protocol will last.1

Following are the novel techniques in our approach. First, we restrict communication in our
protocol to a certain type of complete binary tree; this is critical for ensuring that the total number
of messages sent by each player is scalable. Second, we make use of an iterated secret sharing
scheme over this tree to divide up shares of secrets among the players. This scheme is similar to
that used in recent work by King and Saia [7] on the problem of scalable Byzantine agreement,
and suggests deeper connections between the two problems. Finally, we make use of an iterated
tag and hash scheme [13, 12] to enable checking of secrets and iterated shares of secrets. Tag and
hash schemes were used previously in [8], but applying them in our setting, where communication
is severely curtailed, is technically challenging.

1.4 Related Work

Since its introduction by Halpern and Teague in [5], there has been significant work on the prob-
lem of rational secret sharing, including results of Halpern and Teague [5], Gordon and Katz [4],

1It is also what makes their protocol and ours Monte Carlo, since with some small but constant probability, all
the geometric random variables may be so small that it is better for each player to randomly try to guess the secret
from the elements in their Li list than to follow the protocol.
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Abraham et al. [1], Lysyanskaya and Triandopoulos [11] and Kol and Naor [8]. All of this related
work except for [8], assumes the existence of simultaneous communication, either by broadcast or
private channels. Several of the protocols proposed [4, 1, 11] make use of cryptographic assumptions
and achieve equilibria under the assumption that the players are computationally bounded. The
protocol from [1] is robust to coalitions; and the protocol from [11] works in the situation where
players may be either rational or adversarial.

The work of Kol and Naor [8] is closest to our own work in that they do not assume simultaneous
communication, and do not make cryptographic assumptions. As we have already discussed, our
protocols make use of several clever ideas from their result.

Additional work by Lepinski et al. [10, 9] and Izmalkov et al. [6] describe protocols for ratio-
nal secure multiparty computation that are fair and robust to coalitions. However, their results
rely on the physical assumption of “secure envelopes” [10], which seem difficult to implement for
participants that are physically distant.

2 Our n-out-of-n Secret Sharing Protocol

We give an informal description of the dealer’s and players’ protocols in Sections 2.1 and 2.2. The
formal descriptions of these protocols appears in Algorithm 1 and Algorithm 4.

2.1 Dealer’s Protocol

The dealer is active only once at the beginning of the game, and during this phase of the game the
players’ inputs are prepared.

Communication between the players in our protocol will be restricted to sending messages to
their neighbors in a complete binary tree.2 First the players are assigned to nodes of a complete
binary tree with n leaves. Each player is assigned to one leaf. Next the layer of internal nodes just
above the leaves is assigned to players. This is done in such a way as to ensure that the player
assigned to the parent node of two leaves is one of the two players assigned to those leaves. Then
the remaining internal nodes are assigned arbitrarily to players who have not yet been assigned an
internal node. Since there are n− 1 internal nodes in a tree with n leaf nodes, we can ensure that
no player is assigned to more than one internal node. One of the players will not be assigned to an
internal node, and this will not matter.

Next, the dealer will select a player uniformly at random to be the “short player”. The rest of
the players will be “long players”. It is important that the players not be told which player is the
short player. This is necessary to avoid backwards induction as is discussed in Section 3.2.

Now the dealer independently samples three random variables X, Y and Z from a geometric
distribution with parameter β. X will be the definitive iteration, or the round of the game in which
the true secret is revealed. Y will be the amount of padding on the short player’s input. Z will
be the amount of additional padding on the long players’ input. Thus, the short player will receive
enough input to last for X+Y rounds of the game, while the long players will receive enough input
to last for X + Y + Z rounds of the game.

