
Making Chord Robust to Byzantine Attacks

Amos Fiat1, Jared Saia2, and Maxwell Young2

1 Department of Computer Science
Tel Aviv University

Tel Aviv, Israel
fiat@math.tau.ac.il

2 Department of Computer Science
University of New Mexico

Albuquerque, NM 87131-1386
{saia, young}@cs.unm.edu

Abstract. Chord is a distributed hash table (DHT) that requires only
O(logn) links per node and performs searches with latency and message
cost O(logn), where n is the number of peers in the network. Chord as-
sumes all nodes behave according to protocol. We give a variant of Chord
which is robust with high probability for any time period during which:
1) there are always at least z total peers in the network for some integer
z; 2) there are no more than (1/4 − ǫ)z insertion events for Byzantine
peers for a fixed ǫ > 0; and 3) the number of insertion and deletion
events for correct peers is no more than zk for some tunable parameter
k. We assume there is an computationally unbounded adversary control-
ling the Byzantine peers and that the IP-addresses of all the Byzantine
peers and the locations where they join the network are carefully selected
by this adversary. Our notion of robustness is rather strong in that we
not only guarantee that searches can be performed but also that we can
enforce any set of “proper behavior” such as contributing new material,
etc. In comparison to Chord, the resources required by this new variant
are only a polylogarithmic factor greater in communication, messaging,
and linking costs.

1 Introduction

A distributed hash table (DHT) is a structured peer-to-peer network which
provides for scalable and distributed storage and lookup of data items (see
e.g. [21, 26, 28]). Because peer-to-peer networks have little to no admission con-
trol, there has been significant effort in designing DHT’s which are robust to
Byzantine faults. When a peer suffers a Byzantine fault it is assumed to be
controlled by an omniscient adversary who uses that peer to try to disrupt the
network. The standard attack model considered is as follows. There is an instan-
taneous attack during which each peer in the network suffers a Byzantine fault
independently at random with constant probability (less than 1/2). We will refer
to this type of attack as a random Byzantine attack. Several DHT’s have been
designed which provide robust storage and lookup of data items, even in the face
of a random Byzantine attack [3, 11, 14, 19, 24].

While this past work is encouraging, the random Byzantine attack model is
unsatisfying. In particular, it seems that a much more likely attack scenario is
that an adversary will cause a stream of Byzantine peers to join the network
and carefully choose the IP-addresses of these Byzantine peers3 and where they
join the network in order to place them at critical locations in the network. To
better address this scenario, we introduce a new attack model, which we call the
Byzantine join attack. Under this attack, (1/4 − ǫ0)z Byzantine nodes join the
network over a time period during which 1) there are always at least z total nodes
in the network and 2) the number of correct peers joining and leaving is no more
than zk for some tunable parameter k. We assume there is a computationally
unbounded adversary controlling the Byzantine peers and that the IP-addresses
of all the Byzantine peers are selected by this adversary. We further assume that
the adversary possesses full knowledge of the network topology, protocols, where
data is stored, etc., and that the peers controlled by the adversary can actively
collude to disrupt the network.

1.1 Our Contributions

In this paper, we describe a variant of Chord, S-Chord, which is robust to the
Byzantine join attack. Define a z-good interval to be a time interval during
which: 1) the number of total peers in the network is always at least z; 2) the
number of Byzantine peers joining the network is no more than (1/4− ǫ0)z for
some ǫ0 > 0; and 3) the number of correct peers joining and leaving during this
time interval is no more than zk for some tunable parameter k. Theorem 1 states
the main result of this paper.

Theorem1. During any z-good interval, the following properties hold for S-
Chord with high probability (specifically with probability of error polynomially
small in z)

– All functionality of Chord is preserved.
– We can enforce a rule-set for all peers in the network.
– For n peers in the network, the resource costs are as follows:
• O(log n) latency and expected Θ(log2 n) messages sent per lookup opera-

tion.
• Θ(log n) latency and Θ(log3 n) messages sent per peer join operation.
• O(log2 n) links stored at each peer.

