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Components Fail, 
Group Functions
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Group Decisions
Periodically, components unite in a decision

Idea: components vote.  Problem: Who counts 
the votes? 
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Idea: Majority Filtering
Input Output
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Problem
Input Output
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Byzantine Agreement

Each processor starts with a bit

Goal: 1) all good procs output the same bit; and 
2) this bit equals an input bit of a good proc

t = # bad procs controlled by an adversary
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Problem
Input Output
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Idea
Input Output

Byzantine
Agreement
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Input Output

Byzantine
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1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

?

All good procs always output same bit
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Input Output

Byzantine
Agreement
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If majority bit held by >= 3 good procs,
then all procs will output majority bit
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1982: FLP show that 1 fault makes 
deterministic BA impossible in asynch 
model

2007: Nancy Lynch wins Knuth Prize 
for this result, called “fundamental in 
all of Computer Science”

Impossibility Result
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Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine 
agreement protocol to choose the final commit order for 
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement 
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various 
agreement problems, such as Byzantine agreement” [ADH ’08]

• Also: Control systems, Databases, Sensor networks, Cloud 
Computing, etc.
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Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine 
agreement protocol to choose the final commit order for 
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement 
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various 
agreement problems, such as Byzantine agreement” [ADH ’08]
Also:  Databases, Sensor Networks, Cloud Computing, Control 
systems,  etc.
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Scalability

“Unfortunately, Byzantine agreement requires a number of 
messages quadratic in the number of participants, so it is 
infeasible for use in synchronizing a large number of 
replicas” [REGZK ’03]

“Eventually batching cannot compensate for the quadratic 
number of messages [of Practical Byzantine Fault Tolerance 
(PBFT)]” [CMLRS ’05]

“The communication overhead of Byzantine Agreement is 
inherently large” [CWL ’09]

Monday, March 7, 2011



Impossibility
Any BA (randomized) protocol which 
always uses less than n2 messages will fail 
with non-zero probability.  Implication of 
[DR ’85]

• To do better than n2 messages, we will need 
to fail with non-zero probability
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Our Model
Private channels

Synchronous w/ rushing adversary

Unlimited messages for bad procs

Adaptive adversary
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Our Model
Private channels

Synchronous w/ rushing adversary

Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total
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Our results

Theorem 1 (BA): For any constants c, ε, there is a 
constant d and a protocol which solves BA, for t 
<= (1/3- ε)n, with prob. 1-1/nc  , using

O(
√
n log3 n) bits per processor and O(logd n) rounds
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Also

Theorem 2: (a.e.BA) For any constants. c, ε, there is a 
constant d and a protocol which for t<=(1/3- ε) 
brings 

1-O(1/log n) fraction of good procs to agreement 
with prob. 1-1/nc  using

 
Polylogarithmic bits per processor and O(logd n) rounds
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Previous work

Constant rounds in expectation is possible [FM 
’88]

However, all previously known protocols use all-
to-all communication
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KEY IDEA: S

S= s1 s2 … sk is a stream of mostly random 
numbers.

Some a.e. globally known random numbers, some 
numbers fixed by an adversary which can see the 
preceding stream when choosing. 
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Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011



 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm
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fraction >= 2/3.  I’m 
voting for 0. 
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checking the coin. 
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All-
to-all

fraction >= 2/3.  I’m 
voting for 0. 

fraction < 2/3.  I’m 
checking the coin. 

Monday, March 7, 2011



All-
to-all

Note: The procs with fraction >= 2/3 
will all change vote to same value 

fraction >= 2/3.  I’m 
voting for 0. 

fraction < 2/3.  I’m 
checking the coin. 
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All-
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All-
to-all

fraction >= 2/3.  I’m 
voting for 0. 

fraction < 2/3.  I’m 
checking the coin. 

Probability 1/2 that both groups change 
vote to the same value
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All-
to-all

fraction >= 2/3.  I’m 
voting for 0. 

fraction < 2/3.  I’m 
checking the coin. 

