Conilict on Large Networks

Jared Saia

Collaborators: Bruce Kapron, David Kempe,
Valerie King, Amitabh Trehan, Vishal Sanwalani
and Maxwell Young

Research funding:

T, Sandia
\ Ky National
laboratorieslil A RPA

Monday, March 7, 2011

Components Fail,
unctions

Sessssaraansune

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
-
.
.
.
-
.
-
.
.
.
.
.
.
.
-
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.

sessssnsnann

srsensas

TR TR

Monday, March 7, 2011

Group Decisions

e Periodically, components unite in a decision

o Idea: components vote. Problem: Who counts
the votes?

Monday, March 7, 2011

Idea: Majority Filtering

Input Output
0 0
0 0

N
O /ﬁ e 4" O
%%

SRR
BANA. ¢

& Ne

MMMMMMMMMMMMMMMMMM

Idea: Majority Filtering

Input Output

AN 0
O ’ﬁ\ “Q"&‘v‘o R
T

%
BAXXNA. 0

1,ﬁ\ \\\- 0

MMMMMMMMMMMMMMMMMM

Problem

Input Output

MMMMMMMMMMMMMMMMMM

Byzantine Agreement

o Each processor starts with a bit

o Goal: 1) all good procs output the same bit; and
2) this bit equals an input bit of a good proc

e t= # bad procs controlled by an adversary

Monday, March 7, 2011

Problem

Input Output

MMMMMMMMMMMMMMMMMM

Byzantine
Agreement

MMMMMMMMMMMMMMMMMM

All good procs always output same bit

Output

Byzantine

Agreement

Monday, March 7, 2011

[f majority bit held by >= 3 good procs,
| then all procs will output majority bit
E;Inpu’t

Byzantine
Agreement

Monday, March 7, 2011

Impossibility Result

o 1982: FLP show that 1 fault makes
deterministic BA impossible in asynch

model

e 2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all of Computer Science”

Monday, March 7, 2011

Applications

o DPeer-to-peer networks

“These replicas cooperate with one another in a Byzantine

agreement protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ "00]

o Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD 03]

o Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]

Monday, March 7, 2011

Applications

Peer-to-peer networks

“These replicas cooperate with one another in a Byzantine

agreement protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ "00]

Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD 03]

Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]

Also: Databases, Sensor Networks, Cloud Computing, Control
systems, etc.

Monday, March 7, 2011

Scalability

“Unfortunately, Byzantine agreement requires a number of
messages quadratic in the number of participants, so it is
infeasible for use in synchronizing a large number of
replicas” [REGZK "03]

“Eventually batching cannot compensate for the quadratic
number of messages [of Practical Byzantine Fault Tolerance
(PBFT)]” [CMLRS '05]

“The communication overhead of Byzantine Agreement is
inherently large” [CWL "09]

Monday, March 7, 2011

Impossibility

o Any BA (randomized) protocol which
. always uses less than n2 messages will fail

with non-zero probability. Implication of
DR ’85]

Monday, March 7, 2011

Impossibility

o Any BA (randomized) protocol which

always uses less than n2 messages will fail
with non-zero probability. Implication of

|DR "85]

o To do better than n? messages, we will need
. to fail with non-zero probability

Monday, March 7, 2011

Our Model

Private channels
Synchronous w/ rushing adversary
Unlimited messages for bad procs

Adaptive adversary

Monday, March 7, 2011

Our Model

Private channels
Synchronous w/ rushing adversary
Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total

Monday, March 7, 2011

Our results

Theorem 1 (BA): For any constants ¢, ¢, there is a
constant d and a protocol which solves BA, for t
<= (1/3- &¢)n, with prob. 1-1/n¢, using

O(y/nlog® n) bits per processor and O(logd n) rounds

Monday, March 7, 2011

Also

Theorem 2: (a.e.BA) For any constants. ¢, ¢, there is a
constant d and a protocol which for t<=(1/3- ¢)
brings

1-O(1/log n) fraction of good procs to agreement
with prob. 1-1/n¢ using

Polylogarithmic bits per processor and O(log® n) rounds

Monday, March 7, 2011

Previous work

Constant rounds in expectation is possible [FM
'88]

However, all previously known protocols use all-
to-all communication

Monday, March 7, 2011

KEY IDEA: S

o S5=8. 5, ...8 Isastream of mostly random

numbers.

e Some a.e. globally known random numbers, some
numbers fixed by an adversary which can see the
preceding stream when choosing.