In addition to being robust to the Byzantine join attack, S-Chord is also
robust to the random Byzantine attack. Aside from robustness to this new, more
realistic attack model, the other new contributions of S-Chord are as follows.

– S-Chord can enforce a set of rules describing “proper behavior” such as:
“For every 20 search that a peer issues, that peer must service one search

3 i.e. by spoofing

request”. In particular, the consequences of not obeying the rules will be
disconnection from the network. To the best of our knowledge, S-Chord is
the first peer-to-peer network with this property.

– S-Chord is based on Chord and thus inherits many of Chord’s good proper-
ties. Moreover, we feel that the general techniques used in this paper can be
applied to a wide-range of other DHT’s.

– S-Chord requires Θ(log2) messages for lookups in expectation. Previous
DHT’s which are robust to the random Byzantine attack require Θ(log3 n)
messages.

1.2 Related Work

Recent years have witnessed the advent of large scale real-world peer-to-peer
applications such as Gnutella, Napster, Kazaa, Morpheus, BitTorrent, and many
others. Several distributed hash tables (DHTs) have been introduced which are
provably robust to random peer deletions (i.e. fail-stop faults) [1, 13, 16, 21, 22,
26, 28].

We are aware of several results that deal with the more challenging problem
of designing DHTs which are robust to Byzantine faults. All of these results
are robust only to the random Byzantine attack described earlier. Fiat and Saia
describe a DHT which uses expander graphs and a butterfly network to achieve
robustness to this attack [11]. This result was extended to be fully dynamic
in [23]. Naor and Wieder describe a much simpler DHT which is robust to the
random Byzantine attack and is also fully dynamic [19]. Hildrum and Kubiatow-
icz describe how to modify two popular DHTs, Pastry [22] and Tapestry [28], in
order to make them robust to the random Byzantine attack [14]. Their modified
DHTs are fully dynamic.4 In all three of these results, lookups have Θ(log n) la-
tency and require Θ(log3 n) messages. Work described in [2] describes a “Trust-
but-Verify” method that, the authors hypothesize, allows an overlay network
to tolerate Byzantine faults. However, this result stops short of demonstrating
provable robustness. In [3], Scheideler and Awerbuch describe protocols for im-
plementing a secure distributed naming service. Under their scheme, each node
must re-inject itself into the system after a certain number of time steps and
data must be continually published to remain in the system. Their system also
assumes the existence of “bootstrap peers” which are a set of peers that 1) always
remain in the system, 2) are all good, and 3) are known by joining peers. These
assumptions are reasonable for a distributed name service application; however,
they are problematic when trying to design a widely-applicable distributed hash
table. Recent work by Scheideler in [24] demonstrates how a peer-to-peer system
can withstand a polynomial number of Byzantine peers joining the network. This
work focuses mostly on one important aspect of a join protocol for a peer-to-peer
system and the details of how to perform scalable searches are not discussed.
Similarly, join and leave protocols which are required in order to specify a dis-
tributed hash table are not provided.

4 We emphasize here that S-Chord is also fully-dynamic.

Our DHT makes use of secure multiparty computation in order to choose
random IDs for joining peers by consensus. There is a significant body of work in
the area of secure multiparty computation (see e.g. [4, 5, 6, 8, 12, 15, 20, 25, 27]).
In the full version of this paper, we describe in detail how we use these results.
We also incorporate Scheideler’s result [24] for the case where three peers are
rotated around the unit circle. The two random peer points required for this
algorithm are selected using the results of [17] which can easily be extended to
our model.

2 Overview

2.1 Chord

We now briefly describe Chord [26].5 For convenience, we will assume that the
“key space” of Chord is scaled so it is in the range (0, 1] and will think of Chord
as a circle with unit circumference, which we will call the unit circle. All of the
peers in Chord have identifiers (or IDs for short) which are points on the unit
circle that we call peer points. Chord provides one basic operation: successor().
For a point k on the unit circle, successor(k) returns the peer, p, whose peer
point minimizes the clockwise distance between k and p. Typically, k represents
a key for some data item and successor(k) is the peer responsible for storing
that data item. Thus, the successor() operation provides for easy storage and
lookups of data items.