Probability 1/2 that both groups change 
vote to the same value

Once this happens, all votes of good 
procs will be equal evermore

Monday, March 7, 2011



All-
to-all

Prob of failure = (1/2)clogn

Probability 1/2 that both groups change 
vote to the same value

Once this happens, all votes of good 
procs will be equal evermore
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All-
to-all

Prob of failure = (1/2)clogn

= 1/nc

Probability 1/2 that both groups change 
vote to the same value

Once this happens, all votes of good 
procs will be equal evermore
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All-
to-all

Prob of failure = (1/2)clogn

= 1/nc

Prob of success = 1− 1/nc

Probability 1/2 that both groups change 
vote to the same value

Once this happens, all votes of good 
procs will be equal evermore
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All-
to-all

Prob of failure = (1/2)clogn

whp

Prob of success = 1− 1/nc

= 1/nc

Probability 1/2 that both groups change 
vote to the same value

Once this happens, all votes of good 
procs will be equal evermore
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All-
to-all

Scalable a.e.BA w/ GC
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Sampler

Scalable a.e.BA w/ GC
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Scalable a.e.BA w/ GC
A sampler is a sparse graph 
ensuring that almost everyone 
on right has a fraction of bad 
neighbors ~ t/n
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Scalable a.e.BA w/ GC
A sampler is a sparse graph 
ensuring that almost everyone 
on right has a fraction of bad 
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ
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Scalable a.e.BA w/ GC

No matter which subset is bad!

A sampler is a sparse graph 
ensuring that almost everyone 
on right has a fraction of bad 
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ
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Scalable a.e.BA w/ GC

No matter which subset is bad!

and the degree is just:

2− δ

θ2δ · 2 log2 e

A sampler is a sparse graph 
ensuring that almost everyone 
on right has a fraction of bad 
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ
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Scalable a.e.BA w/ GC

No matter which subset is bad!

2− δ

θ2δ · 2 log2 e
= O(log n) if δ = 1/ log n and θ = O(1)

and the degree is just:

A sampler is a sparse graph 
ensuring that almost everyone 
on right has a fraction of bad 
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ
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 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm
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Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm

neighbors in sampler
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 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm

neighbors in sampler

?
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 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm
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 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm

neighbors in sampler

si
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 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Rabin’s Algorithm

neighbors in sampler

si Suffices that O(log n) of the si 
are random and known a.e.
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Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S
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Algorithm Outline
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Flooding!
Idea: Query random set of procs to ask bit - take 
majority

Problem: In our model, the adversary can flood 
all procs with queries!

   Idea: Use S to decide which queries to answer.

• Each query will have a tag between 1 and  

• The elements of S will now be numbers 
between 1 and 
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Flooding!
Idea: Query random set of procs to ask bit - take 
majority

Problem: In our model, the adversary can flood 
all procs with queries!

   Idea: Use S to decide which queries to answer.

Each query will have a tag between 1 and  

The elements of S will now be numbers 
between 1 and 

√
n

√
n
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a.e. BA to BA
For i = 1 to to c log n:

Each proc. p picks                  random queries 

<proc,tag> and sends tag to proc. 

q answers only if tag = si (and not overloaded) 
queries with this tag)

if 2/3 majority of p’s queries with the same tag are 
returned and agree on b, then p decides b.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with 
a RANDOM subsequence!

k
√
n log n
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a.e. BA to BA
For i = 1 to to c log n:

Each proc. p picks                  random queries 

<proc,tag> and sends tag to proc. 

q answers only if tag = si (and q received                 
queries with this tag)

if 2/3 majority of p’s queries with the same tag are 
returned and agree on b, then p decides b.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with 
a RANDOM subsequence!

k
√
n log n

√
n log n
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a.e. BA to BA
For i = 1 to to c log n:

Each proc. p picks                  random queries 

<proc,tag> and sends tag to proc. 

q answers only if tag = si (and q received                 
queries with this tag)

if 2/3 majority of p’s queries with the same tag are 
returned and agree on b, then p decides b.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with 
a RANDOM subsequence!

k
√
n log n

√
n log n

with replacementwithout replacement
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<a,2> <b,1> <d,1> <f,2> <h,3>
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<a,2>

si = 2  

<f,2>
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<a,2>

si = 2  

≤
√
n in expectation

<f,2>
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Analysis
≤ nEach proc receives       requests 
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Analysis
≤ n

≤
√
n

So expected # requests with tags
that match si is 

Each proc receives       requests 
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Analysis
≤ n

≤
√
n

≤ �

Each proc receives       requests 

So expected # requests with tags
that match si is 

So in any loop, w/ prob >=1/2,          
fo fraction of procs overloaded
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Analysis
Each proc receives       requests 

