
Sleeping on the Job: Energy-E�ient andRobust Broadast for Radio NetworksValerie King∗ Cynthia Phillips† Jared Saia‡† Maxwell Young §‡AbstratWe address the problem of minimizing power onsumption when broadasting a message from onenode to all the other nodes in a radio network. To enable power savings for suh a problem, we introduea ompelling new data streaming problem whih we all the Bad Santa problem. Our results on thisproblem apply for any situation where: 1) a node an listen to a set of n nodes, out of whih at leasthalf are non-faulty and know the orret message; and 2) eah of these n nodes sends aording to somepredetermined shedule whih assigns eah of them its own unique time slot. In this situation, we showthat in order to reeive the orret message with probability 1, it is neessary and su�ient for thelistening node to listen to a Θ(
√

n) expeted number of time slots. Moreover, if we allow for repetitionsof transmissions so that eah sending node sends the message O(log∗ n) times (i.e. in O(log∗ n) roundseah onsisting of the n time slots), then listening to O(log∗ n) expeted number of time slots su�es.We show that this is near optimal.We desribe an appliation of our result to the popular grid model for a radio network. Eah nodein the network is loated on a point in a two dimensional grid, and whenever a node sends a message
m, all awake nodes within L∞ distane r reeive m. In this model, up to t < r

2
(2r + 1) nodes withinany 2r+1 by 2r+1 square in the grid an su�er Byzantine faults. Moreover, we assume that the nodesthat su�er Byzantine faults are hosen and ontrolled by an adversary that knows everything exeptfor the random bits of eah non-faulty node. This type of adversary models worst-ase behavior due tomaliious attaks on the network; mobile nodes moving around in the network; or stati nodes losingpower or easing to funtion. Let n = r(2r + 1). We show how to solve the broadast problem in thismodel with eah node sending and reeiving an expeted O(n log2 |m| + √

n|m|) bits where |m| is thenumber of bits in m, and, after broadasting a �ngerprint of m, eah node is awake only an expeted
O(

√
n) time slots. Moreover, for t ≤ (1 − ǫ)(r/2)(2r + 1), for any onstant ǫ > 0, we an ahieve aneven better energy savings. In partiular, if we allow eah node to send O(log∗ n) times, we ahievereliable broadast with eah node sending O(n log2 |m| + (log∗ n)|m|) bits and reeiving an expeted

O(n log2 |m|+ (log∗ n)|m|) bits and, after broadasting a �ngerprint of m, eah node is awake for onlyan expeted O(log∗ n) time slots. Our results ompare favorably with previous protools that requiredeah node to send Θ(|m|) bits, reeive Θ(n|m|) bits and be awake for Θ(n) time slots.
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1 IntrodutionPower is one of the most ritial resoures in radio networks. The wireless network ards on radio networkdevies o�er a number of di�erent modes typially with states suh as o�, sleeping, idle, reeiving andsending [1℄. The energy osts aross these modes an vary signi�antly. Remarkably, the ost of the idle,reeiving, and sending states are roughly equivalent, and these osts are an order of magnitude larger thanthe ost of the sleep state.1 Thus, to a �rst approximation, the amount of time spent in the sleep stategives an exellent estimate of the energy e�ieny of a given algorithm [4℄. In this paper, we onsidera node to be either asleep or awake (listening and/or sending). Here, our goal is to design an algorithmthat allows a single node to broadast a message so that eventually all non-faulty nodes learn the orretmessage; this is the problem of reliable broadast. All previous work on the reliable broadast problemignores energy e�ieny, assuming the nodes are spending a substantial amount of time listening. In thispaper, we diretly address the problem of designing energy-e�ient algorithms for reliable broadast; ourapproah depends upon the analysis of a new data streaming problem that we all the Bad Santa problem.1.1 The Bad Santa ProblemConsider the following senario. A hild is presented with n boxes, one after another. When given eahbox, the hild must immediately deide whether or not to open it. If the hild deides not to open a box,he is never allowed to revisit it. At least half the boxes have presents in them, but the deision as to whihboxes have presents is made by an adversarial Santa who wants the hild to open as many empty boxes aspossible. The hild wants to �nd a present, while opening the smallest expeted number of boxes. This isthe Bad Santa problem.More formally, an adversary sends a stream of n bits of whih at least half are 1. The adversarysets the bits of the stream prior to sending the �rst bit. The algorithm may query any bit as it passes,but one a bit passes without being queried, it is lost. The algorithm is orret if it always �nds a 1.The adversary knows the (randomized) algorithm ahead of time but not its random bits. The ost of analgorithm on an input is the number of expeted queries exeuted until it �nds a 1. The goal is to designa orret algorithm with minimum expeted ost over the worst ase input. At �rst glane, it may appearthat randomly sampling O(log n) presents trivially solves the single stream Bad Santa problem. However,this strategy has a (small) probability of failure, whih is unaeptable.We are interested in two variants of this problem. First is the single stream ase desribed above.Seond is the multi-stream ase where there are multiple n-bit streams that the algorithm queries on-seutively. Eah stream has a onstant fration of 1 bits, but the values (1s and 0s) may be distributeddi�erently in eah stream; note, in the multi-stream ase, the fration of 1 bits an be less than 1/2 . Aorret algorithm must �nd one 1 bit in one of the streams. The ost is the expeted number of queriesover the worst ase set of suh streams.1.2 Reliable Broadast Grid ModelWe demonstrate the appliability of the Bad Santa problem on a network model that has been studiedextensively in the distributed omputing literature, whih we will refer to as the reliable radio broadastgrid model [5, 6, 7, 8℄. In this model, eah node is situated on a point in a two-dimensional grid. Whenevera node sends a message, all awake nodes within L∞ distane r reeive the message.2 Communiation issynhronous. If two nodes broadast simultaneously, the messages interfere, so nodes in the intersetion ofthe neighborhoods of both senders reeive no message. We make some additional remarks regarding the�exibility of the grid model later on in Setion 5.5.1The di�erene in energy onsumption between the idle/send/reeive states and the sleep state di�ers depending on thetype of ard and the ommuniation standard being employed. For example, using the IEEE 802.11 standard with a 11 Mbpsard, the ratios between power onsumption of the idle/send/reeive states and the sleep state are all more than 12 [2℄. In [3℄,with a di�erent setup employing TinyOS and a TR1000 transeiver, the measured ratios are over 1000.2The distane between two points (x1, y1) and (x2, y2) in the L∞ metri is max{|x1 − x2|, |y1 − y2|}. We an use othermetris; the hoie determines the fration of faulty nodes we an tolerate in any (2r + 1) × (2r + 1) square of the grid.2



1.2.1 FaultsEvery node in the grid may su�er faults, but as in [5, 6, 7, 8℄ we assume that no more than t nodes in any
2r + 1 by 2r + 1 square are faulty and that no node an spoof another node's identity. We onsider theases where these faults are either all fail-stop: the t nodes are all deleted from the network; or Byzantine:the t nodes are taken over by an adversary and deviate from our protool arbitrarily.3 We assume thatall of the nodes that su�er faults are hosen by a single adversary who ontrols these nodes to oordinateattaks on the network. This adversary knows everything exept for the random bits of the non-faultynodes.1.2.2 Shedule of TransmissionWe assume there is a distinguished node s known as the soure that holds an initial message m. We assumewithout loss of generality that the soure node has oordinates (0, 0) on the grid, i.e. all nodes know thesoure. We disuss relaxing this assumption in Setion 2.2. All known protools designed for the reliablebroadast grid model proeed in steps where the soure of the message sends to its neighbors, whih inturn send to their neighbors, until all nodes reeive the message. The predeessor set Gp of a orret node
p is a partiular set of nodes suh that if p listens to all nodes in Gp and majority �lters on the reeivedmessages, p will obtain the orret message; we give a preise de�nition of Gp in Setion 5. Following theliterature, we assume that eah node has a predeessor set of n = r(2r + 1) nodes assigned to distinttime slots and that the entire shedule repeats every (2r + 1)2 time slots. We all eah shedule repetitiona round. An example of a broadast shedule is given in [8℄: In eah round, eah node in position (x, y)broadasts in time slot ((x mod (2r+1))×(2r+1)+(y mod (2r+1))) mod (2r+1)2. For the remainderof the paper, it su�es to assume eah round has O(n) time slots and eah node within L∞ distane r ofsome node p is assigned to a distint time slot. If t < n/2 then eah node has a predeessor set of whihstritly less than half of the nodes are faulty, or it an listen diretly to the soure whih we assume isorret [5, 6℄. For simpliity, we assume the soure initially broadasts the message size and, thereafter,time slots are long enough to send the entire message.4 The ost of listening to a message is proportionalto the message length.2 The Bad Santa Problem & The Reliable Broadast ProblemIn this setion, we sketh the methods for applying the solutions of the Bad Santa problem to the problemof reliable broadast. We will redue the expeted listening time (i.e. number of time slots in an awakestate) and the expeted bit omplexity required for a node to learn the message from its n predeessors.We an use the algorithm for the single stream Bad Santa problem to do so provided that: (1) at least halfof the predeessors have the orret message and, in the ase of Byzantine faults, the listening node andetermine if a message is orret; (2) the listening node knows the loation of the soure node and timeof broadast (to determine when to start the Bad Santa protool and to whih set of n nodes to possiblylisten). If t < n/2; faults are fail-stop; and the time of broadast and length of the message is known inadvane; onditions (1) and (2) are learly satis�ed. Thus, the message an be transmitted safely fromone set of predeessors to another, with eah node using the Bad Santa protool to deide whih of itspredeessors to listen to and thereby learn the message. In this ase, there is no hange to the lateny ofthe broadast; eah node sends one.We an redue listening time further by using the multi-stream Bad Santa protool. Here the frationof faulty predeessors an exeed 1/2 and we show that multiple streams are required if we wish to obtainsavings. If we use k + 1 streams, then there are k + 1 rounds of sending before the message is passed fromone set of nodes to another; eah node sends k +1 times and the lateny inreases by a fator of k +1 overthe single round ase.3Although, Byzantine nodes must also abide by the shedule as in [5, 6, 8℄4An alternative is that the soure node preproesses the message by dividing it into piees that eah �t into a time slot.However, both the broadasting of the message size and the details of how the message might be formatted for sending areoutside the sope of this paper. 3



Notation De�nition
r Radius of broadast for all nodes.
t Number of Byzantine peers in a (2r + 1) × (2r + 1) square of the radio network.

p(x, y) A node p loated at oordinate (x, y) in the grid network model.
N(p) or N(x, y) Set of nodes within the broadast radius of node p(x, y).

n In the ontext of the Bad Santa Problem, n is the number of boxes in a stream. In theontext of a radio network, n is the size of predeessor set where n = r(2r + 1).
k Number of streams used in the problem de�nition of the Bad Santa Problem.
s Soure node (or dealer) in the problem of reliable broadast.
m Message sent by the soure node in the problem of reliable broadast.
|m| Number of bits in the message m.
f A seure hash funtion.

f(m) Fingerprint resulting from applying the hash funtion f to m.Table 1: Summary of frequently used notation.Failure is Not An Option: Why do we insist on allowing no error in the Bad Santa problem? Why notjust use random sampling? Random sampling has a probability of error that depends on n, whih is on theorder of the number of nodes in the transmission radius; we stress that n depends on r and is not the totalnumber of nodes in the network. If the network's total size is muh larger than n, then even if the failureprobability for a single listener is exponentially small in n, the probability that some node in the networkfails to learn the message will still be quite large. For example, if the total network size is exponentialin n and the probability of failure for a single listener is O(2−n), then with onstant probability, reliablebroadast will fail.2.1 Byzantine Fault Model: Known Start Time and SoureTo satisfy ondition (1) when the faults are Byzantine, our protool has two stages. In the �rst stage, thesoure uses a seure (ryptographi) hash funtion (for more on suh hash funtions see [9℄, Chapter 4) togenerate a �ngerprint of size (log2 |m|)2 where |m| is the message length5, and broadasts this �ngerprintto all the other nodes in the network using a previously known energy-ine�ient method in [6℄. In theseond stage, the soure broadasts the full message with eah node using a Bad Santa protool. Eah nodeompares the hash value of eah full message reeived against the true �ngerprint to determine if it agreesand is thus presumably orret. If the adversary is unable to disover a false message whose hash mathesthe �ngerprint, then the only message whih mathes the �ngerprint is the orret message. Eah nodean determine if the message it reeives is orret. Thus, at eah stage, all non-faulty nodes transmit theorret message and ondition (1) is satis�ed. This introdues a possibility of error into the transmissionwhih depends on the relative size of the �ngerprint to the message and the resoures of the adversary.In this model, the set of faulty nodes an di�er from one stream to the next as hosen by the adversary;however, for a given stream, the adversary must deide whether a node is orrupt prior to its seletion ornon-seletion by a protool.2.2 Byzantine Fault Model: Unknown Start Time and Soure(s)We also deal with the ase where the start time of the message is not known in advane, or the loation ofthe soure is not known. Moreover, our protool allows any node to send a message i.e. beome a sourenode. We note that this is also possible under the original protools of [5, 6, 8℄; however, we expliitly dealwith this ase and show how to aomplish an energy savings if t < n
16+ǫ for any onstant ǫ > 0. Morespei�ally, we require that no more than a 1/2 − ǫ fration of the nodes are faulty in any r/2 by r/2square. In this model, the adversary is adaptive in the sense that it an deide whih nodes to take overbased on whih nodes have previously ommitted to the orret message.5We make the random orale assumption about the hash funtion used to generate the �ngerprint of m.4



3 Our ResultsOur �ve main results are summarized in the theorems below. Theorem 1 is given in Setion 4; Theorem 2in Setion 4.1; Theorem 3 and Theorem 4 are addressed in Setions 5.1& 5.2; Theorem 5 and Theorem 6in Setion 5.3; Theorem 7 in Setion 5.4. For ease of exposition, we have aggregated the notation we mostommonly use throughout the paper in Table 1. Finally, throughout, let lg n denote the logarithm base 2and let log(k) n denote log · · · log
︸ ︷︷ ︸

k

n.Theorem 1. For the single stream Bad Santa problem, the optimal expeted number of queries is Θ(
√

n).Theorem 2. For the k stream Bad Santa problem, the optimal expeted number of queries is O(log(k)(n)+

k) and Ω(log(2k) n). In partiular, for k = Θ(log∗ n), we an ensure the expeted number of queries is
O(log∗ n).The next two theorems about energy-e�ient broadast are established by algorithms based on solutionsto the Bad Santa problem. We again repeat that n = r(2r + 1) and so n depends on the broadast radius;it is not the total number of nodes in the network. The algorithms apply to a grid of �nite or in�nite size.In the former ase, we ahieve the standard result that all nodes, exept those on the boundary of width
r, ommit to the orret message. In the latter ase, for Byzantine faults, our result translates into a �niteportion of the grid obtaining the orret message and this is dependent on the omputational power of theadversary. Theorem 3 essentially follows diretly from Theorems 1 and 2. Theorem 4 requires a �ngerprintof the message to �rst be broadast through the network.Theorem 3. Assume we have a network where at most t < r

2 (2r + 1) nodes su�er fail-stop faults in anysquare of size 2r + 1 by 2r + 1 and that the start time and soure of a message are known. Then thereexists an algorithm for reliable broadast whih has the following properties:
• Eah node is awake for O(

√
n) time slots in expetation.