The players’ input will consist of several lists, with one list element for each round of the game.
Thus the lists sent to the short player will be of length X + Y and those sent to long players will
be of length X + Y + Z. Each player i will receive the following four lists:

2Recall that a complete binary tree is a binary tree in which all the internal nodes have two descendants; all the
leaves are at the two deepest levels; and the leaves on the deepest level are as far left as possible.
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f1(−1) f1(1)

f3(−1) f3(1)

f2(−1)

f4(−1) f4(1)

f2(1)

f2(0)

share(1)← f1(−1) share(2)← f1(1)

share(3)← f3(1) share(4)← f4(−1) share(5)← f4(1)

Figure 1: Example run of the dealer’s protocol for a fixed round t. The function fi is defined as
fi(x) = aix+ bi where ai and bi are elements chosen independently and uniformly at random from
the field Fq. When t = t∗, b2 is fixed at 0 and ai is chosen uniformly at random; this ensures that
f2(0) will be 0. When t 6= t∗, b2 is chosen uniformly at random from Fq − 0, which ensures that
f2(0) 6= 0.

• A list Li consisting of elements of S, or potential secrets. The true secret will be at index X
of the list.

• A list Si containing the shares of the indicator sequence for player i (in his role as a leaf of
the tree.)

• For each node w (including leaves) with which i is associated, player i will receive a list Twi
of pairs of tags (one for the Up-Stage, one for the Down-Stage) which will be used in the tag
and hash scheme described below.

• For each node w with which i is associated, for each neighbor w′ of w, player i will receive a

list Hw,w′

i with verification functions to check the authenticity of messages from w′.

The dealer’s next task is to populate these lists. For simplicity of exposition, we assume that
all the lists are created to be of length X + Y + Z, and that the short player’s lists are truncated
to length X + Y later, before being sent to him. The dealer will fill the potential secret-lists Li
with elements chosen independently and uniformly at random from the set S. These lists have the
property that the true secret is in position X of the list.

Let q be a (fixed) large prime. The indicator sequence and tags will all be elements of the field
Fq and all of the algebraic operations described hereafter will be over Fq.

Next, to populate the shares-lists Si, for each round t 6= X, the dealer will set ht to be a
uniformly random non-zero element of Fq. hX will be set to 0. Then for each t the dealer will
create iterated shares of ht as follows. First, the value ht is assigned to the root of the tree. Next,
for each node w of the tree for which a value vwt has been assigned, if w is a leaf, assign the value
vwt to be the share of the corresponding player for round t. Otherwise, pick a random slope µ 6= 0
and let f be the line with slope µ and y-intercept vwt (so that f(0) = vwt ). Assign values f(−1)
and f(1) to the left and right children of w, and recurse. The formal algorithm for this process is
given in Algorithm 2, and an example run of this algorithm is illustrated in Figure 1.

The dealer’s remaining task is to populate lists that implement the tag and hash verification
scheme that will be used by the players. For each round t and each internal node w of the tree,
the dealer generates tags gwt and ḡwt which are elements chosen independently and uniformly at
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random from Fq. These elements are put into the appropriate lists Tw. The tag gwt will be used
on the Down-Stage of the protocol for the players that is described in Section 2.2, and ḡwt will be
used in the Up-Stage of this protocol.

Now, for each round t and each node w, let p(w) denote the parent of w, and let `(w) and r(w)
be the left and right children of w if any. The dealer samples uniformly random non-zero elements
awt and bwt from Fq and sets

cwt = awt ∗ ht + bwt ∗ gp(w)t

The triple (awt , b
w
t , c

w
t ) consists of the verification function for the Down-Stage round of t for the

node w. Similarly, the dealer generates such verification triples (a, b, c) to check the validity of

the messages (v
`(w)
t , ḡ

`(w)
t ) and (vr(w), ḡ

r(w)
t ) that are to be received by w in the Up-Stage. These

verification function triples are put into the appropriate lists Hw. (See Algorithm 3.) Note that
for any triple (a, b, c) ∈ F3

q with a, b 6= 0 there are q pairs (x, y) ∈ F2
q which satisfy ax + by = c,

so the values of the message and tag cannot be guessed from the verification function, except with
probability 1/q.

The dealer’s task is now almost done. All that remains is to truncate the short player’s lists
and communicate the input to the players. The formal description of the entire protocol for the
dealer is given in Algorithm 1.