Monday, March 7, 2011

Algorithm Outline

L Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

BA with Global Coin, GC
Rabin’s Algorithm \\w—-l |

il .

s

N

Let fraction be fraction of votes for majority bit

Send your vote to everyone

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Monday, March 7, 2011

BA with Global Coin, GC

Rabin’s Algorithm L |
i
Set your vote to input bit \\ - o

Repeat clogn times: '\

Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Output your vote

Monday, March 7, 2011

o2

@)

)

fraction >=2/3. I'm

@

voting for 0.

=

20330 o 20 Bo B

=

20330 B0 =80 B0 B0 o Bo e

Monday, March 7, 2011

20330330120 3020

[

=

£
#
#
#
#
#
#
#

fraction <2/3. I'm

checking the coin.

Monday, March 7, 2011

oo oo o o o ol o oo

= 7

20130 20 30 o B0 Bo o o
030 0 B0 o B0 Bo 3o e

Note: The procs with fraction >=2/3
will all change vote to same value

Monday, March 7, 2011

oo oo o o o ol o oo

= 7

Probability 1/2 that both groups change
vote to the same value

20130 20 30 o B0 Bo o o
030 0 B0 o B0 Bo 3o e

Monday, March 7, 2011

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/ﬁ\ procs will be equal evermore

7

A |

20:230 0 80 B0 20 o e o
030 o B0 Bo B0 B0 e
)
4

Monday, March 7, 2011

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e

Monday, March 7, 2011

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e

Monday, March 7, 2011

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

Prob of success =1 —1/nf

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e

Monday, March 7, 2011

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

Prob of success

whp

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e

Monday, March 7, 2011

ocalable a.e.BA w/ GC

#
#
#
#
#
#
#
#
#

0130 0 B0 o B0 Bo 3o o

MMMMMMMMMMMMMMMMMM

o o o o o o o o o

o oo ofe o oo o e

ocalable a.e.BA w/ GC

..

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

Monday, March 7, 2011

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

Monday, March 7, 2011

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!

Monday, March 7, 2011

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!

Monday, March 7, 2011

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!

Monday, March 7, 2011

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!

Monday, March 7, 2011

ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

A and the degree is just:
SO 9

925 % 2 10g2 (&

No matter which subset is bad!

Monday, March 7, 2011

ocalable a.e.BA w/ GC

B, A sampler is a sparse graph
& ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

A and the degree is just:
SO 9
7 925 % 2 10g2 e

= O(logn) if § =1/logn and 8 = O(1)
No matter which subset is bad!

Monday, March 7, 2011

BA with Global Coin, GC

Rabin’s Algorithm L |
i
Set your vote to input bit \\ - o

Repeat clogn times: '\

Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Output your vote

Monday, March 7, 2011

BA with Global Coin, GC

Rabin’s Algorithm Ll !
v
Set your vote to input bit \\ - o
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Output your vote

Monday, March 7, 2011

BA with Global Coin, GC

Rabin’s Algorithm |
v
Set your vote to input bit \\ -
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote tol(GC)e—?

Output your vote

Monday, March 7, 2011

BA with Global Coin, GC

Rabin’s Algorithm L
v
Set your vote to input bit \\' 3
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set

vote to (€

Output your vote

Monday, March 7, 2011

BA with Global Coin, GC

Rabin’s Algorithm L
v
Set your vote to input bit \\' 3
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set

vote to O S;

Output your vote

Monday, March 7, 2011

BA with Global Coin, GC
Rabin’s Algorithm \\\ P

Set your vote to input bit | -

Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to € Si Suyffices that O(log n) of the S;

are random and known a.e.
Output your vote

Monday, March 7, 2011

Algorithm Outline

L Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

Algorithm Outline

L Using S to get a.e. BA \/

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

Flooding!

Idea: Query random set of procs to ask bit - take
majority

Problem: In our model, the adversary can flood
all procs with queries!

Idea: Use S to decide which queries to answer.

Monday, March 7, 2011

Flooding!

Idea: Query random set of procs to ask bit - take
majority

Problem: In our model, the adversary can flood
all procs with queries!