• Eah node broadasts O(
√

n|m|) bits and reeives |m| bits.In the next theorem, we use the notion of omputational steps in the ontext of the adversary. By this, wemean the number of times the adversary an reate an input x′, apply a seure hash funtion f to x′ andhek for a math between the output �ngerprint f(x′) and some other �ngerprint for whih the adversaryis attempting generate a ollision.Theorem 4. Assume we have a network where at most t < r
2 (2r + 1) of the nodes su�er Byzantine faultsin any square of size 2r + 1 by 2r + 1 and that the start time and soure of a message are known. Furtherassume that the number of omputational steps available to the adversary is bounded by s. Then there existsan algorithm for guaranteeing reliable broadast with a probability of failure O(s/|m|lg |m|). In an initialstage, the algorithm requires a �ngerprint of size lg2 |m| to be initially broadast to the network. However,in the seond stage, when the message m itself is broadast, the algorithm has the following properties:

• Eah node is awake for O(
√

n) time slots in expetation,Over both stages, the algorithm has the following osts:
• Eah node broadasts O(n log2 |m|+√

n|m|) bits and reeives an expeted O(n log2 |m|+√
n|m|) bits.We also present results on inreased energy-savings for values of t within an arbitrary onstant fator ofoptimal. In partiular, we onsider the ase where t ≤ (1 − ǫ) r

2 (2r + 1) for any onstant ǫ > 0 where wehave the following results:Theorem 5. Assume we have a network where, for any onstant ǫ > 0, at most t ≤ (1− ǫ) r
2 (2r +1) nodessu�er fail-stop faults in any square of size 2r + 1 by 2r + 1 and that the start time and soure of a messageare known. Then there exists an algorithm whih guarantees reliable broadast and whih has the followingproperties: 5



• For any k between 1 and ln∗ n, the algorithm requires eah node to be awake for an expeted O(log(k) n)time slots.
• Eah node broadasts O(k|m|) bits and reeives |m| bits.Therefore, the above algorithm requires eah node to broadast O(k) times whih translates into a higherlateny given that nodes must adhere to a broadast shedule; however, nodes expend far more energy inexpetation.Theorem 6. Assume we have a network where, for any onstant ǫ > 0, at most t ≤ (1− ǫ) r

2 (2r+1) of thenodes su�er Byzantine faults in any square of size 2r + 1 by 2r + 1 and that the start time and soure ofa message are known. Further assume that the number of omputational steps available to the adversaryis bounded by s. Then there exists an algorithm whih guarantees reliable broadast with a probability offailure O(s/|m|lg |m|). In an initial stage, the algorithm requires all nodes to be awake for every slot duringwhih a �ngerprint of size lg2 |m| is initially broadast to the network. However, in the seond stage, whenthe message m itself is broadast, the algorithm has the following properties:
• For any k between 1 and ln∗ n, requires all nodes to be awake an expeted O(log(k) n) time slots.Over both stages, the algorithm has the following osts:
• For any k between 1 and ln∗ n, eah node broadasts O(n log2 |m|+k|m|) bits and reeives an expeted

O(n log2 |m| + (log(k) n)|m|) bits.Finally, we deal with the ase where the start time and the soure of the message is unknown. In thissituation, if t < n
16+ǫ , we have the following result:Theorem 7. If the start time and soure of a message are unknown, there is a protool for reliable broadastin whih eah node (1) sends O(|m|) bits per round, (2) is awake an amortized onstant number of timeslots per round and (3) reeives an amortized O(|m|) bits per round.For this last result given in Theorem 7, all nodes may reeive the message; that is, those nodes on theboundary are not exluded as with our previous results.To ontrast our results with previous work, we note that under the previous algorithms for reliablebroadast [5, 6℄, eah node 1) is awake for (2t+1) = Θ(n) time slots, 2) broadasts Θ(|m|) bits; 3) reeives

Θ(|m|) bits in the fail-stop model; and 4) an be fored by the adversary to reeive Θ(n|m|) bits in theByzantine fault model. Therefore, in both fault models, our algorithms are saving substantially on theamount of time a node must be awake for listening to the full message. For the fail-stop ase, for k ≥ 1, weare trading a small fator inrease in tra� for these savings . Moreover, in the Byzantine ase, we greatlyredue the total bit omplexity. Finally, note that |m| need not be large to make the probability of �ndinga message with the same �ngerprint very small. For example, if |m| = 1 kB, the probability of a ollisionis already less than 10−30.3.1 Related WorkThe reliable broadast problem over the radio network model desribed above has been extensively studiedin [5, 6, 7, 8, 10℄. In [8℄, Koo showed that reliable broadast with Byzantine faults is impossible if t ≥
r
2 (2r+1) in the L∞ norm. In [5, 6℄, Bhandari and Vaidya presented a lever algorithm that ahieved reliablebroadast tolerating Byzantine faults for any t < r

2 (2r + 1); our Theorem 4 appies to this senario. Therethe authors also ahieve t < r(2r + 1) for the fail-stop fault model whereas our result applies only when
t < r

2 (2r + 1) or when t ≤ (1 − ǫ)(r/2)(2r + 1) for any onstant ǫ > 0. Therefore, we are a onstant fatorfrom the optimal tolerane in the fail-stop model. Koo et al., in [7℄, desribed an algorithm that ahievesreliable broadast even when the faulty nodes an spoof addresses of honest nodes or ause ollisions; thisis a more hallenging fault model than is addressed in our work or in any other previous work. All prioralgorithms proposed for the reliable broadast problem require eah node in the network to be awake for aonstant fration of the time slots and thus are not energy-e�ient. Our algorithm from Theorem 4 makes6



use of the algorithm from [6℄ to broadast a �ngerprint of the message. Finally, under di�erent models ofa radio network, the problems of onsensus [11, 12℄, reliable broadast under the fail-stop fault model [13℄and reliable broadast under adversarial faults [14℄ have been studied. Work in [15℄ deals with broadastprotools in a time-slotted network where the number of times a node an transmit is onstrained; this isalled "k-shot broadasting". The authors fous on establishing bounds on the number of rounds eah nodemust transmit in order to ahieve broadast; hene, there is a fous on the tradeo� between energy (i.e. thenumber of shots needed) and lateny of the broadast. However, despite this similarity, the network modelused in [15℄ does not inorporate adversarial behaviour and aptures more general topologies; onsequently,the tehniques and results di�er signi�antly from our work.Data streaming problems have been popular in the last several years [16, 17℄. Generally, past work inthis area fouses on omputing statistis on the data using a small number of passes over the data stream.In [16℄, the authors treat their data stream as a direted multi-graph and examine the spae requirements ofomputing ertain properties regarding node degree and onnetedness. Munro and Paterson [18℄ onsiderthe problem of seletion and sorting with a limited number of passes over one-way read-only memory.Guha and MGregor [19, 20℄ examine the problem of omputing statistis over data streams where thedata objets are ordered either randomly or arbitrarily. Alon, Matias and Szegedy [21℄ examine the spaeomplexity of approximating the frequeny of moments with a single pass over a data stream. In all ofthese ases, and others [22, 23℄, the models di�er substantially from our proposed data streaming problem.Rather than omputing statistis or seletion problems, we are onerned with the guaranteed disovery ofa partiular value, and under our model, expeted query omplexity takes priority over spae omplexity.A preliminary version of the results in this paper appeared in [24℄. This urrent version ontains aomplete desription of our protools along with the full proofs of our results. We also orret an errorregarding the energy-savings ahieved in [24℄. That is, in the ase where t < (r/2)(2r+1), we ahieve whatis essentially a quadrati redution in resoure osts. In the proess of amending our results, we treat thease for t ≤ (1 − ǫ)(r/2)(2r + 1) for any onstant ǫ > 0, whih yields the further energy savings identialto those previously laimed; this also improves on our previous result for the fail-stop model. An extendeddisussion of previous results is also provided along with a examination of ertain pratial onsiderationsregarding the utility of the algorithms we are proposing.4 Single Stream Bad SantaWe now onsider the single stream Bad Santa problem. A naive algorithm is to query n/2+1 bits uniformlyat random. The expeted ost for this algorithm is Θ(n) sine the adversary will plae the 1's at the endof the stream. The following is an improved algorithm.Single Stream Strategy1. Perform √
n queries uniformly at random from the �rst half of the stream. Stop immediately upon�nding a 1.2. If no 1 has been found, starting with the �rst bit in the seond half of the stream, query eahonseutive bit until a 1 is obtained.Lemma 1. The expeted ost of the above strategy is O(

√
n).Proof. Assume that there are i

√
n 1s in the �rst half of the stream where i ∈ [0,

√
n

2 ]. This implies thatthere are then (n/2)− i
√

n 1s in the seond half of the stream. By querying √
n slots uniformly at randomin the �rst half of the stream, the probability that the algorithm fails to obtain a 1 in the �rst half is nomore than:

(

1 − i
√

n

(n/2)

)√
n

=

(

1 − 2i√
n

)√
n

7



for an expeted overall ost not exeeding:
√

n +

(

1 − 2i√
n

)√
n

· i
√

n.We �nd the maximum by taking the derivative:
d

di

(

1 − 2i√
n

)√
n

· i
√

n =
√

n

(

1 − 2i√
n

)√
n

− 2i
√

n

(

1 − 2i√
n

)√
n−1and setting it to zero while solving for i gives i =

√
n

2(
√

n+1)
. Plugging this into the expeted ost funtiongives an expeted ost of O(

√
n).We now show that this bound is optimal to within a onstant fator. In the proof of the following, let Õdenote that logarithmi fators are ignored.Lemma 2. Ω(

√
n) expeted queries are neessary in the single stream ase.Proof. We follow Yao's min-max method [25℄ to prove lower bounds on any randomized algorithm thaterrs with probability no greater than λ = 1/2Õ(

√
n): We desribe an input distribution and show that anydeterministi algorithm that errs with tolerane (average error) less than 2λ = 1/2Õ(

√
n) on this input dis-tribution requires Ω(

√
n) queries on average for this distribution. By [25℄, this implies that the omplexityof any randomized algorithm with error λ has ost (1/2)Ω(

√
n) = Ω(

√
n). Let [a, b] denote the bits inposition a, a + 1, ..., b − 1, b of the stream. The distribution is as follows:CASE 1. With probability 1/2, √n uniformly distributed random bits in [1, n/2] are set to 1 and theremaining bits in that interval are 0, [n/2 + 1, n/2 +

√
n] are all set to 0, and the remaining bits are 1.CASE 2.x: For x= 0, ...,

√
n − 1, with probability 1/(2

√
n), [1, ..., n/2] ontains a uniformly distributedrandom set of x 0's and the rest are 1's; [n/2 + 1, n/2 +

√
n] ontains a uniformly distributed random setof x 1's and the rest are 0's; and the remaining bits in the stream are 0.Analysis: Let A be a deterministi algorithm whih errs with average probability less than 2λ. Note that

A is ompletely spei�ed by a list L of indies of bits to query while it has not yet disovered a 1, sine itstops as soon as it sees a 1. Let x be the number of queries in the list that lie in [1, n/2]. For a onstantfration of inputs in CASE 1, A will not �nd a 1 in [1, n/2] within √
n queries. Hene either x ≥ √

nor A must �nd a 1 with high probability in [n/2 + 1, n]. Now suppose x <
√

n. We show that A's list
L must ontain greater than √

n − x bit positions in [n/2 + 1, n/2 +
√

n]. To show this, assume this isuntrue. Then A will err on the input in CASE 2.x in whih all the x positions queried in [1, n/2] andthe √
n − x positions queried in [n/2 + 1, n/2 +

√
n] are 0. Note that this input ours with probability

(2
√

n)−1
(
n/2
x

)−1(√n
x

)−1
≥ 2λ in the distribution. Therefore, the algorithm errs with probability at least