We now briefly sketch how Chord implements the operation successor(). We
assume that all peers in the network know some number m which is always
greater than the number of peers in the network6. For a point p on the unit
circle and integer i between 0 and log m − 1, let f(p, i) be the point p + 2i/m.
For each i between 1 and log m − 1, each peer p maintains a link to the peer
whose peer point is closest clockwise to the point f(p, i). When a peer p links to
a peer p′, the peer p simply stores the IP address of p′. The number of unique
peers that a peer p links to is O(log n). For points p and k on the unit circle,
let next(p, k) be the point in the set {f(p, 0), f(p, 1), f(p, 2), ..., f(p, logm− 1)},
which has closest clockwise distance to k.

We can now describe the successor() operation. Assume that some peer p
calls successor(k) for some key k on the unit circle. If next(p, k) = p, then p
already knows the successor of k: it is simply the closest clockwise peer to p.
The search terminates by returning this peer. If next(p, k) = p′ where p′ 6= p,
then p forwards the search request to p′. The same procedure is repeated until
the search terminates.

5 For ease of exposition, our description will defer slightly from that of [26], but will
not be fundamentally different.

6 In practice, m is the number of bits in the ID’s of the nodes.

2.2 Notation

For any two points x and y on the unit circle, let d(x, y) be the distance from x
to y traveling clockwise along the perimeter of the unit circle (i.e. if y ≥ x, then
d(x, y) = y−x else d(x, y) = 1−x+ y). When referring to intervals or points on
the unit circle, all addition is performed modulo 1. We will call a peer controlled
by the adversary faulty and call a peer not controlled by the adversary (i.e. a
peer that follows the protocol) correct.

2.3 S-Chord

In our protocol, peers do not get to choose their own ID’s. Instead they are
assigned, by our protocol, a random ID between 0 and 1 when they first join
the network. Following convention, for a given peer p, we will frequently use p
to refer both to the peer and to the ID of the peer. The precise meaning should
be clear from context.

As in [2, 3, 7, 9], we make use of the concept of small sets of peers working
together as a single functional unit. Central to our protocol is the notion of a
swarm7. For every point x on the unit circle, we define the swarm, S(x), to be
the set of peers whose ID’s are located within a clockwise distance of (C lnn)/n
of the point x on the unit circle (where C is a constant depending on our fault-
tolerant parameters). For a given peer p, we will use S(p) to mean the swarm
associated with the peer p. All communication that p has with the DHT first
passes through the swarm S(p). Swarms, not peers, are the atomic functional
units of our protocols. We say that a swarm is good if at least a 3/4 fraction of
the peers in it are correct. Due to the fact that our protocol randomly assigns
ID’s to peers, we can guarantee with high probability that over a z-good time
interval, all swarms will be good. Thus, we can say that even though many peers
are not correct, all of the swarms will be good. This fact is the basis for the
robustness of our DHT8.

Overview: We begin by assuming that all peers in the network know the values
lnn and (lnn)/n exactly. In this extended abstract, we present protocols for
1) obtaining content from network and sending messages (Section 3) and 2)
handling dynamic peer joins (Section 4).

In the full version of this paper, we provide the required modifications to
our protocols for the case where the peers do not know the values of ln n and
(ln n)/n. It also contains all proofs for results presented here as well as a protocol
that allows for SUCCESSOR to incur only an expected constant factor increase
in the number of bits sent over what is required for Chord. This second result
assumes a computationally bounded adversary.

7 This is essentially the same concept as a group in [2, 3]
8 It should be noted that S-Chord does not provide protection against the well-known

Sybil attack [10].

2.4 Links Required

In this section, we state the links that each peer is required to maintain in
our protocol. We will often make statements referring to some correct peer p
maintaining links to all peers in an interval [a, b] for a, b ∈ (0, 1]. Assume that
this means p maintains links to all correct peers and those faulty peers of which
p is aware. Every peer p maintains links to all peers in the following intervals.