So expected # requests with tags
that match si is ≤ √

n

≤ n

≤ �
whp, some loop iteration is “good”:          
as  fraction of overloaded procs

So in any loop, w/ prob >=1/2,          
fo fraction of procs overloaded≤ �
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Analysis
Each proc receives       requests 

So expected # requests with tags
that match si is ≤ √

n

≤ n

≤ �
whp, some loop iteration is “good”:          
as  fraction of overloaded procs

So in any loop, w/ prob >=1/2,          
fo fraction of procs overloaded≤ �

(By Linearity & Markov’s inequality)
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Analysis
whp, some loop iteration is “good”:          
as  fraction of overloaded procs≤ �
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Analysis
whp, some loop iteration is “good”:          
as  fraction of overloaded procs≤ �

Each good proc. sends                      
queries

k
√
n log n
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Analysis
whp, some loop iteration is “good”:          
as  fraction of overloaded procs≤ �

whp O(log n) of these have tag si

Each good proc. sends                      
queries

k
√
n log n
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Analysis
whp, some loop iteration is “good”:          
as  fraction of overloaded procs≤ �

whp O(log n) of these have tag si

Each good proc. sends                      
queries

In a “good” iteration, a majority of 
queries are sent to good procs who are 
not overloaded

Each good proc. decides on correct bit

k
√
n log n
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Analysis
whp, some loop iteration is “good”:          
as  fraction of overloaded procs≤ �

whp O(log n) of these have tag si

Each good proc. sends                      
queries

Each good proc. decides on correct bit

(by Linearity and Chernoff bounds)
In a “good” iteration, a majority of 
queries are sent to good procs who are 
not overloaded

k
√
n log n

Monday, March 7, 2011



Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S
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III: Implementing S

Monday, March 7, 2011



Idea: Tournament
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a b c d e f g h i
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a b c d e f g h i
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a b c d e f g h i
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a b c d e f g h i

a,b,c d,e,f g,h,i
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Goal: Fraction of bad procs at top supernode is 
not much more than t/n
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Then the procs at the top super node can 
implement S
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Problem: How to hold local 
elections?

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i
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Idea: Lightest Bin Algorithm

Feige

1.  Each proc. picks a bin uniformly at random

2.  Winners are candidates in lightest bin
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a,b,c,d,e,f,g,h,i
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a,b,c,d,f,g,he,i
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a,b,c,d,f,g,he,i

you guys go first
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e,i

d
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c g
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e,i

With O(n/log n) bins, whp, each 
bin has about same # of good procs

d
a

h

f
c g

b
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e,i

With O(n/log n) bins, whp, each 
bin has about same # of good procs

So fraction of bad in lightest bin 
will be not increase by much

d
a

h

f
c g

b
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e,i

curses, foiled again!

d
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h

f
c g

b
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Problems: 
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Problem 1: Bad procs may be inconsistent in 
bin choice

Solution:

 Set of “enforcers” at each supernode who will run 
the election

 Higher supernodes have more enforcers

 Samplers map between procs and enforcer sets
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Enforcers

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

Sampler
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h, i

b,c, g

a,f,h
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h, i

b,c, g

a,f,h
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h

A sampler ensures that 
almost ever on right has 
a fraction of bad 
neighbors ~ 

No matter which subset is bad!

and the degree of the 
graph is just:

≥ 1− δ fraction

≤ t/n+ θ

2− δ

θ2δ · 2 log2 e

Monday, March 7, 2011



a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h

Almost all enforcer 
sets have >= 2/3 
fraction of good 
procs
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Enforcers

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
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a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,hc e f

b  d  g  h  i

Sampler

Connections between enforcers 
in parent and children 
supernodes also given by a 
sampler
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Samplers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
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Samplers

c e f d g a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
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Problem 2: Adaptive adversary can wait and 
take over all procs at the top supernode
Solution:

Each proc p generates array      of random numbers 
and secret shares it with its leaf node

Numbers are revealed as needed to elect which 
arrays will be passed on to parent node

As winning array moves up, secret shares are split 
up among more and more procs on higher levels