2λ; this is a ontradition. We onlude that any algorithm erring with probability less than 2λ must eitherhave x ≥ √
n or queries greater than √

n − x bits of [n/2 + 1, n/2 +
√

n].Now we show that any suh deterministi algorithm inurs an average ost of Ω(
√

n) on the CASE1 strings in this distribution. If x ≥ √
n then for a onstant fration of strings in CASE 1, the algorithmwill ask at least √n queries in [1, n/2] without �nding a 1. If x <

√
n, then with onstant probability thealgorithm will inur a ost of x in [1, ..n/2] and go on to inur a ost of √n − x in [n/2 + 1, n/2 +

√
n]sine all the values there are 0. Therefore, we have shown that the distributional omplexity with error 2λis Ω(

√
n). It follows from [25℄ that the randomized omplexity with error λ is Ω(

√
n).Theorem 1 follows immediately from Lemma 1 and Lemma 2. We �nish this setion by showing that if thefration of 1s in the single stream ase, δ, is less than 1/2, then the number of expeted queries is Ω(n).The proof is very similar to that of Theorem 2.Theorem 8. For the single round dynami Bad Santa problem with δ = 1

2 − ǫ, the number of queries inexpetation is Ω(n) for an arbitrarily small onstant ǫ > 0.8



Proof. We apply the min-max method of [25℄ to prove lower bounds on any randomized algorithm thatfails with probability no greater than λ = 2−Θ(n log n). An input distribution is used to show that anydeterministi algorithm failing with probability less than 2λ = 2−Θ(n log n) on this input distribution requires
Ω(n) queries. By [25℄, this implies that the omplexity of any randomized algorithm with error λ has ost
Ω(n). Let [a, b] denote the bits in position a, a + 1, ..., b − 1, b of the stream. Our input distribution is asfollows:

• Case 1: With probability 1/2, a onstant number of bits, c, hosen uniformly at random withoutreplaement in [1, δn] are set to 1 and the remaining bits in that interval are 0. In [δn+1, (1−δ)n+c]all bits are set to 0, and the remaining bits are set to 1.
• Case 2.x: For x= 0, ..., δn − 1, with probability 1/(2δn), [1, δn] ontains a uniformly distributedrandom set (without replaement) of x 0s and the rest are 1s; [δn + 1, (1 − δ)n + c] ontains auniformly distributed random set (without replaement) of x 1s and the rest are 0s. The remainingbits in the stream are 0.Cost Analysis: Let A be a deterministi algorithm whih fails with probability less than 2λ. Note that A isompletely spei�ed by a list L of indies of bits to query while it has not yet disovered a 1. Let y be thenumber of queries in the list that lie in [1, δn]. With onstant probability A will fail to �nd a 1 in [1, δn]within (δ − ǫ′)n queries where ǫ′ > 0 is an arbitrarily small onstant. This is beause sampling withoutreplaement, the probability that A fails is ∏(δ−ǫ′)n

i=1

(

1 − c
(δn)−i

)

≥
(
1 − c

ǫ′n

)(δ−ǫ′)n
= Θ(1). Therefore,either y ≥ (δ− ǫ′)n or A must �nd a 1 with high probability in [δn + 1, n]. Now suppose y < (δ − ǫ′)n. Weshow that L must ontain greater than (1−2δ)n+ c− y bit positions in [δn+1, (1− δ)n+ c]. To show this,assume this is untrue. Then A will fail on the input in Case 2x in whih all the y positions queried in [1, δn]and the (1− 2δ)n + c− y positions queried in [δn + 1, (1− δ)n + c] are 0. Note that this input ours withprobability (

1
2δn

) (
δn
y

)−1( (1−2δ)n+c
(1−2δ)n+c−y

)−1
=

(
1

2δn

) (
δn
y

)−1((1−2δ)n+c
y

)−1 ≥
(

1
2δn

) (
y2

δne2((1−2δ)+c)

)y

≥ 2λ for
y = 0, ..., (δ − ǫ′)n − 1 and for su�iently large n. Therefore, the algorithm fails with probability at least
2λ whih is a ontradition. We onlude that any algorithm failing with probability less than 2λ musteither have y ≥ (δ − ǫ′)n or queries greater than (1 − 2δ)n + c − y bits in [δn + 1, (1 − δ)n + c].Finally, we an prove the average ost that any suh deterministi algorithm inurs on the Case 1strings in our distribution. As we saw above, if y ≥ (δ− ǫ′)n then for a onstant fration of strings in Case1, the algorithm will ask at least (δ − ǫ′)n queries in [1, δn] without �nding a 1. Else, if y < (δ − ǫ′)n, thenwith onstant probability the algorithm will inur a ost of y in [1, δn] and go on to inur a ost of at least
(1 − 2δ)n + c− y in [δn + 1, (1− δ)n + c] sine all the values there are 0; regardless, the ost is Ω(n) (notethat this is not the ase if δ ≥ 1/2). Therefore, the distributional omplexity with error 2λ is Ω(n). Itfollows diretly from [25℄ that the randomized omplexity is Ω(n).While the optimal expeted ost for the single stream is Θ(n), it is still possible to obtain asymptotisavings over multiple streams when δ < 1/2 and we address this in the next setion.4.1 The Multiple Streams Bad Santa ProblemWe de�ne a (α, β)-strategy to be an algorithm whih ours over no more than α streams, eah with at leasta (possibly di�erent) set of at least Θ(n) values of 1, and whih inurs expeted ost (number of queries)at most β. To be expliit, for multiple streams, we an handle the ase where the fration of boxes thatontain a 1, denoted by δ, an be less than 1/2. The previous setion demonstrated a (1, O(

√
n))-strategy.We now onsider the following protool over (k + 1) streams.Multi-Stream Seletion StrategyFor i = k to 1

• Perform 1
δ ln(i)(n) queries uniformly at random over the entire stream. Stop if a 1 is obtained.9



If no value of 1 has been found, then if δ ≥ 1/2, use the single stream strategy on the �nal stream. Other-wise, for δ < 1/2, open eah of the n boxes in order in the �nal stream until a 1 is loated.Lemma 3. For a onstant δ, the above protool is a (k + 1, O(log(k)(n) + k))-strategy.Proof. Corretness is lear beause in the worst ase, we use the orret the single stream strategy, or openall boxes, in the �nal stream. The expeted ost is:
≤ δ−1 ln(k) n +

[
1∑

i=k−1

(1 − δ)
δ−1 ln(i+1) n · O

(

δ−1 ln(i) n
)
]

+ (1 − δ)
δ−1 ln n · O(n)

≤ δ−1 ln(k) n +

[
1∑

i=k−1

e− ln(k) n · O
(

δ−1 ln(k−1) n
)
]

+ e− lnn · O(n)

= O(log(k)(n) + k)Lemma 4. If there are ln∗ (n)+1 streams and δ is a onstant, then the multi-stream algorithm provides a
(O(log∗ n), O(log∗ n))-strategy.Proof. By the de�nition of the iterated logarithm:

ln∗ n =

{

0 for n ≤ 1
1 + ln∗(lnn) for n > 1if k = ln∗ n, we an plug this value into the last line of the proof of Lemma 3 whih ontains two termsinside the big-O notation. The �rst term is 1/δ, by de�nition of ln∗ n, and the seond is O(ln∗ n), for atotal expeted ost of O(ln∗ n).4.2 Lower bound for multiple streamsFirst, we show the following lemma. For ease of exposition, we assume δ = 1/2; however, any onstant δwill su�e with little modi�ation to the proof:Lemma 5. Ω(log(i+2) n) expeted queries are required for a randomized algorithm that errs with probabilityless than λ = (ln(i) n)−ǫ on one stream of length n. In partiular, when i = 0, Ω(log log n) expeted queriesare required for a randomized algorithm with error less than 1/nǫ, for any onstant ǫ > 0.Proof. We apply Yao's min-max method [25℄ and onsider the distribution in whih with probability 1/3,one of the I1 = [1, n/3], I2 = [n/3 + 1, 2n/3], and I3 = [2n/3 + 1, n] intervals is all 0's, and the othertwo eah ontain exatly n/4 1's with the 1's distributed uniformly at random. Let L denote the list ofqueries of a deterministi algorithm, and let xi be the number of queries in L∩Ii. The probability that thealgorithm fails to �nd a 1 in any interval Ii is (n/3−xi

n/4

)
/
(n/3
n/4

)
= n/12

n/3
n/12−1
n/3−1 ...n/12−xi+1

n/3−xi+1 > (n/12−xi+1
n/3−xi+1 )

xi

>

(1
4 − 3xi

n )xi > (1
4 − ǫ)xi > ( 1

e7/4 )xi = e−7xi/4 when xi = o(n) for su�iently large n. Let Ii and Ij be theintervals that are not all 0's. Then the probability of failing to �nd a 1 in either Ii and Ij is > e−7(xi+xj)/4for su�iently large n when xi + xj = o(n). Hene the probability of not �nding a 1 over all intervals is
> (1/3)e−7(xi+xj)/4 > 2λ if xi + xj < (3/7)ǫ lg(i+1) n. We onlude that a deterministi algorithm withaverage error less than 2λ an have at most one xi, i = 1, 2, 3 suh that xi < (3/14)ǫ lg(i+1) n.Now we examine the ost of suh an algorithm. Suppose x1 ≥ (3ǫ/14)(ln(i+2) n) then with probability
1/3 I1 is all 0's and the ost inurred is x1, for an average ost of (ǫ/14)(ln(i+2) n). Now suppose x1 <

(3ǫ/14) ln(i+2) n. From above, we know x2 > (3ǫ/14) ln(i+1) n). Then with probability 1/3, I2 is all 0's andwith probability > e−7x1/4 > (ln(i+1) n)−3ǫ/8, the algorithm does not �nd a 1 in I1 and inurs a ost of10



(3ǫ/14) lg(i+1) n in I2 for an average ost of at least (ǫ/14)(ln(i+1) n)1−3ǫ/8. Hene the average ost of anysuh deterministi algorithm is at least min{(ǫ/14)(ln(i+2) n), (ǫ/14)(lg(i+1) n)1−3ǫ/8} = Ω(ln(i+2) n). ByYao's min-max method [25℄, any randomized algorithm with error λ is bounded below by 1/2 the averageost of a deterministi algorithm with average error 2λ on any distribution. The lemma now follows.Lemma 6. For k > 0, Ω(ln(2k) n) expeted queries are neessary to �nd a 1 from k + 1 streams withprobability 1.Proof. We use indution on the number of streams:Base Case: Let k = 1. Either the algorithm �nds a 1 in the �rst pass or the seond pass. From Lemma ,for any onstant ǫ any algorithm that fails to �nd a 1 in the �rst pass with probability ≤ n−ǫ has expetedost Ω(log log n). If the algorithm fails to �nd a 1 in the �rst pass with probability at least n−ǫ then theexpeted ost to the algorithm is at least the probability it fails in the �rst pass times the expeted ost ofalways �nding a 1 in the seond and �nal pass, whih is n−ǫ ·Ω(
√

n). (The seond fator is from Lemma 2.Choosing ǫ < 1/2, the expeted ost is Ω(log log n).Indutive Hypothesis: For k > 1, Ω(ln(2k) n) expeted queries are neessary to �nd a 1 from k + 1 streamswith probability 1.Indutive Step: Now assume the hypothesis is true for up to k > 1 streams. Assume we have k + 1streams. Any randomized algorithm either fails to �nd a 1 in the �rst stream with probability less than
(1/ ln(2k−2) n)ǫ, in whih ase by Lemma 5, the expeted ost of the algorithm when it proesses the �rststream is Ω(ln(2k) n) or the probability that it fails in the �rst pass is at least (1/ ln(2k−2) n)ǫ. In that ase,the expeted ost deriving from queries of the seond stream is at least (1/ ln(2k−2) n)ǫ ·Ω(ln(2k−2) n) wherethe seond fator of this expression is the expeted number of queries needed to �nd a 1 in k streams,as given by the indution hypothesis. The minimum expeted ost of any randomized algorithm is theminimum of these two possibilities, whih is Ω(ln(2k) n).Theorem 2 then follows immediately from Lemmas 3, 4, 5 and 6.5 Reliable Broadast ProtoolsWe begin by realling some notation from Table 1 and brie�y reviewing the protool of [6℄. Let p(x, y)denote the node p at loation (x, y) in the grid. We de�ne a orridor of width 2r + 1 starting at thesoure loated at point (0, 0) and ending at node p = (x, y). We will use N(p) or N(x, y) to denote theset of nodes within radius r of q(x, y); this is the neighborhood of q. Additionally, we de�ne the perturbedneighborhood PN(p) of p(a, b) as PN(p) = N(a + 1, b) ∪ N(a − 1, b) ∪ N(a, b + 1) ∪ N(a, b − 1). Thefollowing protool for reliable broadast in the presene of Byzantine faults is by Bhandari and Vaidya [6℄.In this protool, the message ommit(i, v) signi�es that node i has ommitted to value v, and the messageheard(j, i, v) signi�es that node j has heard a message ommit(i, v).Reliable Broadast Protool (Bhandari and Vaidya, 2005)

• Initially, the soure s does a loal broadast of v.
• Eah node i ∈ N(s) ommits to the �rst value it reeives from s and does a one-time broadast ofommit(i, v).
• The following protool is exeuted by eah node j (inluding those nodes in the previous two steps):� On reeipt of a ommit(i, v) message from a neighbor i, j reords the message and broadastsheard(j, i, v).� On reeipt of a heard(j′, i, v), j reords this message.11



� Upon reeiving ommit or heard messages that 1) laim v as the orret value and 2) arereeived along at least t + 1 node disjoint paths that all lie within a single neighborhood, thennode j ommits to v and does a one time broadast of ommit(j, v).Proving that this protool is orret is non-trivial and we refer the reader to [6℄ for details. To brie�ysummarize, the proof in [6℄ works by showing that for eah node p in PN(a, b)−N(a, b), there exist 2t +1paths P1, ..., P2t+1 belonging to a single neighborhood N(a, b + r + 1), eah having one of the forms listedbelow:
• Pi = (q, p) whih is a one hop path q → p or
• Pi = (q, q′, p) whih is a two hop path q → q′ → pwhere q, q′, p are distint nodes and q, q′ lie in a single neighborhood N(a, b + r + 1), and q ∈ N(a, b)where, ritially, nodes in N(a, b) have ommitted to the orret message. The existene of these 2t + 1paths, and the fat that eah broadast neighborhood has at most t < r/2(2r + 1) Byzantine faults, issu�ient to prove that reliable broadast is ahieved by the protool. For simpliity, we an onsider

p ∈ N(a, b + 1) sine the analysis is nearly idential for the ases where p ∈ N(a + 1, b), p ∈ N(a − 1, b),and p ∈ N(a, b − 1).The node p lies in N(a, b + 1)−N(a, b) and an be onsidered to have loation (a− r + z, b + r + 1) where
0 ≤ z ≤ 2r. Now, summarizing the proof in [6℄, we demonstrate that there exist r(2r + 1) node-disjointpaths P1, ..., Pr(2r+1) all lying within the same neighborhood:

• One-Hop Paths: the set of nodes Ap = {q(x, y) | (a − r) ≤ x ≤ (a + z) and (b + 1) ≤ y ≤ (b + r)}lie in N(a, b) and are neighbors of p. Therefore, there are r(r + z + 1) paths of the form q → p where
q ∈ Ap.