2.2 Player’s Protocol

The players’ protocol consists of two stages: the Up-Stage and the Down-Stage. In the Up-Stage
for round t each player i will send his share Si[t] along with the tag ḡit up the tree to the parent
node of the leaf with which player i is associated. Each internal node w receives two shares and
tags from its two children and after checking their validity with the provided verification function

(H
w,`(w)
t ), uses these to reconstruct a line f , where the non-tag part of the messages received from

the left and right children respectively represent f(−1) and f(1). Once f is reconstructed, w will
send his “share”, f(0) along with his tag ḡwt to his parent, up the tree, who will recursively do the
same thing. This procedure continues recursively up the tree until the root is reached. At the root,
the function f , reconstructed from the shares of the two children, when evaluated at 0 will yield
the indicator for the current round. In particular, the root sets ht = froot(0). We next move into
the Down-Stage.

In the Down-Stage for round t the root will send ht (determined by the end of the Up-Stage) and
its tag groot

t to both of its children. Now each child node w, receiving from its parent p(w) the pair

(ht, g
p(w)
t ), will first check this message for consistency using its verification function (awt , b

w
t , c

w
t ).

Once the message is verified, w, if it is itself an internal node, will recursively append its own tag
to ht and send the pair (ht, g

w
t ) to its children. If w is a leaf, then if ht = 0 then t = X and the

player associated with w will output the secret for the current round as the true secret, and quit
the protocol. Otherwise the next round begins.

If at any time in the protocol, a player detects deviation from the protocol by another player,
then the player immediately outputs the potential secret for the current round as the true secret and
quits the protocol. This detection of deviation could be in the form of no message being received
when a message was supposed to be sent, or in the form of messages received that do not satisfy
the verification function. Note that detection of cheating propagates to all the players, since once
a player detecting cheating quits the protocol, everyone who was expecting messages from him will
also fail to get these messages. The formal description of the protocol for the players is given in
Algorithm 4, and an example run of this algorithm is illustrated in Figure 2.
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Algorithm 1 Dealer’s Protocol

n players, S: set of potential secrets, Fq: field of size q. β ∈ (0, 1): geometric distribution parameter.

1. Create a complete binary tree with n leaf nodes. Assign players to leaf nodes from left to right.
Assign players to parents of leaf nodes by choosing the player assigned to one of the children
on the node. Assign all other internal nodes to players who have not yet been assigned to
an internal node, top down and left to right. Thus each player is assigned to a leaf node,
and each player except one, is assigned to an internal node, and no two internal nodes are
assigned to the same player.

2. Choose X,Y, and Z independently from a geometric distribution with parameter β.

3. Create the following lists for each player i:

• List Li for potential secrets
• List Si for shares of the indicator sequence.
• For each node w with which i is associated, list Twi for tags.

• For each node w with which i is associated and each neighbor w′ of w, list H
(w,w′)
i for

verification functions.

4. (Populate the lists) For each round t ≤ X + Y + Z:

(a) if t = X, σ ← true secret.
otherwise σ ← random element from S
Add σ to all the lists Li at position t.

(b) if t = X, ht ← 0
otherwise ht ← random non-zero element from Fq.

(c) For each node w of the tree, create a ‘share’ vwt (to be set by RecursiveShares, subrou-
tine 2)

(d) Call RecursiveShares(root, ht)
(e) For each leaf w add vwt to the shares list Si of corresponding player i at position t.
(f) For each node w in the binary tree choose (gwt , ḡ

w
t ) uniformly at random from F2

q and
add it to Tw at position t

(g) For node each w in the binary tree:
i. if w has a parent p(w):

Vp ← VerificationFunction(ht, g
p(w)
t )

Add Vp to list Hw,p(w) at position t.
ii. if w has a left child `(w):

V` ← VerificationFunction(v
`(w)
t , ḡ

`(w)
t )

Add V` to list Hw,`(w) at position t.
iii. if w has a right child r(w):

Vr ← VerificationFunction(v
r(w)
t , ḡ

r(w)
t )

Add Vr to list Hw,r(w) at position t.

5. Choose a player i uniformly at random to be the short player. Truncate each list (Li Si, and
multiple tag and hash lists) associated with player i to be length X + Y i.e. delete the last Z
elements of each such list. (All other players’ lists remain of length X + Y + Z.)