Ap
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Secret Sharing

p’s secret is f(0), where f is a polynomial of 
degree 3

The shares are f() evaluated at different points

p

s1 s2 s3 s4
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Secret Sharing

p’s secret is f(0), where f is a polynomial of 
degree 3

The shares are f() evaluated at different points

p

s1 s2 s3 s4

We use secret sharing schemes where just a 2/3 
fraction of the shares are needed to reconstruct
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Splitting Secrets
As winning array moves up, secret shares are split up among 
more and more procs on higher levels and erased from children 

p

s1 s2
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Splitting Secrets
As winning array moves up, secret shares are split up among 
more and more procs on higher levels and erased from children 

p

s1

s1,1 s1,2

s2

s2,1 s2,2
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Revealing Secrets
Secrets revealed as needed: by reversing communication 
downward, reassembling shares at subtrees and leaves
Thus, adversary can’t prevent secret from being exposed 
by blocking a single path

s1

s1,1 s1,2

s2

s2,1 s2,2

s1 s1 s2s2
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Revealing Secrets
Leaves are sampled deterministically by procs in 
subtree root in order to learn the secret value 

s1

s1,1 s1,2

s2

s2,1 s2,2

s1 s1 s2s2

Sampler S, bin numbers
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Implementing S

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
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S and bin numbers are given by winning arrays of 
children supernodes through secret sharing

S, bin numbers

S, bin numbers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h

Implementing S
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Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S
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Recap
Once S is known here, aeBA can be performed among 
the enforcers at top supernode (i.e. all procs)

S, bin numbers

S, bin numbers

c,e,f d,g,a a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h

a,b,c,d,e,f,g,h,i
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Models where we can 
implement S 
Secret channels, adaptive adversary

• Breaking the O(n^2) Bit Barrier: Scalable Byzantine agreement with an Adaptive Adversary'' by Valerie King and 
Jared Saia, Published in Principles of Distributed Computing (PODC), 2010.  Best Paper award.

Open channels, nonadaptive adversary
• "Fast, scalable Byzantine agreement in the full information model with a Nonadaptive adversary" by Valerie King 

and Jared Saia International Symposium on Distributed Computing (DISC), 2009.

Asynchronous, nonadaptive adversary
• "Fast Asynchronous Byzantine Agreement and Leader Election with Full Information" by Bruce Kapron, David 

Kempe, Valerie King, Jared Saia and Vishal Sanwalani. In Symposium on Discrete Algorithms (SODA), 2008 
( pdf) Invited submission to "Transactions on Algorithms" best papers of SODA 2008.

Monday, March 7, 2011
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Uses of S
Scalable BA

Scalable Leader election, Global Coin, etc. 
(non-adaptive adversary)

Can specify a set of n small (O(log n) size) and 
balanced (no proc in more than O(log n)) 
quorums which are all good w.h.p

• ``Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information'' by Valerie King, 
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and 
Networking(ICDCN), 2010.
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Uses of S
Scalable BA

Scalable Leader election, Global Coin, etc. 
(non-adaptive adversary)

Can specify a set of n small (O(log n) size) and 
balanced (no proc in more than O(log n)) 
quorums which are all good w.h.p

• ``Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information'' by Valerie King, 
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and 
Networking(ICDCN), 2010.

Robust Multiparty Computation
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Simulations
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Rest of Talk:
Sketch of Other Results

1) Conflict on a Communication Channel

2) Self-Healing Networks
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m

Did he 
get it???
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Alice wants to send a message to Bob

Adversary wants to block the message

There is a communication channel between Alice 
and Bob, but Adv. can block it

3 Player Game
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Costs $S to send on channel

Costs $L to listen on channel

Costs $J to block channel

Adv. spends $B

Costs
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Costs $S to send on channel       38mW

Costs $L to listen on channel      35mW

Costs $J to block channel            >1mW

Adv. spends $B                            >5,000mW

Costs - Sensors
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Costs $S to send on channel       38mW

Costs $L to listen on channel      35mW

Costs $J to block channel            >1mW

Adv. spends $B                            >5,000mW

Costs - Sensors

We assume S, L and J are O(1)
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Key Assumptions

If Alice or Bob listen on channel when Adv. jams 
it, they can detect a “collision”

Adv. can successfully imitate Bob but not Alice
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An Idea
A round consists of    slots

Alice sends w/ prob        

Bob listens w/ prob         

n

c/
√
n

c/
√
n
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An Idea
A round consists of    slots

Alice sends w/ prob 

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

n
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An Idea
A round consists of    slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