• Two-Hop Paths: onsider the sets Bp = {q(x, y) | (a+z+1) ≤ x ≤ (a+r) and (b+1) ≤ y ≤ (b+r)}and B′
p = {q′(x′, y′) | (a + z + 1 − r) ≤ x′ ≤ a and (b + r + 1) ≤ y′ ≤ (b + 2r)}. The nodes in Bp liein N(a, b) while the nodes in B′

p lie in N(p). Moreover, the set B′
p is obtained by shifting left by runits and up by r units. Therefore, there is a one-to-one mapping between the nodes in Bp and thenodes in B′

p. For u ∈ Bp, we will all the orresponding node u′ ∈ B′
p, the sister node of u. Notethat eah node has at most two sister nodes; this an be seen in Figure 3. Hene, there are r(r − z)paths of the form q → q′ → p.Therefore, there are a total of r(r + z + 1) + r(r − z) = r(2r + 1) disjoint paths all lying in a singleneighborhood N(a, b + r + 1). Figure 1 illustrates aspets of the disussion above where a, b = 0. Now,note that the predeessor set Gp = Ap ∪ B′

p is the set of nodes to whih p must listen in order to gatherinformation that will allow it to ommit to the orret message.In Setion 5.1 and Setion 5.2, we explain our protools for reliable broadast under both the fail-stop and Byzantine fault models, respetively. Our protools rely heavily on the results of Bhandari andVaidya [6℄ disussed above. In partiular, we assume that eah node p knows a predeessor set Gp of nodesto whih node p should listen for messages. As we have just reviewed, the existene of Gp is shown by theonstrutive proofs in [6℄. Our protools speify when eah node p should listen to nodes in Gp and wheneah node p should broadast the message to whih it has ommitted. The set Gp has size n = r(2r + 1)and, in exeuting our protool for the ase where t < (r/2)(2r + 1), we assume that at least n/2 of thenodes in Gp are orret. Our algorithms for the Bad Santa problem then apply by having a node samplefrom nodes in Gp in order to listen for a message.Error Tolerane in the Bad Santa Protools and in Reliable Broadast Protools: Before de-sribing our reliable broadast protools, we �rst address a possible point of onfusion: Previous workunder the Byzantine fault model assumed t < n/2 whereas in this work we are allowing t ≤ n/2 in ouralgorithms for the single-stream Bad Santa problem. This should not be onstrued as ontraditing thelower bound proved in [8℄. In order to perform reliable broadast t < n/2 must indeed hold true and,12
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Sister NodesFigure 1: An illustration of the sets Ap, Bp, and B′
p where z = 0, r = 3 and a, b = 0. Node p is loated atposition (a − r + z, b + r + 1). A pair of sister nodes, one in B′ and the other in B, are highlighted.as we shall see in Setion 5.2, this needs to be the ase for Stage 1 of our protool in order to propagatethe �ngerprint. However, in Stage 2, the set Gp an hold t ≤ n/2 faulty nodes due to our results on thesingle-stream Bad Santa problem.Reliable Broadast Along a Corridor: The presentation of our protools is limited to demonstratingreliable broadast along a orridor of width 2r + 1 moving along the positive y-oordinates. That is, weshow reliable broadast for a node p(x, y) where −r ≤ x ≤ r and y ≥ 0. This greatly simpli�es thedesription of our results. Furthermore, it is easy to see that reliable broadast is possible along otherorridors traversing the x-oordinates or negative y-oordinates using a synhronization of sending andlistening similar to what we desribe. The grid an be overed piee-wise with suh retilinear orridors ina number of ways; for example, a spiral su�es (see Figure 2). Alternatively, orridors an be appendedin many other ways in order to ahieve propagation of a message depending on senario in question. Inany event, proving reliable broadast for this orridor is su�ient to prove reliable broadast for the gridin general.5.1 Protool for Fail-Stop FaultsWe desribe our reliable broadast protool that tolerates fail-stop faults; the proof is deferred until theend of Setion 5.2 sine it is subsumed by the proof for the Byzantine ase. The pseudoode below showshow broadast an be ahieved along a orridor of width 2r + 1, where −r ≤ x ≤ r, moving along thepositive y-oordinates. As mentioned earlier, restriting the movement in this way greatly simpli�es ourpresentation without sari�ing ompleteness.We assume that the nodes in the network know the time slot when the soure node will broadasta message. We will let tstart denote the time slot at whih the soure sends out a message m. The sourenode loated at (0,0) broadasts m at time slot tstart and all orret nodes in N(0, 0) are assumed to reeive

m from the soure and ommit internally. Node in N(0, 0) then broadast that they have ommitted to mfor the next 2r onseutive rounds during their respetive allotted time slots.We now desribe how eah node p(x, y), for −r ≤ x ≤ r and y ≥ r+1, listens for and sends messagesand, �nally, how it broadasts its ommittal. Let tq denote the time slot when q is sheduled to broadastin round tstart + 2(y − r). Using tq values, eah node p reates an ordered set Sp ⊂ Gp where the elementsof Sp are hosen aording to the (1, O(
√

n)) strategy for the Bad Santa problem. Node p then awakensfrom the energy-e�ient sleep mode and listens (in order) to nodes in Sp in round tstart + 2(y − r). If atany point, p reeives a message, it ommits to this message internally. During the ourse of the protool,node p also failitates the passage of messages along the two-hop paths. While node p has not ommitted13



internally, p listens to eah sister node u(x′′, y′′) in round tstart +2(y′′−r)+1. If p reeives a message, then
p does the following: (1) ommits internally to this message and (2) during its assigned slots p broadasts
m for 2r onseutive rounds starting at round tstart + 2(y′′ − r) + 2. Finally, in terms of sending, if at anytime a node p(x, y) has ommitted internally to a message in round tstart + 2(y − r) (i.e. used the BadSanta protool to ommit), p waits until round tstart + 2(y − r) + 1 and then broadasts its message for
2r onseutive rounds during its assigned time slots. Again, note that in the following pseudoode, eahnode p(x, y) is suh that −r ≤ x ≤ r and y ≥ 0.
(1, O(

√
n) Reliable Broadast for the Fail-Stop Fault Model1. At time slot tstart, the soure d(0, 0) does a one-time loal broadast of m and eah node in N(d)ommits internally to m.2. All nodes in N(0, 0) broadast their ommittal to m for the next onseutive 2r rounds.The following portion of the protool is followed by all nodes not in N(0, 0):3. If node p(x, y) has ommitted internally to a message in round tstart + 2(y − r) (i.e. in Step 5), then

p waits until round tstart + 2(y − r) + 1 and then broadasts its message for 2r onseutive roundsduring its assigned time slots.4. While node p(x, y) has not ommitted internally to a message, node p listens to eah sister node
u(x′′, y′′) in round tstart +2(y′′−r)+1. If p reeives the message m from u, then p does the following:(1) ommits internally m and (2) during its assigned slots p broadasts m for 2r onseutive roundsstarting at round tstart + 2(y′′ − r) + 2.5. While node p(x, y) has not ommitted internally to a message, p does the following. For a node
q ∈ Gp, let tq denote the time slot when q is sheduled to broadast in round tstart + 2(y − r). Using
tq values, node p reates an ordered set Sp ⊂ Gp where the elements of Sp are hosen aording tothe (1,

√
n) Bad Santa strategy. Then p does the following:

• Node p(x, y) listens to q ∈ Sp in round tstart + 2(y − r). If at any point p reeives a message m,then p ommits to m internally, breaks the for-loop and proeeds to Step 3.5.2 Protool for Byzantine FaultsOur protool for the Byzantine fault model runs in two stages. In the �rst stage, the soure propagatesa �ngerprint f(m) of the message m it wants to broadast. This �ngerprint is assumed to be of size atleast lg2 |m| bits. Propagation of f(m) is again done using the algorithm in [6℄. The seond stage is verysimilar to the previous protool for the fail-stop faults. In the seond stage, the soure broadasts themessage m at time slot tstart and all orret nodes in N(0, 0) are assumed to reeive m from the soureand ommit internally. Eah node q(x′, y′) ∈ N(0, 0) then broadasts its ommittal to m over the next 2ronseutive rounds. A node p listens to messages from a set Gp just as in the protool for fail-stop model.The di�erene ours when, at any point a message m′ is reeived. Node p then heks f(m′) against the�ngerprint fmaj to whih it ommitted in the �rst stage. If they math, p ommits to m′ internally andexeutes the broadast instrutions mentioned previously.We assume that the network alternates between the �rst stage, where nodes are onstantly awake,and the seond stage, where nodes are ahieving signi�ant power savings. For instane, it is plausiblethat internal software ould synhronize periodi hange-overs between these two stages in muh the sameway that radio network alternate periodially between sleep and fully ative states to onserve power inpratie. These details are outside the sope of our work and we do not disuss them further.Finally, note that a faulty node might broadast an inorret message m′ suh that |m′| > |m| where
m is the orret message. To avoid ompliations, we assume that nodes in the network know the sizeof m and, therefore, an stop listening after reeiving |m| bits. For instane, this ould be implemented14
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(A) (B) (C)Figure 2: The soure is denoted by the brown node whih has loation (0, 0). (A) Movement in the positive
y diretion establishing a (2r+1)×(2r+1) square of ommitted nodes above N(0, 0); this is the orridor weexpliitly address in the proofs of orretness for our protools. (B) Spiraling out from N(0, 0), movementin the negative x diretion and then the negative y diretion. (C) Further depition of the spiral expansionof ommitted nodes along a orridor of width 2r + 1.by having the soure broadast the message size in the �rst stage or having a prede�ned upper limit onmessages size. The details of suh solutions would be ditated by ontext and we omit further disussionof this issue.
(1, O(

√
n)) Reliable Broadast for the Byzantine Fault ModelStage 1:1. At time t0, the soure uses the reliable broadast protool of [6℄ to broadast the �ngerprint f(m) toall nodes in the grid.Stage 2:2. At time slot tstart, the soure d(0, 0) does a one-time loal broadast of m and eah node in N(d)ommits internally to m.3. All nodes in N(0, 0) broadast their ommittal to m for the next onseutive 2r rounds.The following portion of the protool is followed by all nodes not in N(0, 0):4. If node p(x, y) has ommitted internally to a message in round tstart + 2(y − r) (i.e. in Step 6), pwaits until round tstart + 2(y − r) + 1 and then broadasts its message for 2r onseutive roundsduring its assigned time slots.5. While node p(x, y) has not ommitted internally to a message, node p listens to eah sister node

u(x′′, y′′) in round tstart + 2(y′′ − r) + 1. If the message mu that p reeives from u equals the fmajvalue, then p does the following: (1) ommits internally mu and (2) during its assigned slots pbroadasts mu for 2r onseutive rounds starting at round tstart + 2(y′′ − r) + 2.6. While node p(x, y) has not ommitted internally to a message, p does the following. For a node
q ∈ Gp, let tq denote the time slot when q is sheduled to broadast in round tstart + 2(y − r). Using
tq values, node p reates an ordered set Sp ⊂ Gp where the elements of Sp are hosen aording tothe (1,

√
n) Bad Santa strategy. Then p does the following:

• Node p(x, y) listens to q ∈ Sp in round tstart + 2(y − r). In listening to eah q, p will obtain avalue mq (or nothing, if q is Byzantine and sends nothing). If at any point f(mq) equals the
fmaj value of p, then p ommits to mq internally, breaks the for-loop and proeeds to Step 4.15