6. Send the data to the appropriate players
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Algorithm 2 RecursiveShares (node w , integer y):

1. vwt ← y.

2. If w has children `(w) and r(w):

(a) Choose random slope µ.
(b) Let f be the line with slope µ and y-intercept y.
(c) RecursiveShares(`(w), f(−1)).
(d) RecursiveShares(r(w), f(1)).

Algorithm 3 VerificationFunction (Fq-element v, Fq-element g): // v is the message, g is the tag

1. Choose a and b uniformly at random F∗q = Fq \ {0}

2. c = a ∗ v + b ∗ g.

3. return (a, b, c).

Algorithm 4 Player’s Protocol for Player i

On round t:

Up-Stage:

1. Send (Si[t], ḡ
i
t) to parent in the tree.

2. If player i is also internal node w, then:

(a) Receive (v
`(w)
t , ḡ

`(w)
t ) from left child and check using verification function H

w,`(w)
t .

If no message is received or message does not satisfy verification function, output

Li[t] and QUIT. Otherwise set f(−1)← v
`(w)
t .

(b) Receive (v
r(w)
t , ḡ

r(w)
t ) from left child and check using verification function H

w,r(w)
t .

If no message is received or message does not satisfy verification function, output

Li[t] and QUIT. Otherwise set f(1)← v
r(w)
t .

(c) Reconstruct a degree 1 polynomial f from (−1, f(−1)) and (1, f(1)).
(d) if w is not the root, vwt ← f(0)

Send (vwt , ḡ
w
t ) to parent in the tree.

(e) Else if w is the root ht ← f(0).

Down-Stage:

1. If player i is the root: send (ht, g
roott) to left and right children.

2. Else if i is node w (including leaves):

(a) Receive (ht, g
p(w)
t ) from parent p(w). If no message received output Li[t] and QUIT.

(b) Use verification function H(w,p(w))[t] to check validity of message. If message does
not satisfy verification function, output Li[t] and QUIT.

(c) If w is an internal node, then send indicator (ht, g
w
t ) to left and right children.

(d) If ht = 0, output Li[t] and QUIT.
3. t← t+ 1
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Figure 2: On the left is the up stage of the algorithm; on the right is the down stage.

3 Analysis of our Protocol

There are two ways in which a player may try to deviate from the protocol. First, he may try
to remain in the protocol and send messages not specified by the protocol, or “fake” messages, in
order to confuse other players. Second, he may simply output a value for the secret and leave the
protocol early. As the following proposition shows, the tag-and-hash verification scheme used in
the protocol makes it hard for a player to successfully fool other players by sending fake messages.

Proposition 3.1. The probability that a faked message will satisfy the verification function is 1
q−1

Proof. Suppose a player A is to send a message v with tag g to player B who has a verification triple
(a, b, c) such that av + bg = c. Suppose further that A wants to send a fake message instead. Note
that A has no information about the verification function except that the message he is supposed to
send satisfies it. In fact, recall that the verification function was created by the dealer by randomly
selecting a and b and setting c to the appropriate value. Consider the following two cases.
Case 1: A wants to send a particular fake message v′. In this case, there is a unique g′ = (c−av′)/b
such that the pair (v′, g′) satisfies the verification function. With no knowledge of a or b, A’s chance
of correctly guessing g′ is 1

q−1 .
Case 2: A just wants to send a fake message, but does not care what it is. In this case, there are
exactly q pairs (v′, g′) which satisfy the verification function; one of these is (v, g). Thus only q− 1
fake pairs work. On the other hand, there are (q− 1)2 pairs of elements in F2

q which are not of the
form (v, ∗) or (∗, g). So again, with no information about a or b, A’s chance of guessing a pair that
works is 1

q−1 .

We will next consider the second type of deviation from the protocol, where a player deviates by
leaving the protocol early. A player may consider deviating in this way if he either knows the secret
with certainty, or with sufficiently high probability. The former only happens partway through the
definitive iteration, when some of the players have learned this fact, but have not yet communicated
it to the others. However, if a player decides not to transmit the fact that ht = 0 to players lower
in the tree, he does not gain anything by doing so. This is because the players who do not get the
messages they are expecting will, in accordance with the protocol, output the secret for the current
round, which is the correct secret. Thus, the only situation we still need to consider is whether a
player can guess the position of the secret, with sufficiently high probability, before the definitive
iteration. We deal with this situation in the next few lemmas.