Prob(Bob fails to get message) ∼
�
1− c

2
√
n

�c
√
n

≤ e−c2/2

n
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An Idea
A round consists of    slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

Prob(Bob fails to get message) ∼
�
1− c

2
√
n

�c
√
n

≤ e−c2/2

n

Bob can request a resend if necessary

Monday, March 7, 2011



An Idea
A round consists of    slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

Bob can request a resend if necessary

Prob(Bob fails to get message) ∼
�
1− c

2
√
n

�c
√
n

≤ e−c2/2

After each failed round, n can double in size

n
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Problem

Adv. can imitate Bob and keep sending fake 
requests and thereby bankrupt Alice

Idea: Impose a larger cost to trigger a resend, to 
mitigate increased cost to Alice
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BRIEF ARTICLE

THE AUTHOR

Send Phase: For 2ci slots do

• Alice sends with prob. 2/2i

• Bob listens with prob. 2/2(c−1)i

Req Phase: For 2i slots do

• If Bob has not received m, Bob sends req message
• Alice listens with prob. 4/2i

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

1

Our Algorithm:
Round i
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BRIEF ARTICLE

THE AUTHOR

Send Phase: For 2ci slots do

• Alice sends with prob. 2/2i

• Bob listens with prob. 2/2(c−1)i

Req Phase: For 2i slots do

• If Bob has not received m, Bob sends req message
• Alice listens with prob. 4/2i

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

1

Analysis shows it’s best to set

Our Algorithm:
Round i

c = ϕ
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Theorem: Our algorithm has the following properties:

• The expected cost to Alice and Bob is O(Bϕ−1 + 1) = O(B0.62 + 1).

• Alice and Bob terminate within O(Bϕ) slots in expectation.

Result
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Fig. 2. Mean absolute cost (maximum of either
player) for a random jammer with pj = 0.5

(top) and 0.9 (bottom). Dotted lines signify 95%
confidence intervals.
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Fig. 3. Mean energy ratio (maximum of either
player) for a random jammer with pj = 0.9,
0.95 and 1.0. Dashed line is 0.6 ·κϕ−2. Dotted
lines signify 95% confidence intervals.
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Fig. 4. Mean energy ratio (maximum of ei-
ther player) for a reactive jammer with pt =

0.3, 0.4, 0.5 and 0.6, separated for clarity. Dotted
lines signify 95% confidence intervals.

Discussion: Note that there is an O(1) up-front cost per
execution of the protocol when there are no jamming-1 or
jamming-2 attacks. This is the price for communication in the
presence of a powerful adversary, even if that adversary is
not always active. In exchange, an adversary incurs a penalty
that increases commensurate with the amount of disruption it
causes. Therefore, the unfairness property does not hold.

Finally, might players share a secret schedule? This would
reduce the active costs in Theorem 1 where neither player
knows if the other is active with certainty. Unfortunately, such
a schedule becomes known to the adversary if the receiver
suffers a Byzantine fault which invalidates any improved
analysis and allows Player A to be manipulated.

C. Numerical Results

We further evaluate COMPETITIVE COMMUNICATION since
it is a building block for our next two protocols. Our aims
are modest, we: (1) show small constants in our asymptotic
analysis and (2) use back-of-the-envelope calculations to esti-
mate the behavior for pessimistic αcor and αadv values. The
impact of radio irregularity, weather and terrain should be
evaluated with a prototype; however, this is outside the scope
of our paper. This is left to future work and we note that such
detrimental factors affect other DoS-resistant proposals, and
there exist many results on mitigating their effect.

Parameters: The Telos mote is powered by two AA batteries
used in series which yields roughly 18000 J assuming a com-
bined 1.8V cut-off voltage (see [3]). The send/receive costs are
35 mW/38mW; however, we use the total operational cost of
41 mW [3]. Let |m| denote the packet (message) size. Headers
and footers of 2 bytes each are possible (see [35], [36]). With
|m| = 8 and 12 bytes this gives a respective payload of 4 and
8 bytes. The Telos’ CC2420 radio has a specification of 250
kbps, but in practice the data rate is typically less. Therefore,
we overestimate the time for sending/receiving at 3 ms which
accommodates our message sizes and is a reasonable TDMA
slot size. With these parameters, a player can be active for
M = 18000 J/(41 mW×3ms)≈ 1.4×108 slots. A MATLAB
implementation of our protocol is used to investigate (1) and
(2) with random and reactive jammers.