– Center Interval : Center(p) is the set of peers in the interval [p−(2C lnn)/n, p+
(2C lnn)/n].

– Forward Intervals : For all i between 1 and log m − 1, Forward(p, i) is the
set of peers in the interval [p + 2i/m− (C lnn)/n, p + 2i/m + (C lnn)/n].

– Backward Intervals : For all i between 1 and log m−1, Backward(p, i) is the
set of peers in the interval [p− 2i/m− (C lnn)/n, p− 2i/m + (C lnn)/n].

A peer p keeps track of the links in the Center interval so that 1) p knows
all peers in S(p), 2) p knows all peers p′ such that p ∈ S(p′) and 3) p is able
to help compute the SUCCESSOR algorithm described in Section 3. A peer
p, keeps track of the Forward intervals so that is able to forward on requests
for the SUCCESSOR function. While in Chord, requests for a successor are
forwarded to a single peer, in our system, they are forwarded to an entire swarm.
A peer p, keeps track of the Backward intervals so that it is able to recognize
legitimate requests sent during computations of the SUCCESSOR function.
In our protocol, we do not trust a peer to tell us its identifier (i.e. where it is
located on the unit circle). Thus, a peer p specifically requires links to Backward
intervals in order to keep track of the IDs of those peers who may legitimately
send p messages. All messages sent to p from peers which are not in one of p’s
Backward intervals are ignored.

3 Sucessor Protocol

Algorithm 1 gives the pseudocode for our robust SUCCESSOR protocol which
is analogous to the successor operation of Chord. For a point k on the unit
circle, SUCCESSOR(k) returns pointers to the peers in S(k). As in Chord, k
would typically represent a key for some data item. SUCCESSOR(k) returns
pointers to the set of peers responsible for storing that data item. Thus, the
SUCCESSOR operation provides for redundant storage and lookups of data
items.

For a key k and peer p, SUCCESSOR(k) works as follows when called by
p. Peer p initially sends the request for k to all peers in S(p). Let x equal the
ID of p and S be S(p). Until d(x, k) ≤ (C lnn)/n, the following loop repeats:
the peers in S forward the request to all peers in S(x′) where x′ = next(x, k).
Let S′ be the set of peers in S(x′) which receive the request from a majority of
peers in S. The loop now repeats with S set to S′ and x set to x′. When the
loop terminates, d(x, k) ≤ (C lnn)/n, so all peers in the set S have pointers to

Algorithm 1 SUCCESSOR(p)

1: p sends a request for k to all peers in S(p);
2: S ← set of all peers in S(p);
3: x← identifier of p;
4: while (d(x, k) > (C lnn)/n) do

5: x′ ← next(x, k);
6: All peers in S send the request for k to all peers in S(x′);
7: S′ ← set of all peers in S(x′) that received the above request from

a majority of the peers in S;
8: S ← S′;
9: x← x′;

10: end while

11: The peers in S send back pointers to all the peers in S(k). These
pointers are sent backwards along the same path, in the same manner,
to the peer p;

all peers in S(k). These pointers to peers in S(k) are then sent backwards along
the same path, in the same manner, to the originating peer p.

For a given peer p, message m and an interval I on the unit circle, we define
SEND MESSAGE(m, I) to be an algorithm which allows p to send message
m to all peers in the interval I. If I is of length Θ((ln n)/n), it’s straightfor-
ward to see how O(1) calls to a modified SUCCESSOR algorithm will cre-
ate a SEND MESSAGE algorithm with latency O(log n) and message cost
O(log3 n) (the detailed pseudocode is omitted). When writing the JOIN proto-
col, we will make use of the SEND MESSAGE algorithm.

We now describe conditions under which we can show that all swarms are good.

Lemma2. Assume that 1) all peer points are distributed uniformly at random
on the unit circle; and 2) the fraction of faulty peers is no more than 1/4 − ǫ.
Let k be any fixed integer and C be sufficiently large but depending only on k,
then with probability at least 1 − 1/nk, the following statement is true. For any
point x on the unit circle, the swarm S(x) is good.