Idea: Use S to decide which queries to answer.
Each query will have a tag between 1 and v/n

The elements of S will now be numbers
between 1 and +/n

Monday, March 7, 2011

a.e. BA to BA

Fori=1 to to c log n:

o Each proc. p picks kvnlogn random queries
<proc,tag> and sends tag to proc.

o (answers only if tag = S. (and not overloaded)

o if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

Monday, March 7, 2011

a.e. BA to BA

Fori=1 to to c log n:

o Each proc. p picks kvnlogn random queries
<proc,tag> and sends tag to proc.

o answers only if tag = S. (and q received vnlogn
queries with this tag)

o if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

Monday, March 7, 2011

a.e. BA to BA

without replacement with replacement
Fori=1] to to c log n:

o EHach proc_ppicks kvnlogn random queries
<proc,tag> and sends tag to proc.

o answers only if tag = S. (and q received vnlogn

queries with this tag)

o if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

Monday, March 7, 2011

o o o o o o o ofofe:

o oo o o o o ok

aaaaaaa

..

—a2>-=b 1% =d 1> <fI=vi-dgd

0130 20 50 0 B0 Bo 0 o

Monday, March 7, 2011

—a2>-=b 1% =d 1> <fI=vi-dgd

| 2
N

<n

20130 20 50 0 B0 Bo 0 o

Monday, March 7, 2011

MMMMMMMMMMMMMMMMMM

<a,2> i fi

| 2
N

< 4/n in expectation

20130 20 50 0 B0 Bo 0 o

Monday, March 7, 2011

QD

U-l

@)

0330 330 30 0 o o 210 e

- 2o e 1) -~

Analysis

’i‘ Each proc receives < nrequests

#
#
#
#
#
#
#
#

Monday, March 7, 2011

QD

o

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

’i‘ Each proc receives < nrequests

#

,ﬁ\ So expected # requests with tags
& that match S; is < vn

#
#
#
#
#

Monday, March 7, 2011

QD

o

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

’i‘ Each proc receives < nrequests

#

,ﬁ\ So expected # requests with tags
& that match S; is < vn

#

So in any loop, w/ prob >=1/2,
ﬁ < efraction of procs overloaded

o202

Monday, March 7, 2011

QD

U-l

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

’i‘ Each proc receives < nrequests

,ﬁ\ So expected # requests with tags
,ﬁ\ that match S; is < vn

#

So in any loop, w/ prob >=1/2,
i < efraction of procs overloaded

o2

whp, some loop iteration is “good”:
’ﬁ‘ < efraction of overloaded procs

Monday, March 7, 2011

QD

Uﬂ

@)

50553050 =80 =0 o 0 T

[

Analysis

’i‘ Each proc receives < nrequests

,ﬁ\ So expected # requests with tags
,ﬁ\ that match S; is < vn

,ﬁ\ So in any loop, w/ prob >=1/2,
i < efraction of procs overloaded
'ﬁ\ (By Linearity & Markov’s inequality)

'ﬁ\ whp, some loop iteration is “good”:
< efraction of overloaded procs

Monday, March 7, 2011

QD

o

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

/i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

202030 o 0 o 0 e

Monday, March 7, 2011

QD

o

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

o203 o 0 o

Monday, March 7, 2011

QD

o

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

whp O(log n) of these have tag S,

202020 o 0 o

Monday, March 7, 2011

QD

Uﬂ

@)

50553050 =80 =0 o 0 T

[

Analysis

/i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

#

'ﬁ‘ whp O(log n) of these have tag S,

In a “good” iteration, a majority of
’ﬁ‘ queries are sent to good procs who are
not overloaded

Each good proc. decides on correct bit

Monday, March 7, 2011

QD

Uﬂ

@)

50553050 =80 =0 o 0 T

[

Analysis

/i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

#

whp O(log n) of these have tag S,
,ﬁ\ (by Linearity and Chernoff bounds)
In a “good” iteration, a majority of

’ﬁ‘ queries are sent to good procs who are
not overloaded

Each good proc. decides on correct bit

Monday, March 7, 2011

Algorithm Outline

I: Using S to get a.e. BA \/
II: Using S to go from a.e. BA to BA \/

III: Implementing S

Monday, March 7, 2011

ITI: Implementing S

Monday, March 7, 2011

Idea: Tournament

Monday, March 7, 2011

nday, March 7, 2011

Mo

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
-
-
.
-

Monday, March 7, 2011

Goal: Fraction of bad procs at top supernode is
not much more than t/n

|

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
-
-

Monday, March 7, 2011

Then the procs at the top super node can
implement S

|

Monday, March 7, 2011

Problem: How to hold local
elections?