Random Jammers: We start by considering the absolute costs
for each player when jamming occurs with probability pj =
0.5 and 0.9 in each slot of an epoch. The adversary is able
to jam for at most κ instances. Each trial terminates upon
successful communication, or when κ is exhausted, and a run
consists of 50 trials. Each point in Figure 2 represents the mean
of 3 such runs and the maximum of Player A and Player B is
plotted. For pj = 0.5, the absolute cost is negligible. For pj =
0.9, the cost is slow growing and still very small relative to
M . This is representative for pj ≤ 0.9 (omitted for space) and
we observe that the absolute costs in our analysis are tolerable
up to this point. For larger values of pj , we consider energy
ratios. Figure 3 depicts the energy ratio for pj = 0.9, 0.95
and 1.0 (constant jammer). Clearly, the energy ratio favors
the players. Finally, a loose upper bound of 6κϕ−2 is plotted
which implies a small constant in our asymptotic analysis.

It is also important to consider αcor > αadv. There is no
consensus on the size of a jamming packet, |mj |, required to
disrupt a transmission. In [22], |mj | = 20 bytes using MICA2
motes. However, smaller jamming packets have examined in
more general wireless local area networks. In [23], |mj | ≈ 3
bytes and, in [24], |mj | is just a few bits! In comparison to
an adversary that transmits |mj| = 2, 3 or 5 bits, the players
must handle a |m| = 96 bit (12 byte) message. This implies
a factor discrepancy of 96/5≈ 20, 96/3 ≈ 30, 96/2 ≈ 50,
respectively. Consequently, we consider αadv = 1 but αcor =
20, 30 and 50. Extrapolating using αcor · 6 · κϕ−2, we note
that the energy ratios for αcor = 30 and 50 drop below 1 for
κ larger than 2.8× 105, 8 × 105 and 3.1 × 106, respectively.
These values are still small relative to M . For example, with
|mj | = 5 bits, the adversary must allow successful delivery of
the first packet or face spending M − 2.8 × 105 ≈ 108 time
slots suffering a disadvantageous energy ratio. By the same
argument, hundreds of communications can occur before the
players exhaust their energy supply.

Reactive Jammers: As discussed above, our protocol is
resistant to indiscriminate jamming. Now consider a reactive
adversary who can listen to 2 bytes of a header in a |m| = 8
byte packet and then decide whether to jam at zero cost.
Therefore, αadv = 1 while αcor = 4. In each slot, channel

pj is probability adversary jams a slot

Simulations
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Theorem: There exists an algorithm for one sender and n receivers that
ensures the message is delivered to all receivers and has the following costs:

• The sender’s expected cost is O(Bϕ−1 log n+ logϕ n)

• The expected cost to any receiver is O(Bϕ−1 + log n)

• The worst case number of slots used is O((B + logϕ−1)ϕ+1)

Many Receivers
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One player (dealer) wants to transmit a message to all 
other players in an arbitrary graph (graph and dealer 
location known to all) 

Assume in any broadcast neighborhood, that the 
fraction of adversarial players is small enough to 
achieve broadcast

Then can achieve broadcast, and adversary can force 
good players to expend only          additional energy

Many Players

o(B)
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Self-Healing Network

Monday, March 7, 2011



Original Network
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Recovered Network
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Game between adversary and algorithm on a 
graph

Adversary deletes nodes

Algorithm adds edges

Goal of algorithm: Keep distances “small” while 
ensuring no node gets overloaded with edges

Problem
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Our algorithm ensures:

Shortest path between any pair of nodes 
increases by no more than log n mult. factor

Each node increases degree by no more than 
mult. factor of 3

Each “healing” requires latency and messages 
per proc. that is logarithmic

Result
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Maintain a collection of distributed data 
structures called RT’s

These RT’s give information on what new 
links should be maintained

When a node is deleted, quickly update the 
RT’s

Idea
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(a) The original graph. Node v attacked.

w’

t u

w

y

z

x’

x

u’

(b) Healed graph. The new nodes inside ellipse

are helper nodes.

w’

t u

w

y

z

x’

x

u’

(c) Node y attacked.

x’’

t u

w

z

x’

x

u’w’

z’

(d) Healed Graph. Notice two RTs with common

leaf nodes.

x’’

t u

w

z

x’

x

u’w’

z’

(e) Node w attacked: notice w is a common leaf

of both RTs

u’’

t u

x’

u’

z
x

x’’

z’

(f) Healed Graph. The RTs have merged. Some

of the leaf nodes (x’s, u’s) are identical (so the

picture no longer shows the RT resembling a haft.