We now provide a description of how S-Chord allows for the enforcement
of a rule set on all peers in the system, provided that all swarms are good.
The desired rule set must be known in advance by all correct peers. The rule
set can be enforced by having the correct peers in a swarm act in concert to
stop any prohibited behavior. For instance, if a faulty peer p attempts to abuse
bandwidth resources by making excessive calls to SUCCESSOR, the correct
peers in S(p) can simply refuse to participate in the SUCCESSOR calls after
a certain pre-defined cut-off point.

Algorithm 2 JOIN(p)
1: Peer p contacts some correct peer q which notifies S(q) of p’s request

to join;
2: All peers in S(q) both 1) come to consensus on a random number

r ∈ (0, 1] and 2) select two random peer points, p1 and p2, uniformly
at random from all peers currently in the DHT using the algorithm in
[17]. Assume that r, p1, and p2 are ordered clockwise along the unit
circle;

3: Using the SEND MESSAGE algorithm, all peers in S(p) notify
peers in Center(p1) that p has joined the network and that p is taking
the location of ρ1 who is relocating. In same way, all peers in S(p)
notify peers in Center(p2) that p1 is joining and that p1 is taking the
location of ρ2 who is relocating. Finally, all peers in S(p) notify all
peers in Center(r) that ρ2 is joining;

4: All peers in S(q) get pointers to the peers in Center(p1), using O(1)
calls to the SUCCESSOR algorithm. All peers in S(q) send these
pointers to p. In a similar fashion, S(q) sends pointers to the peers
of Center(p2) to p1 and sends pointers to peers of Center(r) to p2;

5: The peers in Center(p1) send data items for all keys k such that p ∈
S(k) and p then stores copies of these data items. Similar processes
for 1) Center(p2) and p1 and 2) Center(r) and p2 are performed;

6: PLACEMENT (p);
7: PLACEMENT (p1);
8: PLACEMENT (p2);

4 Peer Joins

Pseudocode for the JOIN algorithm is given in Algorithm 2 and an example
run of the algorithm is illustrated in Figure 1. The JOIN algorithm makes use
of an algorithm which allows a good swarm to choose a random number in the
range (0,1]. Additionally, this protocol employs Scheideler’s algorithm [24] for
the case where three peers are rotated around the unit circle. The two random
peer points required for this algorithm are chosen using the algorithm presented
in [17].

The JOIN algorithm assumes that peer p knows some correct peer q. In the
algorithm, p first contacts peer q with p’s request to join the network. Peer q
alerts S(q) to this request and the peers in S(q) first choose a random ID r for
p using the algorithm discussed in the full version of this paper. Two peers, p1

and p2, are selected uniformly at random and rotation is effected. The peers in
S(q) introduce p to the peers of Center(p1).

The steps for updating of Forward and Backward intervals for p, p1, and p2

(F)

p
1

p
2

p

q

S(q)
r

S 1
S 2

p
id

Forward(p,i)

p
id

Center(p)

S(q)

q

p
id

S 4

S 3

Backward(p,i)

p
id

Forward(p,i)

Backward(p,i)

Center(p)

p
2

p
1

p

(A) (B) (C)

(D) (E)

Fig. 1. An illustration of how p enters the network - the details for the rotation of
p1 and p2 are omitted. (A) Peer p contacts q asking to join the network. The peers
in S(q) generate a random number r ∈ (0, 1] and select two peer points uniformly at
random. (B) All peers in S(q) notify all peers in Center(p) that p is joining and send
to p the identifiers of and pointers to all peers in Center(p). (C) Peers in S(p) obtain
the identifiers of and pointers to the peers in the ith Forward interval of p. All peers
in this Forward interval are informed of p’s arrival. This process is repeated with all
Forward intervals of p. (D) Peers in S(p) obtain the identifiers of and pointers to the
peers in the ith Backward interval of p. All peers in this Backward interval are informed
of p’s arrival. Again, this process is repeated with all Backward intervals of p. (E) Links
established after the join protocol. The thick dashed arrows illustrate links between p
and the peers in its Forward, Backward, and Center intervals. There are links between
p and the peers in all of its Forward and Backward intervals although this is not shown
in this figure.

are contained in the PLACEMENT protocol whose pseudocode is omitted from
extended abstract. In PLACEMENT , all peers in S(p) find all the peers in p’s
Forward and Backward intervals. In addition, the peers in S(p) introduce p to
all peers, p′, in the network such that p is now in a Center, Forward or Backward
interval for p′. In a similar fashion p1, p2 are rotated into their new positions and
their new Center, Forward, and Backward intervals are established.