Lemma 3.2. A player deviating from the protocol cannot increase his expected payoff by more than
ε unless his probability of successfully learning the secret by deviating is at least U−U−+ε

U+−U−

9



Proof. Let p be the threshold success probability required to make deviating worthwhile, ie to
increase one’s payoff by ε. Since the game ends when a player is caught deviating from the protocol
(and certainly if the player stops sending messages, this will be detected by the other players), a
failed attempt at cheating means that the player does not learn the secret. Thus a player’s expected
utility from cheating while everyone else follows the protocol is pU+ + (1 − p)U−. On the other
hand, following the protocol results in everyone learning the secret, with a utility of U . Thus, at
the threshold for making cheating worthwhile, we have

pU+ + (1− p)U− = U + ε

Solving this for p gives the desired result.

We will now compute the probability of a player successfully guessing the secret before it is
actually revealed during the protocol.

Lemma 3.3. A player who initially received a list of length α has at most 2
α−t chance of guessing

the position of the secret on round t if it has not already been revealed.

Proof. For j ≥ t let P (α, t, j) denote the probability that the secret is in the jth position in the
list of potential secrets, given that the player initially received a list of length α, and t− 1 rounds
of the protocol have ended without the secret being revealed.

Let |Li| be the length of the list of potential secrets received by player i. Recall that X, Y
and Z are geometric random variables corresponding to the position of the secret, the amount of
padding on the short player’s list, and the amount of additional padding on the long players’ lists
respectively. Then |Li| = X + Y if i is the short player, and |Li| = X + Y +Z if i is a long player.
Let ξshort be the event that the player was chosen as the short player and ξlong be the event that
the player was chosen as the long player. It follows that

P (α, t, j) = Pr(X = j|X ≥ t, |Li| = α)

= Pr(X = j|X ≥ t,X + Y = α) Pr(ξshort) + Pr(X = j|X ≥ t,X + Y + Z = α) Pr(ξlong)

=
Pr(X = j,X ≥ t,X + Y = α)

Pr(X ≥ t,X + Y = α)
· 1

n
+

Pr(X = j,X ≥ t,X + Y + Z = α)

Pr(X ≥ t,X + Y + Z = α)
· n− 1

n

=
Pr(X = j, Y = α− j)∑α−1
x=t Pr(X = x, Y = α− x)

· 1

n
+

Pr(X = j, Y + Z = α− j)∑α−2
x=t Pr(X = x, Y + Z = α− x)

· n− 1

n

=
Pr(X = j) Pr(Y = α− j)∑α−1
x=t Pr(X = x) Pr(Y = α− x)

· 1

n
+

Pr(X = j) Pr(Y + Z = α− j)∑α−2
x=t Pr(X = x) Pr(Y + Z = α− x)

· n− 1

n

=
(1− β)j−1β(1− β)α−j−1β∑α−1
x=t (1− β)x−1β(1− β)α−x−1β

· 1

n
+

(1− β)j−1β Pr(Y + Z = α− j)∑α−2
x=t (1− β)x−1β Pr(Y + Z = α− x)

· n− 1

n

=
(1− β)α−2β2

(α− t)(1− β)α−2β2
· 1

n
+

(α− j − 1)(1− β)α−2β3∑α−2
x=t (α− x− 1)(1− β)α−2β3

· n− 1

n

=
1

n(α− t) +
(n− 1)(α− j − 1)

n
∑α−t−1

k=1 k

=
1

n(α− t) +
2(n− 1)(α− j − 1)

n(α− t)(α− t− 1)
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Recall that if player i received a list of length α at the beginning, and t − 1 rounds of the
protocol did not reveal the secret, then if player i guesses that the true secret is in position j,
P (α, t, j) represents the probability that this guess is correct. For j ≥ t+ 1 this also represents the
probability that player can succesfully cheat by outputting the potential secret at position j and
dropping out of the protocol. The situation is slightly different for j = t because if the player is
caught cheating on round t, all other players following the protocol will output the secret at position
j so if that is correct, player i will gain no advantage from having guessed it. Thus, on round t the
best probability of a successful cheat is obtained by guessing that the secret is in position t+ 1. In
this case, the success probability is 1

n(α−t) + 2(n−1)(α−t−2)
n(α−t)(α−t−1) <

2
α−t as asserted.