However, refer figure 10).

Figure 9: Effect of 3 deletions on a graph. The RT for each deleted node consists of the
helper nodes, plus the neighbors of the deleted node which form the leaves of the tree. In
this example, the deleted nodes form an independent set, so the structure of the RTs does
not depend on the deletion order.

these nodes. A node takes part in a RT only if one of its neighbors got deleted. It can
only have two edges into a RT if two of its neighbors have already been deleted. Each edge

13
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 Keep Shortest Paths Small
"The Forgiving Graph: A Distributed Data Structure for Maintaining Low Stretch under 
Adversarial Attack" by Tom Hayes, Jared Saia and Amitabh Trehan, Principles of Distributed 
Computing(PODC), 2009.

 Keep Diameter Small
"The Forgiving Tree: A Self-Healing Distributed Data Structure" by Tom Hayes and Navin 
Rustagi and Jared Saia and Amitabh Trehan, Principles of Distributed Computing(PODC), 2008.

 Maintain Connectivity
"Picking up the Pieces: Self-Healing in Reconfigurable Networks" by Jared Saia and Amitabh Trehan In IEEE 
International Parallel and Distributed Processing Symposium (IPDPS), 2008

Outcomes

Monday, March 7, 2011



Chapter 2. DASH

Figure 2.10: Maximum Degree increase: DASH vs other algorithms

2.4.7 Heuristics and experiments involving Stretch

Stretch is an important property we would also like our self-healing algorithms to

minimize. The stretch for any two nodes is the ratio between their distance in the new

healed network and their distance in the original network. Stretch for the network

is the maximum stretch over all pairs of nodes. Stretch is also closely related to the

diameter of the network. In some sense, maintaining low degree increase and low

stretch are contradictory aims since a high-degree node will lead to shorter paths

and possibly lower stretch in the network.

SDASH: a strategy with good empirical results

SDASH is an algorithm we have devised which empirically has both low degree

increase and low stretch. During self-healing, we say a node surrogates if it replaces

50
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Defense
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Vision?
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Vision
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Vision

Many small, interchangeable components

Simple, decentralized algorithms

Security through obscurity?  Yes!  But obscurity 
encapsulated in random bits
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Vision

Provably maintain invariants under attack

Invariants: 1) consensus; 2) communication; 3) 
short paths

Attack: 1) control of procs; 2) jamming 
channels; 3) deletion of procs
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Future Work

Practical Byzantine agreement; Scalable 
Distributed Computation: e.g. MapReduce 
without a master

Web Censorship: Can we obtain an asymptotic 
economic analysis, like for jamming?

Social networks: Self-healing and conflict around 
information diffusion
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Future Work

Amortized Robustness: “Fool me once, shame on 
you.  Fool me                   times, shame on me.”

Can we enable enforcement of a “distributed 
treaty” in systems like Bittorrent?

ω(log n)
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Questions

?
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Lessons Learned

1) Don’t trust a processor to run its own code!  
Instead share state of a processor over more of 
the network as that processor gets more 
important.

2) Don’t let bad guys group together!  Use 
samplers to spread them out.

3) More efficient to render cheating ineffective 
than to create infrastructure to catch cheaters
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Bits vs n (log-log)
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Reactive Jammer
6
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Fig. 2. Mean absolute cost (maximum of either
player) for a random jammer with pj = 0.5

(top) and 0.9 (bottom). Dotted lines signify 95%
confidence intervals.
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Fig. 3. Mean energy ratio (maximum of either
player) for a random jammer with pj = 0.9,
0.95 and 1.0. Dashed line is 0.6 ·κϕ−2. Dotted
lines signify 95% confidence intervals.
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ther player) for a reactive jammer with pt =

0.3, 0.4, 0.5 and 0.6, separated for clarity. Dotted
lines signify 95% confidence intervals.

Discussion: Note that there is an O(1) up-front cost per
execution of the protocol when there are no jamming-1 or
jamming-2 attacks. This is the price for communication in the
presence of a powerful adversary, even if that adversary is
not always active. In exchange, an adversary incurs a penalty
that increases commensurate with the amount of disruption it
causes. Therefore, the unfairness property does not hold.