Lemma3. The JOIN protocol has the following properties with high probabil-
ity:

– JOIN has Θ(log n) latency and Θ(log3 n) message complexity.
– After JOIN completes, peer p knows all peers in its Center, Forward and

Backward intervals.
– Let q be any peer with the property that p is in a Center, Forward or Back-

ward interval for q. Then after JOIN completes, q knows about the peer
p.

Algorithm 3 Message Sending Protocol
1: Each peer x ∈ Sj−1 sends a message to peer y ∈ Sj iff

h1(x) = h1(y) mod log n

2: Each peer y ∈ Sj accepts a message from peer x ∈ Sj−1 iff

h1(x) = h1(y) mod log n

3: Each peer y ∈ Sj , upon receiving messages from at least 2/3-rds of
the peers that it would accept from, does majority filtering on all the
messages received to decide which message if any to propagate to the
next swarm.

– Assume, before p joins the network, that the fraction of faulty peers is no
more than 1/4− ǫ and that all peer points are distributed uniformly at ran-
dom on the unit circle. Then after p joins the network, all peer points are
distributed uniformly at random on the unit circle.

5 Θ(log2
n) Expected Messages For SUCCESSOR

It is possible to improve SUCCESSOR so that it sends only Θ(log2 n) messages
in expectation. We assume that all peers have a hash function h1 which maps
peer identifiers to the positive integers. We make the random oracle assumption
about h1 i.e. for any input, all outputs are equally likely. We also assume that
the number of peers in any swarm is Θ(log n) and at least C log n for some fixed
constant C and that all swarms are good.

Our algorithm for reducing message cost when sending from swarm Sj−1 to
swarm Sj is given in Algorithm 3. It assumes that swarm Sj−1 wants to send
a message to a swarm Sj (For ease of exposition, for a real number r, we will
write r instead of ⌈r⌉. It should be clear from context which is meant.). This
algorithm is used in steps 6 and 7 of the SUCCESSOR pseudocode given in
Algorithm 1.

Lemma4. For C sufficiently large but depending only on k′, the following is
true with probability at least 1− 1/nk′

:

– All calls to SUCCESSOR succeed.
– All calls to SUCCESSOR send Θ(log2 n) messages in expectation.

6 Conclusion

In this extended abstract, we have introduced the Byzantine join attack, an at-
tack model under which an omniscient adversary causes a large number of Byzan-

tine peers to join a network. We assume that the adversary carefully chooses the
IP-addresses of these peers and where they join the network in order to try to
place them at critical locations. We have described S-Chord, a variant of Chord
that is provably robust to the Byzantine join attack. S-Chord also allows us
to enforce a rule set on the peers in the network and thereby prevent undesir-
able behavior. In comparison to Chord’s successor, this robustness is gained
at the cost of an expected log n factor increase in the number of messages per
SUCCESSOR operation and a log n factor increase in the number of links
stored per peer. We believe that the techniques described here can be easily
extended to a number of other ring-based DHTs that have a finger-function f
which satisfies |f(x)− f(x + δ)| ≤ δ for any point x on the ring.