We now establish the following preliminary lemma whih we will need for our protools. Label theset of nodes in the orridor as Scor = Sx,cor ∪ Sy,cor where Sx,cor = {q(x′, y′) | (r + 1 ≤ x′ ≤ x) ∧ (y − r ≤
y′ ≤ y + r)} and Sy,cor = {q(x′, y′) | (−r ≤ x′ ≤ r) ∧ (0 ≤ y′ ≤ y + 2r)}. Figure 3(a) illustrates a orridorfor r = 3. Finally, reall that a round is one iteration through the broadast shedule.The following Lemma 7 is useful for our Byzantine-tolerant protools. In partiular, it provides ananalysis of the previous protool in [6℄ with the minor modi�ation that a node waits for the (at most) twomessages from its sister nodes before issuing heard messages. We then later use this result to address theneessary delay between Stage 1, where a �ngerprint is propagated, and Stage 2 of our protool, when thefull message is sent. Note that in Lemma 7, we deal with arbitrary x and y values.Lemma 7. Assume a broadast shedule where no ollisions our and eah node an broadast one everyround as disussed in Setion 1.2.2. Consider a soure, d(0, 0), that broadasts a �ngerprint f at time slot
t0 under either the fail-stop or Byzantine fault models where t < r

2 (2r + 1). Then by using the protoolof [6℄, node p(x, y) is able to ommit to f by round t0 + 2(|x| + |y|).Proof. We are essentially following the argument for orretness given in [6℄ and disussed in Setion 5;however, we are restriting our view to those nodes in Scor. That is, nodes in Scor will only aeptmessages from other nodes in Scor and they will ignore all messages they reeive from nodes outside theorridor. Clearly, this an only result in a slowdown in the propagation of the broadast value; moreover,the retilinear shape of the orridor an only slow down the rate of propagation in omparison to theoriginal propagation desribed in [6℄. An argument idential to that in [6℄ an be used to show that eahorret node q(x′, y′) ∈ Scor will ommit to the orret �ngerprint by reeiving messages along at least
2t+1 node disjoint paths of the form (ui, q) and (ui, u

′
i, q) as shown in Figure 3(a). While we do not repeatthe entire argument here, Figure 3(b) illustrates the set Gp for eah node p in a row of the orridor alonginreasing y-values. That is, the regions Ap, Bp and B′

p are illustrated for eah position in the ontext ofthe proof disussed in Setion 5.We now onsider the time required until p(x, y) an ommit to f regardless of whih nodes in theorridor fail; p does so by listening to the nodes in Gp. Without loss of generality, assume that x, y arepositive oordinates and that the broadast �rst moves nodes in Sy,cor (moving up) and then along nodesin Sx,cor (moving right). At t0, the soure broadasts f and all nodes in N(0, 0) ommit to f . Considera node q(a, r + 1) where −r ≤ a ≤ r. It takes at most one round for q to reeive messages along paths ofthe form (ui, q) from region A. Conurrently, in this one round, nodes ui an transmit messages to nodes
u′

i along paths of the form (ui, u
′
i, q) (region B to B′) where the heard messages from the (at most) twosister nodes are appended in a single message. At most an additional round is required to send from nodes

ui to q. Therefore, at most two rounds are required before q an ommit. Note that this holds for allnodes with oordinates (a, r + 1) for −r ≤ a ≤ r; this entire row an ommit after at most two rounds. Itfollows that all nodes up to and inluding row y in Sy,cor are ommitted to f after t0 + 2(y + r) rounds;the remaining r rows in Sy,cor do not ommit. An idential argument shows that all nodes in Sx,cor areommitted to f after t0 + 2(x − r) rounds. Therefore, p ommits after at most t0 + 2(x + y) rounds; if xand y an take on negative values, this beomes t0 + 2(|x| + |y|).The next lemma proves that, if we assume that the adversary annot ause a ollision with fmaj, theneah node an ommit to the orret message using our protool. In partiular, it establishes that theseond stage of our protool ahieves the 2t+1 onnetedness neessary for reliable broadast. The lemmaalso establishes that the broadasting and reeiving ations by eah node are orret. Finally, the resoureosts per node for Stage 2 follow immediately. Note that this stops short of proving Theorem 4 sine theissue of �ngerprints has not yet been addressed. While we inlude it for ompleteness, we stress that the
2t + 1 onnetedness omponent of the proof is essentially an adaptation of the proof found in [6℄ whihwas reviewed in the beginning of Setion 5. Again, the proof fouses on movement along the positive
y-oordinates along a orridor of width 2r + 1 where −r ≤ x ≤ r. Figure 4 illustrates how our protoolproeeds when r = 3.Lemma 8. Assume a broadast shedule where no ollisions our and eah node an broadast oneevery round as disussed in Setion 1.2.2. Furthermore, assume eah node already possesses fmaj prior16
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r

B’

(a) (b)Figure 3: Let p be a node that is not at the boundary of width r in the grid. (a) A depition of a orridorfor r = 3. Together the nodes in region E and F onstitute Sy,cor while the nodes in G onstitute Sx,cor.Node disjoint paths of the form (ui, q) originate from nodes ui in region A. As disussed in [5, 6℄, nodedisjoint paths of the form (ui, u
′
i, q) originate from nodes ui in region B and traverse through nodes u′

i in
B′ to reah node q. (b) The regions A, B and B′ are illustrated for eah node along a row of Sy,cor. Thevalue for z is given for eah position in the ontext of the proof reviewed in Setion 5.to reeiving any other messages and that if a message m reeived by a orret node p orresponds to the�ngerprint fmaj propagated in the �rst step, then m is the orret message. Under these assumptions, the
(1, O(

√
n)) Reliable Broadast for the Byzantine Fault Model protool has the following properties:

• Eah node p(x, y) where −r ≤ x ≤ r (exept those on the boundary of width r if the grid is �nite)ommits to the orret message m by round max{2(y − r), 0}.
• Eah node is awake for O(

√
n) time slots in expetation. Eah node sends and reeives O(

√
n|m|)bits in expetation.Proof. For simpliity, we normalize suh that tstart is round 0. Our proof is by indution and throughoutwe assume that eah node has an x-oordinate suh that −r ≤ x ≤ r:Base Case: Eah node in N(0, 0) ommits to the orret message m immediately upon hearing it diretlyfrom the dealer. Therefore, eah node p(x, y) ∈ N(0, 0) ommits to m by round 0 ≤ max{2(y − r), 0}.Indution Hypothesis: For simpliity, we will assume as before that p ∈ N(a, b + 1) where −r ≤ a ≤ r; theother ases for proving the statement for p ∈ PN(a, b) follow by symmetry. In this ontext, the indutionhypothesis is as follows: if eah p′(x′, y′) ∈ N(a, b) has ommitted to m by round 2(y′ − r), then eahorret node p(x, y) ∈ N(a, b + 1) − N(a, b) is able to ommit to m by round 2(y − r).Indution Step: As we reviewed before in the beginning of Setion 5, we show 2t + 1 onnetedness in asingle neighborhood. We will argue simultaneously about the time required for p to hear messages alongthese disjoint paths. The node p(x, y) lies in N(a, b + 1) − N(a, b) and an be onsidered to have loation

(a − r + z, b + r + 1) where 0 ≤ z ≤ r (the ase for r + 1 ≤ z ≤ 2r follows by symmetry). We demonstratethat there exist r(2r + 1) node-disjoint paths P1, ..., Pr(2r+1) all lying within the same neighborhood andthat the synhronization presribed by our protool is orret:17



• One-Hop Paths: the set of nodes Ap = {q(x, y) | (a − r) ≤ x ≤ (a + z) and (b + 1) ≤ y ≤ (b + r)}lie in N(a, b) and are neighbors of p. Therefore, there are r(r + z + 1) paths of the form q → p where
q ∈ Ap.By their position relative to p(x, y), eah orret node q(x′, y′) ∈ Ap is suh that y − r ≤ y′ ≤ y − 1.Therefore, by the indution hypothesis, a orret node q ∈ Ap ommits in round 2(y − 2r) at theearliest and 2(y − r − 1) at the latest. Consequently, a orret node in Ap starts broadasting itsommittals in round 2(y − 2r) + 1 at the earliest and 2(y − r − 1) + 1 at the latest. In the formerase, reall that broadasting ours for 2r rounds, whih means that q is broadasting from round
2(y−2r)+1 to 2(y−r), inlusive, at the earliest. In the latter ase, q is broadasting from 2(y−r−1)+1to 2(y − 1), inlusive. Therefore, all orret nodes in Ap are broadasting a ommittal message inround 2(y − r) and so p(x, y) an reeive a message from eah orret node in Ap in this round.

• Two-Hop Paths: onsider the sets Bp = {q(x, y) | (a+z+1) ≤ x ≤ (a+r) and (b+1) ≤ y ≤ (b+r)}and B′
p = {q′(x, y) | (a + z + 1 − r) ≤ x ≤ (a) and (b + r + 1) ≤ y ≤ (b + 2r)}. The nodes in Bp liein N(a, b) while the nodes in B′

p lie in N(p). Moreover, the set B′
p is obtained by shifting left by runits and up by r units. Reall that there is a one-to-one mapping between the nodes in Bp and thenodes in B′

p; these are sister nodes. There are r(r − z) paths of the form q → q′ → p.Consider a orret node q(x′, y′) ∈ Bp and its sister node q′(x′′, y′′) ∈ B′
p. Again, given the loationof q(x′, y′) relative to p(x, y), by the indution hypothesis, the earliest q ∈ N(a, b) has ommitted is

2(y − 2r) and the latest is 2(y − r − 1). Therefore, by protool, q starts broadasting its ommittal
2r times starting in round 2(y − 2r) + 1 at the earliest and 2(y − r − 1) + 1 at the latest. The sisternode of q, q′ ∈ B′

p, listens to q in the �rst round that q broadasts. If q′ reeives a orret m, then q′broadasts this 2r times; therefore, this ours in round 2(y − 2r) + 2 = 2(y − 2r + 1) at the earliestand 2(y − r − 1) + 2 = 2(y − r) at the latest. In the former ase, reall that q′ broadasts for 2ronseutive rounds and therefore is broadasting until round 2(y − r + 1)− 1 > 2(y − r). Therefore,all orret nodes in B′
p with a message to broadast are doing so in round 2(y − r) and so p(x, y) anhear a message from any suh q′ ∈ B′

p in this round.Therefore, there are a total of r(r + z + 1) + r(r − z) = r(2r + 1) node-disjoint paths from N(a, b) to
PN(a, b), all lying in in a single neighborhood N(a, b + r + 1). By our argument above, eah orret node
p(x, y) reeives the one-hop and two-hop messages over these paths by round 2(y − r). We note that (1)more than half of these paths will provide the orret message and (2) the sampling follows the Bad Santaprotool whih is a Las Vegas algorithm. Therefore, we are guaranteed that p will obtain a message m thatorresponds to fmaj . Finally, by our initial assumption regarding the inability of the adversary to forge aollision, this means that m is the orret message.We now analyze the resoure bounds for our protool. Consider the situations where p must deal with(either broadasting or reeiving) a message: (1) p reeives messages in order to ommit, (2) p broadastsit has ommitted, and (3) p failitates two-hop messages. We onsider eah ase. To address (1), note that
p uses the Bad Santa protool; while in the streaming problem, we attempt to obtain a 1 at unit ost perquery, here node p is attempting to selet a orret node at the ost of listening to |m| bits per seletion.6This method of sampling from Gp means p reeives O(

√
n) messages in expetation. To address (2), notethat p broadasts that it has ommitted 2r = O(

√
n) times. To address (3), we onsider p ∈ PN(a, b + 1)as before, and note that p belongs to many B′

q sets for di�erent nodes q; however, regardless of whih B′
qset, p only ever has two sister nodes. Therefore, onsidering broadast along the x and y oordinates, thenumber of sister nodes is O(1); the number of broadasts due to two-hop paths is thus O(r). In onlusion(not ounting the �ngerprint, sine we are dealing only with the seond stage of our protool) eah nodeis awake for O(

√
n) time slots in expetation, sends O(

√
n|m|) bits and reeives O(

√
n|m|) bits.With Lemma 7 and Lemma 8 in hand, we an now give the proof for Theorem 4:6Seleting a random node is neessary; if not, the adversary might have faulty nodes send orret �ngerprints in the �rstround and, if p selets nodes from Gp in a deterministi fashion, the adversary may fore p to listen to many messages thatdo not hash to fmaj . 18
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Figure 4: A depition of the (1, O(
√

n)) Reliable Broadast for the Byzantine Fault Model protool for
r = 3. Times for broadasting and reeiving are denoted by [a, b] whih denotes rounds a through binlusive. (A) Shows how a node p in row 4 an ommit by listening to nodes in Gp = Ap ∪ B′

p; we fouson nodes on the left-most edge. Note the node in row 4 marked with horizontal lines. This node ats aspart of B′
p while also ommitting as other nodes in row 4 do; later, it will at as a node in B′

i and Aj forother nodes i and j by sending in rounds [3, 8]. Note that this node is sending from round 2 to 8 (inlusive)but we separate this into [2, 8] and [3, 8] to make the di�erent roles expliit. (B) & (C) Depitions of thetiming of broadasting and reeiving as nodes in rows 5 and 6 ommit, respetively.Proof. We begin by proving orretness and we start with Stage 1. Stage 1 of the protool is no di�erentthan the broadast presented in [6℄ where the value being transmitted is a �ngerprint. Consequently, everyorret node will be able to derive a majority �ngerprint fmaj.We now analyze Stage 2. Lemma 8 assumes that (1) we have an appropriate shedule, (2) eah node has
fmaj prior to reeiving any other messages, and (3) if m orresponds to fmaj then m is orret. We goabout addressing these three riteria:

• First, we an assume the shedule of [8℄ whih satis�es the properties required by Lemma 8.
• Seond, onsider all nodes in a square of size 3(2r + 1) × 3(2r + 1) entered about (0, 0); the nodeat the top-right has position (3r + 1, 3r + 1). By seleting tstart at least 2(6r + 2) rounds after thetime of sending of the �ngerprint, t0 (that is tstart ≥ t0 + 2(6r + 2)), then Lemma 7 guaranteesthat by time tstart, all nodes in a square of size 3(2r + 1) × 3(2r + 1) entered about (0, 0) will haveommitted to the �ngerprint. If we assume, as mentioned earlier prior to presenting the pseudoode,that the message expands via a spiral orridor of width 2r+1 from N(0, 0), then this guarantees thatthe propagation of the �ngerprint will always be su�iently far ahead of the propagation of the fullmessage to allow nodes to �rst ommit to the �ngerprint. Note that if m is propagated in a di�erentfashion (i.e. not a spiral) then the timing o�set would need to be adjusted aordingly.
• Third, by assumption, f is a seure hash funtion and the size of the �ngerprint is lg2 m. Therefore,19



given f(x), the probability that the adversary obtains a value x′ suh that f(x′) = f(x) is 2− lg2 |m| =
|m|− lg |m|. It will take the adversary superpolynomial time in m to forge suh an x′ and so fmaj willorrespond to the orret value m. Reall that s is the number of omputational steps a�orded to theadversary; i.e. the number of times the adversary an reate an input x′, apply f to x′ and hek fora math between the output �ngerprint f(x′) and fmaj . Therefore, given that p reeives a messagefrom a orret node in Gp that when hashed mathes the �ngerprint to whih p ommitted, witherror O(s/|m|lg |m|), this message is the orret message sent by the soure where s is the number ofomputational steps available to the adversary.Finally, we analyze resoure osts. Lemma 8 on�rms the amount of awake time spei�ed by Theorem 4 afterthe sending of the �ngerprint. Regarding the bit omplexity over both Stages 1 and 2, we need onsiderthe additional ost due to sending the �ngerprint. Eah node p broadasts and reeives O(r2) = O(n)�ngerprints, for a total of O(n log2 |m|) bits in Stage 1. Therefore, the expeted bit omplexity over bothstages is O(n log2 |m| + √

n|m|).The above proof essentially subsumes the proof for Theorem 3; however, we inlude it here for ompleteness:Proof. The proof of orretness for the fail-stop model di�ers in two plaes from the proof of Theorem 4.For riteria (2), there is no need for a �ngerprint. For riteria (3), sine messages are never orrupted,only lost if a fault ours, p is guaranteed that the message it reeives from a orret q ∈ Gp is orret.Finally, for the fail-stop model, the resoure osts are easy to analyze. The awake times due to listeningfollow diretly from the fat that eah node broadasts O(
√

n) times and uses the Bad Santa problemfor listening; therefore, a total of O(
√

n) time slots in expetation. In terms of bit omplexity, eah node
p broadasts |m| for r rounds times and listens to m one. Therefore, p broadasts Ω(

√
n|m|) bits andreeives |m| bits.It may seem that, with some modi�ations to the protool, we an employ a multi-stream Bad Santastrategy to ahieve further expeted savings. We now explain why this is not the ase. Note that suha hange would require eah node to send O(r · k · |m|) bits while reduing the expeted listening ost to

O(k · |m|). However, sine the osts for sending and reeiving are of the same magnitude, we do not ahievean overall asymptoti savings when we onsider the addition of these two ommuniation osts.Finally, we omment on the di�erene in running time between our algorithms for the fail-stop andByzantine fault models. Clearly, the need to propagate a �ngerprint in the Byzantine ase inurs additionaltime. However, as we have seen, the dealer need wait only 2(6r + 2) rounds after sending the �ngerprintbefore broadasting the full message.5.3 Reliable Broadast when t ≤ (1 − ǫ) r
2
(2r + 1)When t ≤ (1 − ǫ) r

2 (2r + 1) for any onstant ǫ > 0, we show how to ahieve an even larger energy savingsby employing the (k + 1, O(log(k) (n/2) + k)) strategy to the Bad Santa problem for k ≥ 1. As we willshow, a orret node may listen to at least (r/2)(2r + 1) messages, of whih a (1 − ǫ)-fration may befaulty; therefore, we are now allowing more than a 1/2 fration of paths to deliver faulty messages. Weknow by Theorem 8, that employing a single stream Bad Santa strategy in this senario does not yieldany asymptoti savings; hene, we deal only with k ≥ 1. We also point out that, in atuality, our resultshold for t ≤ (1 − ǫ)(1 + r + r2) whih is larger than (1 − ǫ)(r/2)(2r + 1) by an amount of (1 − ǫ)(1 + r/2).However, asymptotially, this di�erene is negligible and we phrase the result in this manner to illustratethat we are within an arbitrary onstant fration of the optimal tolerane.In this ase, we present a Byzantine fault-tolerant reliable broadast protool; the protool fortolerating fail-stop faults is straightforward and we omit it. The protool is very similar to our (1, O(
√

n))Reliable Broadast for the Byzantine Fault Model presented in Setion 5.2 where here we use the (k +

1, O(log(k) (n)+ k)) strategy; however, there are important distintions. In partiular, the sets Ap, B′
p and

Bp are de�ned in a slightly di�erent manner in the orretness proof for our protool later on. Furthermore,eah node broadasts for O(k) (rather than r) onseutive rounds and the synhronization of broadastingand reeiving is altered. Essentially, r rows of a orridor are ommitting every k+2 rounds; this is di�erentfrom the previous protools where eah row ommitted in a di�erent round. The B′
p and Bp sets are20



no longer hanging in size with the position of the node p; rather, these sets are r × r squares. Thepseudoode is given below and, again, deals with movement along the positive y-oordinates in a orridorof width 2r + 1, where nodes have an x-oordinate suh that −r ≤ x ≤ r.
(k + 1, O(log(k) (n) + k)) Reliable Broadast for the Byzantine Fault ModelStage 1:1. At time slot t0, the soure uses the reliable broadast protool of [6℄ to broadast the �ngerprint

f(m) to all nodes in the grid.Stage 2:2. At time slot tstart, the soure d(0, 0) does a one-time loal broadast of m and eah node in N(d)ommits internally to m.3. All nodes in N(0, 0) broadast their ommittal to m for the next onseutive k + 2 rounds.The following portion of the protool is followed by all nodes not in N(0, 0):4. If node p(x, y) has ommitted internally to a message via listening to a set Sp,i for i = 0, ..., k (i.e.Step 6), node p uses its allotted time slot to broadast this fat for k + 2 onseutive rounds; that is,from round (k + 2)
(⌊

y−1
r

⌋)
+ 1 to (k + 2)

(⌊
y−1

r

⌋
+ 1

) inlusive.5. While node p(x, y) has not ommitted to a message, node p listens to eah sister nodes in round
(k + 2)

(⌊
y−r−1

r

⌋)
+ 1. If the message mu that p reeives from u equals the fmaj value, then p doesthe following: (1) ommits internally mu and (2) during its assigned slots p broadasts mu for k + 1onseutive rounds: from round (k + 2)

(⌊
y−r−1

r

⌋)
+ 2 to round (k + 2)

(⌊
y−r−1

r

⌋
+ 1

), inlusive.6. While node p(x, y) has not ommitted internally to a message, p does the following. For a node
q ∈ Gp, let tq denote the time slot when q is sheduled to broadast in round (k + 2)

(⌊
y−r−1

r

⌋)
+ 2.Using tq values, node p reates ordered sets Sp,0, ..., Sp,k where Sp,i ⊂ Gp for i = 0, ..., k where theelements of eah Sp,i are hosen aording to the (k + 1, O(log(k) (n) + k)) Bad Santa strategy. Thenfor i = 0, ..., k, p does the following:

• Node p(x, y) listens to eah node q ∈ Sp,i for k + 1 onseutive rounds: that is, from round
(k + 2)

(⌊
y−r−1

r

⌋)
+ 2 to round (k + 2)

(⌊
y−r−1

r

⌋
+ 1

). If at any point q reeives a message mqsuh that f(mq) equals the fmaj value of p, then p ommits to mq internally, breaks the for-loopand proeeds to Step 4.To avoid possible onfusion, we draw attention to the fat that nodes ating as members of Ap sets broadastfor k + 2 times, even though the orresponding Bad Santa protool uses k + 1 streams. This is beauseof the extra delay of one round inurred by the two-hop messages; we note that nodes in B′
p sets thatfailitate these messages broadast for k + 1 onseutive rounds. The orretness of this protool an bedemonstrated in a similar fashion to the preeding protools; however, there is a di�erene in that nowthe proof deals with all nodes in r rows rather than a single row. Figure 5 illustrates how this protoolproeeds when r = 3 and k = 3. For ompleteness, establish Theorem 6 although we again only onsidermovement along the positive y-oordinates.Proof. The proof is again by indution and, for simpliity, we assume tstart = 0 and we again assumethat eah node in the orridor has an x-oordinate suh that −r ≤ x ≤ r. We show 2t + 1 onnet-edness inside a single neighborhood and that eah node p(x, y), for −r ≤ x ≤ r, ommits by round

(k + 2)
(
max

{⌊
y−r−1

r

⌋
+ 1, 0

}). 21
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Figure 5: A depition of the (k + 1, O(log(k) (n) + k)) Reliable Broadast for the Byzantine Fault Modelprotool for r = 3 and k = 3. Times for broadasting and reeiving are denoted by [a, b] whih denotesrounds a through b inlusive. (A) Shows how all nodes in rows 4, 5, and 6 ommit; we fous on nodes alongthe leftmost edge. Node p1 along the edge in row 4 an ommit by listening to all nodes in Gp = Ap ∪B′
p.In ontrast, p3 in row 6 an sample from only the top row in Ap, whih onsists of r nodes, and all of B′
p,whih onsists of r2 nodes. (B) & (C) Depitions of the timing of broadasting and reeiving as nodes inrows 7, 8, 9 and, subsequently, nodes in rows 10, 11, 12 ommit, respetively.Base Case: Eah node in N(0, 0) ommits to the orret message m immediately upon hearing it diretlyfrom the dealer; that is, by round 0.Indution Hypothesis: Rather than dealing with nodes in p ∈ N(a, b + 1) − N(a, b), our proof di�ers inthat we address all nodes in in p ∈ N(a, b + r) − N(a, b) i.e. all nodes in the r rows above row b and forsimpliity we will assume b > 0 (we do not deal with the nodes in N(0, 0)) and that −r ≤ a ≤ r. Inpartiular, the indution hypothesis is as follows: if eah node p′(x′, y′) in rows b + 1, ..., b + r of N(a, b)ommit to m in round (k + 2)

(⌊
y′−r−1

r

⌋

+ 1
), then eah orret node p(x, y) ∈ N(a, b + r) − N(a, b)ommits to m in round (k + 2)

(⌊
y−r−1

r

⌋
+ 1

).Indution Step: We show 2t + 1 onnetedness and simultaneously prove the orretness of the timing forbroadasting and reeiving. The node p(x, y) lies in N(a, b + r) − N(a, b) and an be onsidered to haveloation (a − r + z, b + r + 1 + c) where 0 ≤ z ≤ r (the ase for r + 1 ≤ z ≤ 2r follows by symmetry) and
0 ≤ c ≤ r − 1. We demonstrate that there exist at least 1 + r + r2 node-disjoint paths P1, ..., P1+r+r2 alllying within the same neighborhood and that the synhronization presribed by our protool is orret. Aswe mentioned previously, the sets Ap, B′

p and Bp are de�ned slightly di�erently than previously; there arede�ned below in our proof and Figure 6 depits these sets.22
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and Bpi for i = 1, 2, 3 and r = 3. (A) For the node p1 with a y-oordinate suhthat y mod r = 1, the sets are de�ned the same way. (B) Node p2 has an Ap2 set whih onsists only ofthe two top rows of Ap1 . (C) Node p3 has an Ap3 set whih onsists only of the top row of Ap1 . Finally,note that B′
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sine p1, p2 and p3 share the same x-oordinate.