Finally, might players share a secret schedule? This would
reduce the active costs in Theorem 1 where neither player
knows if the other is active with certainty. Unfortunately, such
a schedule becomes known to the adversary if the receiver
suffers a Byzantine fault which invalidates any improved
analysis and allows Player A to be manipulated.

C. Numerical Results

We further evaluate COMPETITIVE COMMUNICATION since
it is a building block for our next two protocols. Our aims
are modest, we: (1) show small constants in our asymptotic
analysis and (2) use back-of-the-envelope calculations to esti-
mate the behavior for pessimistic αcor and αadv values. The
impact of radio irregularity, weather and terrain should be
evaluated with a prototype; however, this is outside the scope
of our paper. This is left to future work and we note that such
detrimental factors affect other DoS-resistant proposals, and
there exist many results on mitigating their effect.

Parameters: The Telos mote is powered by two AA batteries
used in series which yields roughly 18000 J assuming a com-
bined 1.8V cut-off voltage (see [3]). The send/receive costs are
35 mW/38mW; however, we use the total operational cost of
41 mW [3]. Let |m| denote the packet (message) size. Headers
and footers of 2 bytes each are possible (see [35], [36]). With
|m| = 8 and 12 bytes this gives a respective payload of 4 and
8 bytes. The Telos’ CC2420 radio has a specification of 250
kbps, but in practice the data rate is typically less. Therefore,
we overestimate the time for sending/receiving at 3 ms which
accommodates our message sizes and is a reasonable TDMA
slot size. With these parameters, a player can be active for
M = 18000 J/(41 mW×3ms)≈ 1.4×108 slots. A MATLAB
implementation of our protocol is used to investigate (1) and
(2) with random and reactive jammers.

Random Jammers: We start by considering the absolute costs
for each player when jamming occurs with probability pj =
0.5 and 0.9 in each slot of an epoch. The adversary is able
to jam for at most κ instances. Each trial terminates upon
successful communication, or when κ is exhausted, and a run
consists of 50 trials. Each point in Figure 2 represents the mean
of 3 such runs and the maximum of Player A and Player B is
plotted. For pj = 0.5, the absolute cost is negligible. For pj =
0.9, the cost is slow growing and still very small relative to
M . This is representative for pj ≤ 0.9 (omitted for space) and
we observe that the absolute costs in our analysis are tolerable
up to this point. For larger values of pj , we consider energy
ratios. Figure 3 depicts the energy ratio for pj = 0.9, 0.95
and 1.0 (constant jammer). Clearly, the energy ratio favors
the players. Finally, a loose upper bound of 6κϕ−2 is plotted
which implies a small constant in our asymptotic analysis.

It is also important to consider αcor > αadv. There is no
consensus on the size of a jamming packet, |mj |, required to
disrupt a transmission. In [22], |mj | = 20 bytes using MICA2
motes. However, smaller jamming packets have examined in
more general wireless local area networks. In [23], |mj | ≈ 3
bytes and, in [24], |mj | is just a few bits! In comparison to
an adversary that transmits |mj| = 2, 3 or 5 bits, the players
must handle a |m| = 96 bit (12 byte) message. This implies
a factor discrepancy of 96/5≈ 20, 96/3 ≈ 30, 96/2 ≈ 50,
respectively. Consequently, we consider αadv = 1 but αcor =
20, 30 and 50. Extrapolating using αcor · 6 · κϕ−2, we note
that the energy ratios for αcor = 30 and 50 drop below 1 for
κ larger than 2.8× 105, 8 × 105 and 3.1 × 106, respectively.
These values are still small relative to M . For example, with
|mj | = 5 bits, the adversary must allow successful delivery of
the first packet or face spending M − 2.8 × 105 ≈ 108 time
slots suffering a disadvantageous energy ratio. By the same
argument, hundreds of communications can occur before the
players exhaust their energy supply.

Reactive Jammers: As discussed above, our protocol is
resistant to indiscriminate jamming. Now consider a reactive
adversary who can listen to 2 bytes of a header in a |m| = 8
byte packet and then decide whether to jam at zero cost.
Therefore, αadv = 1 while αcor = 4. In each slot, channel

Monday, March 7, 2011