3.1 Proof of Theorem 1.1

We now present the proof of Theorem 1.1

Proof. By Proposition 3.1 and Lemma 3.2, if q > 1 + U+−U−
(U−U−+ε) then no player can gain ε or more

by faking messages in the protocol.
By Lemma 3.3 and Lemma 3.2, to prevent cheating by guessing the secret and prematurely

exiting the protocol, it suffices if
2

α− t <
U − U− + ε

U+ − U−
Now, we know that t < X and α − t is at least the short player’s padding, and thus α − t > Y .
Thus it suffices to have Y > U+−U−

2(U−U−+ε) . But Y is a geometric random variable with parameter β,
so we require that

Pr

(
Y >

U+ − U−
2(U − U− + ε)

)
= (1− β)

U+−U−
2(U−U−+ε) (1)

Now, if we set

β = 1− (1− δ)
2(U−U−+ε)

U+−U−

we have that Pr(Y > U+−U−
2(U−U−+ε)) = 1− δ so that by Lemma 3.2, Lemma 3.3 and equation 1, with

probability at least 1− δ no player can gain more than ε in expectation by guessing the position of
the secret before the definitive iteration. It follows that with probability at least 1− δ the protocol
is an ε-Nash equilibrium.

We now analyze the resource costs of our protocol. The communication tree has 2n− 1 nodes.
Each player is mapped to one leaf and at most one internal node. Players only communicate with
their neighbors in the tree. So on each round, in the Up-Stage player i acting as a leaf, sends two
field elements (a share and a tag) up to his parent, and then two more acting as an internal node.
In the Down-Stage, acting as an internal node he sends two field elements each to his left and right
child. Thus each player sends at most eight field elements per round, and thus the expected number
of messages sent is O(1) and the expected number of bits sent is O(log |S|). Since the expected
number of rounds is constant and the tree has O(log n) height, it follows that the expected latency
is O(log n).

3.2 A Note on Backwards Induction

The backwards induction problem arises when a multi-round protocol has a last round number that
is known to all players. In particular, if it is globally known that the last round of the protocol is
`, then on the `-th round, there is no longer any fear or reprisal to persuade a player to follow the
protocol. But then if no player follows the protocol in the `-th round, then in the (`− 1)-th round,

11



there is no reason for any player to follow the protocol. This same logic continues backwards to
the very first round.

The backwards induction problem can occur with protocols that make cryptographic assump-
tions, since there will always be some round number, `, in which enough time has passed so that
even a computationally bounded player can break the cryptography. Even though ` may be far
off in the future, it is globally known that the protocol will end at round `, and so by backwards
induction, even in the first round, there is no incentive for a player to follow the protocol.

As in [8], we protect against backwards induction by having both long and short players. As the
above analysis shows, if β is chosen sufficiently small, we can ensure that Y will be large enough so
that the probability of making a correct guess as to when the protocol ends is too small to enable
profitable cheating for any player. Thus, even when a player gets to the second to the last element
in all its lists, it can not be very sure that the protocol will end in the next round. All players are
aware of these probabilities at the beginning of the protocol, and thus each player knows that no
other player will be able to accurately guess when the protocol ends.

4 Conclusions and Future Work

We have presented scalable mechanisms for rational secret sharing problems. Our algorithms are
scalable in the sense that the latency and the number of bits sent by each player is at most
polylogarithmic in the number of players. For the n-out-of-n rational secret sharing, we give a
scalable algorithm that is an ε-Nash equilibrium to solve this problem. For t-out-of-n rational
secret sharing where 1) m = θ(n); and 2) the set of active players is chosen independently of the
random bits of the dealer, we give a scalable algorithm that is a Nash equilibrium and ensures for
any fixed, positive ε that if 1) at least a m/n+ ε fraction of the players are active, all players will
learn the secret; and 2) if less than a t/n− ε fraction of the players are active, then the secret can
not be recovered.