• One-Hop Paths: the set of nodes Ap = {q(x, y) | (a− r) ≤ x ≤ a and (b + 1 + c) ≤ y ≤ (b + r)} liein N(a, b + r + 1). Therefore, node p(a− r + z, b + r + 1 + c) an reeive broadasts from nodes in atleast r − c ≥ 1 row(s) of Ap whih amounts to at least r + 1 nodes.Consider a orret node q(x′, y′) in the r rows b + 1, ..., b + r of N(a, b) and reall p(x, y) is insome row b + r + 1, ..., b + 2r. The indution hypothesis guarantees that q has ommitted by round
(k + 2)(⌊ y′−r−1

r ⌋+ 1) = (k + 2)(⌊ y−r−1
r ⌋). Then, by the protool, q broadasts for k + 2 onseutiverounds; that is, from round (k + 2)(⌊ y−r−1

r ⌋) + 1 to round (k + 2)(⌊ y−r−1
r ⌋) + k + 2, inlusive. Node

p is sheduled to begin listening in round (k + 2)(⌊ y−r−1
r ⌋) + 2 and so p an reeive a messagefrom eah suh q for k + 1 onseutive rounds. Therefore, p hears all one-hop messages by round

(k + 2)(⌊ y−r−1
r ⌋ + 1)

• Two-Hop Paths: onsider the sets Bp = {q(x, y) | (a + 1) ≤ x ≤ (a + r) and (b + 1) ≤ y ≤ (b + r)}and B′
p = {q′(x, y) | (a − r + z + 1) ≤ x ≤ (a + z) and (b + r + 1 − c) ≤ y ≤ (b + 2r)}. The nodes in

Bp form an r × r square within N(a, b) while the nodes in B′
p, again an r × r square, both lie in theneighborhood N(a, b + r + 1). Note that now the set B′

p is no longer neessarily obtained by shiftingleft by r units and up by r units; now it is obtained by shifting left by r − z units and up by r units.There is still a one-to-one mapping between the nodes in Bp and the nodes in B′
p; these are sisternodes. There are r2 paths of the form q → q′ → p.From the point of view of p(x, y), onsider a orret node q(x′, y′) ∈ Bp. By the indution hypothesis,

q in one of the rows b + 1, ..., b + r of N(a, b) has ommitted by round (k + 2)(⌊ y′−r−1
r ⌋ + 1) =

(k + 2)(⌊ y−r−1
r ⌋). By the protool, its sister node q′ ∈ B′

p listened at the �rst of these time slots;hene, q′ an reeive a message from q in round (k +2)(⌊ y−r−1
r ⌋)+1. If q′ reeived a orret m, then

q′ would broadast m starting in round (k +2)(⌊ y−r−1
r ⌋)+2 for k +1 onseutive rounds. Therefore,

q broadasts a orret message from round (k + 2)(⌊ y−r−1
r ⌋)+ 2 to round (k + 2)(⌊ y−r−1

r ⌋)+ k + 2 =

(k + 2)(⌊ y−r−1
r ⌋ + 1) (inlusive). Node p is sheduled to begin round (k + 2)(⌊ r−r−1

r ⌋ + 1) and so pan reeive a message from eah suh q′ ∈ B′
p for k + 1 onseutive rounds. Therefore, p hears alltwo-hop messages by round (k + 2)(⌊ y−r−1

r ⌋ + 1)We have shown that there are at least 1 + r + r2 node-disjoint paths from N(a, b) to node p, all lying inin a single neighborhood N(a, b + r + 1). Furthermore, we have shown that any orret node p(x, y) anhear all one-hop and two-hop messages, by round (k +2)(⌊ y−r−1
r ⌋+1). Node p an sample these messagesover k + 1 rounds and, sine the O(log(k) (n) + k) Bad Santa strategy is used for seleting Sp,i, node p isguaranteed to reeive a orret message. This ompletes the indution.In terms of resoure bounds, we an again onsider the situations where p must deal with (eitherbroadasting or reeiving) a message: (1) p reeives messages in order to ommit, (2) p broadasts it hasommitted, and (3) p failitates a two-hop message. We onsider eah ase. To address (1), by the BadSanta protool, p listens to O(log(k) n+k) messages in expetation. To address (2), note that p broadaststhat it has ommitted k + 2 = O(k) times. To address (3), we note that p belongs to many B′

q sets fordi�erent nodes q; however, regardless of whih B′
q set, p only ever has at most two sister nodes. Therefore,onsidering broadast along the x and y oordinates, the number of sister nodes is O(1); the number of23



broadasts due to two-hop paths messages is thus O(k). The same arguments regarding �ngerprints as givenin the proof of Theorem 4 apply here whih onludes the proof. This leads eah node being awake over
O(log(k) n+k) time slots in expetation in Stage 2. Over both stages, eah node sends O(n log2 |m|+k|m|)bits, and listens to an expeted O(n log2 |m| + (log(k) n)|m|) bits.5.4 Unknown Start Time and Soure(s)In our previous protools, both the soure of the message and the time the message was sent out needed tobe pre-established. Furthermore, our previous protool allowed a savings on the fration of required awaketime only in Stage 2. The new protool we present here assumes that every 2r+1 by 2r+1 square ontains
t < n

16+ǫ faults. Spei�ally, we require that no more than a 1/2− ǫ fration of the nodes are faulty nodesin any r/2 by r/2 square. The bene�ts of this protool are that it is 1) more energy e�ient than usingthe protool of [6℄; 2) avoids the need to have the soure and sending time pre-spei�ed; and 3) reduesthe awake time over the entire exeution. Therefore, this algorithm is preferable when the irumstanesof the fault model permit.Let Qi refer to the set of nodes in some r
2 × r

2 square in the grid. Our algorithm relies on orretlytransmitting a message m from Qi−1 to Qi where Qi−1 and Qi are disjoint and neighboring squares i.e. thesquares are neighbors abutting eah other. Critial to our algorithm is an assignment of nodes in Qi−1 tonodes in Qi. This assignment an be viewed as an undireted bipartite graph with the two disjoint sets ofverties being Qi−1 and Qi and the assignment represented via edges. For p ∈ Qi−1 and q ∈ Qi, p listens to
q and q listens to p if and only if there is an edge between p and q in the bipartite graph. This assignment isonstruted suh that all but a small fration of orret nodes in Qi reeive a majority of orret messagesfrom orret nodes in Qi−1 (and vie versa). This allows orret nodes in Qi to majority �lter on themessages they reeive and deide upon the orret message. Thus, a message an be transmitted seurelyfrom r

2 × r
2 square to r

2 × r
2 square. For a message m and for any square Qi to whih m is sent by the aboveprotool, let G(Qi, m) be the set of orret nodes in Qi that reeive m after majority �ltering over theaepted messages as desribed above. A result in [26℄ establishes the following theorem whih we statewithout proof:Theorem 9. For any pair of squares Qi−1 and Qi, there is non-zero probability of an assignment betweennodes in Qi−1 and nodes in Qi with the following properties:

• the degree of eah node is at most a onstant C whih is independent of r,
• if |G(Qi−1, m)| ≥ (1/2 + ǫ/2)|Qi−1|, then |G(Qi, m)| ≥ (1/2 + ǫ/2)|Qi|.We will refer to an assignment with the two properties stated in Theorem 9 as a robust assignment.Although a method of assignment is not spei�ed, Theorem 9 guarantees that a robust assignment mustexist. We now onsider the problem of �nd suh an assignment.Corollary 1. A robust assignment between squares Qi−1 and Qi an be found in time that is exponentialin r2.Proof. Consider any assignment between squares Qi−1 and Qi as a bipartite graph G as desribed above.Both Qi−1 and Qi have onstant size d = r2

4 so the number of possible bipartite graphs is at most
2d × 2d = 22d. Note that this is an upper bound on the number of di�erent ways in whih the faultynodes an be plaed in G. We know by Theorem 9 that there is non-zero probability that edges between
Qi−1 and Qi satisfy the property that a (3/4 − ǫ)-fration of the nodes in Qi have a majority of orretneighbors in Qi−1. Consider eah of the at most 22d possible on�gurations of faulty nodes. For eah suhon�guration, hek whether all orret nodes in Qi have at least a (3/4 − ǫ) fration of orret neighborsin Qi−1. By Theorem 5, suh a on�guration must exist and an be found by this exhaustive searh whihrequires examining at most 22d = 4(r2/4) graphs.Therefore, for r = Θ(1), following the above proedure in Corollary 1 yields a robust assignment inonstant time. Alternatively, a random regular graph will indue a desired assignment with probabilityat least 1 − 1/rc for some onstant c > 0. Reall that eah node is assigned to C neighbors where C is24



independent of r. Therefore, for a su�iently large value r = Θ(1), nodes are listening to a small frationof a square. Finally, we note that it is su�ient to �nd one robust assignment and use it for all pairs Qi−1and Qi.5.4.1 Protool Using Robust AssignmentWe now desribe and argue the orretness of a simple algorithm for reliable broadast whih we all Alg.Alg operates in stages of η = r2/4 rounds. Over all rounds, eah node that has ommitted to a messagewill broadast at its sheduled slot. At every ηth round, a node enters into the listening state for one fullround. That is, during this ηth round, all nodes are listening to all nodes in its r
2 × r

2 square throughoutthe round. At the end of this round, if a node p has reeived an idential message from a majority of nodesin its 2r + 1 × 2r + 1 square, p ommits to this message.For all other η−1 rounds in a stage, a node sends and listens as ditated by a robust assignment andthe broadast shedule. That is, a node p listens to node q 1) if and only if p and q are assigned to eah otherunder the robust assignment; and 2) when q is sheduled to broadast. A robust assignment an be foundas stated in Corollary 1 prior to deploying the radio network and this assignment an be preprogrammedinto the nodes and used for all pairs of squares. Any node p may at as a soure node. In this ase, thesoure node will broadast its message to its r/2×r/2 square in its time slot in an ηth round when all nodesare awake; the message should inlude a delaration that p is ating as a soure. As in [8, 5, 6, 7℄, everynode in the soure's square ommits to m and proeeds to broadast m during their respetive sheduledtime slots. From this point, the message is propagated from r
2 × r

2 square to r
2 × r

2 square by sendingand listening aording to the robust assignment in a deterministi fashion: a square sends to the squaresabove and below and to the left and the right, in that order; Figure 7 illustrates this. Communiationfrom one square to an adjaent square an be aomplished with a single round used per diretion. Notethat if η is not divisible by 4, then we simply interrupt on the speial ηth round, and ontinue with thenext diretion afterwards. Therefore, a orret node will know this order and listen to its adjaent squaresusing the orresponding robust assignment in aordane with the broadast shedule. As before, we mayassume that the partitioning of the network into squares and the ordering and synhronization issues aredealt with through the nodes' internal programming; these details are outside the sope of this work. Theexat propagation of a message depends on the robust assignment used and the behaviour of the faultynodes; however, we an show orretness for the task of reliable broadast.By Theorem 9, at least a (1/2+ ǫ/2) fration of orret nodes in every square will eventually reeiveidential messages from the majority of nodes to whih it has been assigned. At this point, suh a orretnode an ommit to a message and begin broadasting, again aording its robust assignment and sheduledtime slots. Finally, we address the remaining fration of orret nodes in a r/2 × r/2 square that maynot be able to ommit to a message. Reall that at every ηth time slot, all nodes are listening for theentire round. Assuming that a (1/2 + ǫ/2)-fration of the orret nodes in the square have ommitted tothe orret message, this allows the remaining fration of orret nodes in a square to majority �lter oninoming messages during this round and ommit to the orret message.In terms of osts, note that eah node is always listening to at most C time slots in eah of η − 1rounds and listening to r2/4 time slots in the ηth round; a total ost of C(η − 1) + r2/4 over η rounds.Therefore, eah node sends O(|m|) bits per round and has an amortized ost of O(C) time slots per roundand an amortized ost of O(C|m|) bits per round. Sine C is a onstant, this establishes our laims inTheorem 5.5.5 Pratial ConsiderationsWe �nish o� this setion by remarking on more pratial onsiderations regarding our protools. To start,we note that the grid model that we have adopted for applying our Bad Santa protools is fairly �exible.Empty loations in the grid may orrespond to failed nodes or simply the absene of a devie altogether.The work in [6℄ generalizes results on reliable broadast on the grid to arbitrary graphs where the problemis de�ned in terms of onnetivity; our results easily generalize to suh a setting and we refer the readerto [6℄ for more details. We also brie�y mention that ertain lasses of random graphs may mapped to thegrid model; the details depend on the type of random graph utilized. For example, if nodes are plaed25
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Qa Qd Qa Qa Qe(a) (b) () (d) (e)Figure 7: An illustration of the reliable broadast protool of Setion 5.4. (a) Some node in Qa ats as asoure node to send a message to its square. Transmission from Qa to (b) Qb above, () Qc below , (d) Qdto the left and (e) Qe to the right, using a robust assignment.uniformly at random in the two-dimensional plane, we an partition the plane into a grid and then mapnodes to their nearest intersetion point to ahieve the grid model. In general, so long as the numberof faults in a neighborhood does not exeed t < (r/2)(2r + 1), this mapping will work. We are simplyskething this idea for the interested reader; learly, the details of how many nodes need to be dropped toguarantee at most t faults in any neighborhood (with su�ient probability) and how the broadast radiusshould be de�ned are details that we leave to future work. We refer the interested reader to work in [10℄whih deals with issues of probabilisti failures in the grid model and a random network model. Next, weo�er some disussion on the aspets of the storage and proessing overhead inurred by our algorithms, aswell as some exploration of the utility of our protools in terms of bit omplexity savings.5.5.1 Storage and Proessing OverheadReall that devies in the radio network are onsidered to be resoure onstrained. Here, we brie�y disussthe osts assoiated with our algorithms in terms of proessing and storage overhead, and we argue thatthese osts are reasonable. In partiular, we argue that message storage and message proessing osts arethe primary osts. Note that these are osts that must be paid, to an even larger extent, in the originalprotools of [5, 6℄. Furthermore, we argue that these osts are negligible in omparison to the ost ofsending/reeiving; hene, our algorithms do indeed ahieve a power savings.In terms of storing data, onsider our protools where the send time and loation of the soure isknown. Eah node must store information on the urrent time slot, the slot when it an broadast, itsloation relative to the soure, its set of neighbors in the broadast region, and information on the type ofBad Santa protool being used (i.e. number of streams, the urrent stream, whih time slots it is listeningto); all of these an be stored with a small amount of overhead. The protool for the ase where we haveByzantine faults also requires storage of �ngerprints, whih are small ompared to an atual message, anda hash funtion. The use of hash funtions for suh resoure onstrained environments has been testedin [27℄ and in [28℄ (on the MICA series); it appears the storage osts are no obstale. Therefore, the mainstorage overhead in our algorithms appears to result from messages. The length of these messages is likelyappliation dependent and memory sizes an di�er with the devie in question. In [29℄, the MICA2 deviesare stated to have 4KB of memory. However, we note that urrent memory sizes on these radio networkdevies an be sizable. For instane, in [30℄, the authors report that a �ash-memory of 32KB and theability to add an additional storage apaity (up to 1GB) for the devies studied. Therefore, memory sizean be hosen for the appliation and orresponding message sizes in question; but regardless, we do notantiipate that our algorithms inur an unreasonable amount of storage overhead over what is needed forstoring messages.The main proessing ost of our algorithms di�ers per ase. For the Byzantine fault-tolerant algo-rithm of Setion 5.2, the main ost is likely due to the use of the hash funtion. Reall that this operationmust be done fairly frequently in order for a node to ommit to the orret message. While we do usea hash funtion, we note that we don't use publi key ryptography in any of our algorithms whih hasgenerally been onsidered to be expensive for power onstrained nodes due to the need for sending, reeiv-ing, and storing publi keys and exeuting enrypt/derypt operations [31℄. More sophistiated tehniques26