References

1. Aspnes, J., Shah, G.: Skip Graphs. Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (2003) 384–393

2. Awerbuch, B., Scheideler, C.: Robust Distributed Name Service. International
Workshop on Peer-to-Peer Systems (IPTPS) (2004) 237–249

3. Awerbuch, B., Scheideler, C.: Group Spreading: A Protocol for Provably Secure
Distributed Name Service. Proceedings of the Thirty-First Int. Colloquium on
Automata, Languages, and Programming (ICALP) (2004) 183–195

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous Secure Computation. Pro-
ceedings of the Twenty-Fifth ACM Symposium on the Theory of Computing
(STOC) (1993)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computing. Proceedings of the Twenti-
eth ACM Symposium on the Theory of Computing (STOC) (1988) 1–10

6. Ben-Or, M., Kelmer, B., Rabin, T. Asynchronous Secure Computations with Op-
timal Resilience. Proceedings of the Thirteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC) (1994) 183–192

7. Castro, M., Druschel P., Ganesh, A., Rowstron, A., Wallach, D.: Secure Routing
for Structured Peer-to-Peer Overlay Networks. Proceedings of the 5th Usenix Sym-
posium on Operating Systems Design and Implementation (OSDI) (2002) 299–314

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Proto-
cols. Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting (STOC) (1988) 11–19

9. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative
storage with CFS. Proceedings of the 18th ACM Symposium on Operating Systems
Principles (2001) 202–215

10. Douceur, J.: The Sybil Attack. Proceedings of the Second Internation Peer-to-Peer
Symposium (IPTPS) (2002)

11. Fiat, A., Saia, J.: Censorship Resistant Peer-to-Peer Content Addressable Net-
works. Proceedings of the Thirteenth ACM Symposium on Discrete Algorithms
(SODA) (2002)

12. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game - A
Completeness Theorem for Protocols With Honest Majority. Proceedings of the
Nineteenth ACM Symposium on Theory of Computing (STOC) (1987) 218–229

13. Harvey, N., Jones, M., Saroiu S., Theimer, M., Wolman, A.: SkipNet: A Scalable
Overlay Network with Practical Locality Properties. Fourth USENIX Symposium
on Internet Technologies and Systems(USITS) (2003)

14. Hildrum, K., Kubiatowicz, J.: Asymptotically Efiicient Approaches to Fault-
Tolerance in Peer-to-peer Networks. Proceedings of the 17th International Sympo-
sium on Distributed Computing (2004)

15. Hirt, M., Nielsen, J., Przydatek, B.: An Asynchronous Multi-Party Computation
Protocol. In Submission (2004)

16. Kashoek, M., Karger, D.: Koorde: A Simple Degree-Optimal Distributed Hash
Table. Proceedings of the Second International Workshop on Peer-to-Peer Systems
(IPTPS) (2003)

17. King, V., Saia, J.: Choosing a Random Peer. Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Distributed Computing (PODC) (2004)

18. Luby, M., Mitzenmacher, M., Shokrollahi, M., Spielman, D., and Stemann, V.:
Practical loss-resilient codes. Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing (1997) 150–159

19. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. Proceedings
of the Second International Workshop on Peer-to-Peer Systems (IPTPS) (2003)

20. Prabhu, B., Srinathan, K., Rangan, C.: Asynchronous Unconditionally Secure
Computation: An Efficiency Improvement. INDOCRYPT 2002, Lecture Notes in
Computer Science, Springer-Verlag 2551 (2002) 93–107

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (2001)

22. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Proceedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Platforms Heidelberg, (2001) 329–
350

23. Saia, J., Fiat, A., Gribble, S., Karlin, A., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. Proceedings of the First International Workshop on
Peer-to-Peer Systems (2002)

24. Scheideler, C.: How to Spread Adversarial Nodes? Rotate! Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing (2005) 704–
713

25. Srinathan, K., Rangan, C.: Efficient Asynchronous Secure Multiparty Distributed
Computation. INDOCRYPT 2000, Lecture Notes in Computer Science, Springer-
Verlag 1977 (2000) 117–129

26. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. Proceedings of the
2001 ACM SIGCOMM Conference (2001)

27. Yao, A.: Protocols for Secure Computations. Proceedings of the Twenty-Third
IEEE Symposium on the Foundations of Computer Science (FOCS) (1982) 160–
164

28. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An Infrastructure for Fault-
Resilient Wide-Area Location and Routing. University of California at Berkeley
Technical Report, UCB//CSD-01-1141, (April 2001)

This article was processed using the LATEX macro package with LLNCS style