Several open problems remain. First, while our algorithms lead to a θ(n) multiplicative re-
duction in communication costs for rational secure multiparty computation (SMPC), the overall
bandwidth for this problem is still very high. It is known that there are certain functions, for
which rational SMPC can not performed in a scalable manner (for example, the parity function).
However, we ask: Can we find classes of well-motivated functions for scalable SMPC is possible?
This is related to our second open problem which is: Can we design scalable algorithms for sim-
ulating a class of well-motivated mediators? In some sense, this problem may be harder than the
SMPC problem, since some types of mediators offer different advice to different players. In other
ways, the problem is easier: a simple global coin toss is an effective mediator for many games. A
final important problem is: Can we design coalition-resistant scalable algorithms for rational secret
sharing?
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A Scalable m-out-of-n Secret Sharing

As discussed previously, it does not seem possible to design scalable algorithms for secret sharing
in the case when either t is much smaller than n; or the subset of size t of active players may
be chosen in a completely arbitrary manner. We now describe the situation where 1) t < n, but
t = θ(n); and 2) the subset of active players does not depend on the random bits of the dealer.

We now sketch our algorithm. Since the algorithm is a variant on the n-out-of-n scheme, for
conciseness, we describe here only the places where the two algorithms defer. First, the dealer
creates a communication tree as illustrated in Figure 3. The internal nodes of the tree are now
supernodes, which consist of C log n players chosen independently, uniformly at random and with
replacement, for some constant C chosen sufficiently large (but depending only on t). As before,
there is a separate leaf node for each player of the tree. Every internal node of height greater than
1 has exactly 2 children and every internal node of height 1 has C log n children. 3

Dealer’s Protocol: When creating the list Si for each player i, the protocol for the dealer runs
as before, until we reach the supernodes of height 1. Let x = C log n and m′ = xm/n. Then at the
supernodes of height 1, the dealer now uses Shamir m′-out-of-x secret sharing to create iterated

shares for the x children. The algorithm for populating the other lists (Si, T
w
i , and Hw,w′

i ) is similar
to that used for the n-out-of-n algorithm.

Player’s Protocol: The protocol for the players consists of an upward and downward phase. In
the upward phase, the players at the leaf nodes first send their iterated shares of f to all players in
the supernodes above them. The players in these supernodes, use the shares received to reassemble
the appropriate value for that supernode, check this value with the hash and tag scheme and then
send the value up to the players in the supernode above them. This continues until the root node
is reached, at which point, the value of the function f at 0 is reconstructed.

In the downward phase, the secret is sent down the tree from each parent supernode to its
children, using all-to-all communication among the players in the supernodes, until at the bottom,
all players learn the value of f for that round. The players now act on the information they receive
(or don’t receive) exactly as they do in the n-out-of-n algorithm.

Analysis Sketch: The correctness of this algorithm follows from two arguments. First, that if
the algorithm is followed, then with high probability,4 all players learn the secret. The idea to
show this is to first let f = (m+ ε)/n. Then, apply Chernoff and then union bounds to show that
with high probability, 1) all supernodes contain at least a m/n fraction of active players; and 2)
all supernodes at height 1 receive at least a m′ shares from active children. The second argument
is that the algorithm is a Nash equilibria, and the argument for this is similar to the argument for
the n-out-of-n case.

3In fact, for arbitrary n, this will have to be degree between C logn and 2C logn. For simplicity, we assume degree
of C logn.

4We use the phrase with high probability to mean with probability 1− 1/nk for any fixed constant k.
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Figure 3: Illustration of the scalable m-out-of-n secret sharing algorithm. The internal supernodes
(1, 2, 3, 4 and 5) each consist of C log n players selected independently and uniformly at random
with replacement. The degree of each node with height 1 (i.e. nodes 4, 5, and 3) is x = C log n.
On the left is the up stage of the algorithm; on the right is the down stage.
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