are now available whih require less energy; however, the osts are still quite high. For instane, in [31℄,measurements by the authors using the MICA2DOT unit demonstrate a ost of 2302.70 mWs (mirowattseonds) and 53.70 mWs for 2048-bit RSA signature generation and veri�ation, respetively. ElliptiCurve Crytography (ECC) is a popular alternative to RSA sine it has smaller key sizes. For 224-bit ECC,the same authors measure osts with the MICA2DOT unit at 61.54 mWs and 121.98 mWs for signaturegeneration and veri�ation, respetively. Both RSA-2048 and ECC-224 are reommended by RSA Seurityas the new standard in order to protet data past the year 2010 [32℄. These osts should be ompared tothe ost of broadast in on the Luent IEEE 802.11 2Mbps WaveLAN PC Card whih is measured at 266mWs. Therefore, it is not lear that an algorithm ould laim to save signi�ant power by employing fullryptographi shemes.On the other hand, hash funtions for power onstrained environments have been onsidered in theliterature and it appears the proessing osts are reasonable [27℄. In partiular, the SHA-1 hash funtionan be applied with very little power onsumption; again with the MICA2DOT unit, the ost is measuredto be 5.9 µWs/byte is measured in [32℄. Therefore, hasing a 1Kb message would inur 5.9 mWs; notablythis is far less than the ost of sending or reeiving.For the algorithm of Setion 5.4, the most signi�ant proessing osts would appear to arise fromthe need to majority �lter on all inoming messages; however, suh a omparison operation is ertainlyfeasible in radio network devies. Finally, for the fail-stop ase, the algorithm of Setion 5.1 does not needto apply a hash funtion to messages and we do not antiipate signi�ant proessing osts here. In someases, additional proessing overhead will ome from omparing hashes and aessing a random numbergenerator; however, we antiipate that these additional proessing overheads will be small in omparisonto the ost of storing and proessing messages.5.5.2 Saving on Bit ComplexityReall that our Byzantine fault-tolerant reliable broadast protool of Setion 5.2 ahieves asymptotiallylower bit omplexity through the use of hashing. However, there is the question of when suh savingswould be seen in pratie. Paket sizes are disrete, and in many ases, the hash of a message may requirethe same number of pakets as sending the message itself. If messages are small, then the bit omplexitysavings ahieved by our protool will be onsequently smaller. However, we note that if messages aresizable then there is a bene�t to the hashing tehnique.In the fae of large amounts of data olletion and querying, data aggregation tehniques havebeen proposed to redue the overall ommuniation osts sine proessing is generally less ostly thansending data (see [33, 34℄ for more on this). Despite these tehniques, there are appliations for wirelessnetworks that require transmission of large amounts of data even after proessing. For instane, surveillaneappliations that require sending signi�ant amounts of data have been proposed involving image and videodata [35℄ suh as in tra� monitoring [36℄ and transmitting biometri data in seurity senarios [37℄ whereimage data must be sent over wireless networks. Therefore, there are indeed appliations where largemessages might be transmitted and we antiipate more suh situations will arise in the future. Under suhsenarios, we would expet our algorithms to save substantially on bit omplexity.When onsidering large messages, there is also the issue of slot size to onsider. Modifying timedivision multiple aess (TDMA) has been onsidered (see [38℄) and it is possible that similar proposalsould be used to allow large messages to be sent within a single time slot without underutilizing bandwidth.Alternatively, time slots ould be reset by the dealer in order to aomodate large future transmissions;the details of this would likely be appliation spei� and we leave this as a topi for future work.6 Future Work and ConlusionWe have designed new algorithms for ahieving signi�ant energy savings in radio networks. To ahievethese ends, we have de�ned and analyzed a novel data streaming problem whih we all the Bad Santaproblem. We have shown how our results on this problem an be applied to the problem of reliablebroadast in a grid radio network. Our algorithms for reliable broadast on a grid onsume signi�antlyless power than any other algorithms for this problem of whih we are aware.27



Several open problems remain inluding: Can we lose the gap between the upper and lower-boundfor the multi-round Bad Santa problem? Can we ahieve more energy e�ieny for the optimal number ofByzantine faults? Can we tolerate more faults for the fail-stop model and still be energy e�ient? Can wetolerate more faults in the unknown soure and message time senario? Can we generalize our tehniquesto radio networks that are not laid out on a two dimensional grid (perhaps lasses of random graphs)? Arethere other appliations for the Bad Santa problem both in and outside the domain of radio networks?Aknowledgements: We gratefully thank Kui Wu, Chiara Petrioli and James Horey for their helpfulomments on issues of power onsumption in radio networks. We are also indebted to the anonymousreviewers, partiularly Reviewer 2, for their helpful omments.Referenes[1℄ Qin Wang, Mark Hempstead, and Woodward Yang. A Realisti Power Consumption Model for Wire-less Sensor Network Devies. In 3rd Annual IEEE Communiations Soiety Conferene on Sensor,Mesh and Ad Ho Communiations and Networks (SECON), 2006.[2℄ Laura Marie Feeney and Martin Nilsson. Investigating the Energy Consumption of a Wireless NetworkInterfae in an Ad Ho Networking Environment. In INFOCOM, 2001.[3℄ Jason Hill, Robert Szewzyk, Ale Woo, Seth Hollar, David E. Culler, and Kristofer S. J. Pister. Sys-tem Arhiteture Diretions for Networked Sensors. In 9th International Conferene on ArhiteturalSupport for Programming Languages and Operating Systems (ASPLOS), pages 93�104, 2000.[4℄ Lan Wang and Yang Xiao. A Survey of Energy-E�ient Sheduling Mehanisms in Sensor Networks.Mobile Networks and Appliations, 11:723�740, 2006.[5℄ Vartika Bhandari and Nitin H. Vaidya. On Reliable Broadast in a Radio Network. In 24th AnnualACM Symposium on Priniples of Distributed Computing (PODC), pages 138�147, 2005.[6℄ Vartika Bhandari and Nitin H. Vaidya. On Reliable Broadast in a Radio Network: A Simpli�edCharaterization. Tehnial report, CSL, UIUC, May 2005.[7℄ Chiu-Yuen Koo, Vartika Bhandhari, Jonathan Katz, and Nitin Vaidya. Reliable Broadast in RadioNetworks: The Bounded Collision Case. In 25th Annual ACM Symposium on Priniples of DistributedComputing (PODC), pages 258 � 264, 2006.[8℄ Chiu-Yuen Koo. Broadast in Radio Networks Tolerating Byzantine Adversarial Behavior. In 23rdAnnual ACM Symposium on Priniples of Distributed Computing (PODC), pages 275�282, 2004.[9℄ Douglas R. Stinson. Cryptography: Theory and Pratie, 3rd Ed. Chapman & Hall, 2006.[10℄ Vartika Bhandari and Nitin H. Vaidya. Reliable Broadast in Wireless Networks with ProbabilistiFailures. In INFOCOM, pages 715�723, 2007.[11℄ Seth Gilbert, Rahid Guerraoui, and Calvin C. Newport. Of Maliious Motes and Suspiious Sensors:On the E�ieny of Maliious Interferene in Wireless Networks. In International Conferene OnPriniples Of Distributed Systems (OPODIS), pages 215�229, 2006.[12℄ Gregory Chokler, Murat Demirbas, Seth Gilbert, Calvin Newport, and Tina Nolte. Consensus andCollision Detetors in Wireless Ad Ho Networks. In 24th Annual ACM Symposium on Priniples ofDistributed Computing (PODC), pages 197 � 206, 2005.[13℄ Evangelos Kranakis, Danny Krizan, and Andrzej Pel. Fault-Tolerant Broadasting in Radio Net-works. Journal of Algorithms, 39(1):47�67, 2001.[14℄ Andrzej Pel and David Peleg. Broadasting with Loally Bounded Byzantine Faults. InformationProessing Letters, 93(3):109�115, 2005. 28



[15℄ Leszek G¡sienie, Erez Kantor, Dariusz R. Kowalski, David Peleg, and Chang Su. Time E�ient k-shotBroadasting in Known Topology Radio Networks. Distributed Computing, 21(2):117�127, 2008.[16℄ Monika Henzinger, Prabhaker Raghavan, and Sridar Rajagopalan. Computing on Data Streams.Tehnial Report SRC-TN-1998-011, Digital Systems Researh Center, 1998.[17℄ S. Muthukrishnan. Data Streams: Algorithms and Appliations. Now Publishers In, 2005.[18℄ Ian Munro and Mike Paterson. Seletion and Sorting with Limited Storage. Theoretial ComputerSiene, pages 315�323, 1980.[19℄ Sudipto Guha and Andrew MGregor. Approximate Quantiles and the Order of the Stream. In ACMSymposium on Priniples of Database Systems, pages 273�279, 2006.[20℄ Sudipto Guha and Andrew MGregor. Lower Bounds for Quantile Estimation in Random-Order andMulti-Pass Streaming. In 34th International Colloquium on Automata, Languages and Programming,2007.[21℄ Noga Alon, Yossi Matias, and Mario Szegedy. The Spae Complexity of Approximating the FrequenyMoments. In 28th Annual ACM Symposium on Theory of Computing (STOC), pages 20�29, 1996.[22℄ Eri Demaine, Alejandro López-Ortiz, and Ian Munro. Frequeny Estimation of Internet PaketStreams with Limited Spae. In 10th Annual European Symposium on Algorithms (ESA), pages 348�360, 2002.[23℄ Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Spae- and Time-E�ientDeterministi Algorithms for Biased Quantiles Over Data Streams. In 25th ACM SIGMOD-SIGACT-SIGART Symposium on Priniples of Database Systems, pages 263 � 272, 2006.[24℄ Valerie King, Cynthia Phillips, Jared Saia, and Maxwell Young. Sleeping on the Job: Energy-E�ientand Robust Broadast for Radio Networks. In 27th ACM symposium on Priniples of DistributedComputing (PODC), pages 243�252, 2008.[25℄ Andrew Yao. Probabilisti omputations: Toward a Uni�ed Measure of Complexity. In 18th IEEESymposium on Foundations of Computer Siene (FOCS), pages 222�227, 1977.[26℄ Jared Saia and Maxwell Young. Reduing Communiation Costs in Robust Peer-to-Peer Networks.Information Proessing Letters, 106(4):152�158, 2008.[27℄ Kaan Yüksel, Jens-Peter Kaps, and Berk Sunar. Universal Hash Funtions for Emerging Ultra-Low-Power Networks. In Communiations Networks and Distributed Systems Modeling and SimulationConferene (CNDS), page n. pag., 2004.[28℄ HangRok Lee, YongJe Choi, and HoWon Kim. Implementation of TinyHash Based on Hash Algorithmfor Sensor Network. InWorld Aademy of Siene, Engineering and Tehnology (WASET), pages 135�139, 2005.[29℄ Nathan Cooprider, Will Arher, Eri Eide, David Gay, and John Regehr. E�ient Memory Safetyfor TinyOS. In Sensys'07: ACM International Conferene on Embedded Networked Sensor Systems,pages 205�218, 2007.[30℄ Demetrios Zeinalipour-Yazti, Som Chandra Neema, Vana Kalogeraki, Dimitrios Gunopulos, and WalidNajjar. Data Aquisition in Sensor Networks with Large Memories. In 21st International Confereneon Data Engineering Workshops, pages 1188�1188, 2005.[31℄ Krzysztof Piotrowski, Peter Langendoerfer, and Ste�en Peter. How Publi Key Cryptography In�u-enes Wireless Sensor Node Lifetime. In Fourth ACM Workshop on Seurity of Ad Ho and SensorNetworks, pages 169�176, 2006. 29



[32℄ Arvinderpal S. Wander, Nils Gura, Hans Eberle, Vipul Gupta, and Sheueling Chang Shantz. EnergyAnalysis of Publi-Key Cryptography for Wireless Sensor Networks. In 3rd International Confereneon Pervasive Computing and Communiations, pages 324�328, 2005.[33℄ Johannes Gehrke and Samuel Madden. Query Proessing in Sensor Networks. IEEE Pervasive Com-puting, 3(1):46�55, 2004.[34℄ Mohamed Watfa, William Daher, and Hisham Al Azar. A Sensor Network Data Aggregation Teh-nique. International Journal of Computer Theory and Engineering, 1(1):19�26, 2009.[35℄ Edmund Y. Lam, King-Shan Lui, and Vinent W. L. Tam. Image and Video Proessing in WirelessSensor Networks. Multidimensional Systems and Signal Proessing, 20(2):99�100, 2009.[36℄ Jiang Yu Zheng and Shivank Sinha. Line Cameras for Monitoring and Surveillane Sensor Networks.In 15th International Conferene on Multimedia, pages 433�442, 2007.[37℄ Rajani Muraleedharan, Lisa Ann Osadiw, and Yanjun Yan. Resoure optimization in Distributed Bio-metri Reognition Using Wireless Sensor Networks. Multidimensional Systems and Signal Proessing,20(2):165�182, 2009.[38℄ Ted Herman, , and Sébastien Tixeuil. A Distributed TDMA Slot Assignment Algorithm for WirelessSensor Networks. Algorithmi Aspets of Wireless Sensor Networks, 3121:45�58, 2004.

30