Monday, March 7, 2011

Idea: Lightest Bin Algorith .

1. Each proc. picks a bin uniformly at random

2. Winners are candidates in lightest bin

Monday, March 7, 2011

a,b,c,d,ef,gh,i

Monday, March 7, 2011

Monday, March 7, 2011

you guys go firD

ei a,b,c,d,f,gh

Monday, March 7, 2011

Monday, March 7, 2011

With O(n/log n) bins, whp, each
bin has about same # of good procs

Monday, March 7, 2011

With O(n/log n) bins, whp, each
bin has about same # of good procs

So fraction of bad in lightest bin
will be not increase by much

Monday, March 7, 2011

curses, foiled @

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Problems:

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
-
-
.
-
-

Monday, March 7, 2011

Problem 1: Bad procs may be inconsistent in
bin choice

Solution:

o Set of “enforcers” at each supernode who will run
the election

o Higher supernodes have more enforcers

e Samplers map between procs and enforcer sets

Monday, March 7, 2011

Enforcers

a,d,i
a,b,c,d,ef,gh,i

g h,i

a,cegh

a,b,c d,e,f
b,d,gh,i acd i

H
&@

Monday, March 7, 2011

Sampler

D DD D E & D

Monday, March 7, 2011

DO DD DD DD

\‘ ’/ dga
W=

Monday, March 7, 2011

Ci ea’
A 1 that
\‘ '/ sampler ensures tha

> 1 — ¢ fraction ON I'lght has

/Y
- \\‘/I"é”® a fraction of bad
4 .

XL :

f \ \,\(‘ and the degree of the
A\ graph is just:

\ OO 23§

Monday, March 7, 2011

Almost all enforcer
sets have >=2/3
fraction of good
procs

B @ 6 G & &b

Monday, March 7, 2011

Enforcers

a,d,i
a,b,c,d,ef,gh,i

g h,i

a,cegh

a,b,c d,e,f
b,d,gh,i acd i

H
&@

Monday, March 7, 2011

Enforcers

Connections between enforcers
in parent and children
supernodes also given by a

< sampler
bdghi

Monday, March 7, 2011

Samplers

< a,b,c,d,e f,gh, >
b,d,gh,i

IDIEICREDY

Monday, March 7, 2011

Samplers
4’
M
)

..

Problem 2: Adaptive adversary can wait and
take over all procs at the top supernode

Solution:

o Each proc p generates array 4, of random numbers
and secret shares it with its leaf node

e Numbers are revealed as needed to elect which
arrays will be passed on to parent node

e As winning array moves up, secret shares are split
up among more and more procs on higher levels

Monday, March 7, 2011

oecret Sharing

S)

/4

o p’ssecretis f(0), where f is a polynomial of
degree 3

o The shares are f() evaluated at different points

Monday, March 7, 2011

oecret Sharing

S)

N/

o p’ssecret is f(0), where f is a polynomial of
degree 3

o The shares are f() evaluated at different points

o We use secret sharing schemes where justa 2/3
fraction of the shares are needed to reconstruct

Monday, March 7, 2011

Splitting Secrets

As winning array moves up, secret shares are split up among
more and more procs on higher levels and erased from children

E . 5

ocpoooocood

Monday, March 7, 2011

Splitting Secrets

As winning array moves up, secret shares are split up among
more and more procs on higher levels and erased from children

C_ D £

OHOOOOOOD

%

Monday, March 7, 2011

Revealing Secrets

o Secrets revealed as needed: by reversing communication
downward, reassembling shares at subtrees and leaves

o Thus, adversary can’t prevent secret from being exposed
by blocking a single path

C_ D £

C O C OC 20O C

Monday, March 7, 2011

Revealing Secrets

o Leaves are sampled deterministically by procs in
subtree root in order to learn the secret value

Sampler

DIrcielelelolele

A

C_ > (.

S , bin numbers

Monday, March 7, 2011

Implementing S

< a,b,c,d,e f,gh, >
b,d,gh,i

IDIEICREDY

Monday, March 7, 2011

Implementing S

S and bin numbers are given by winning arrays of
children supernodes through secret sharing

< a,b,c,d,e f,gh, >

S , bin numbers

b,d,gh,i

S, bin numbers

Monday, March 7, 2011

Algorithm Outline

L Using S to get a.e. BA \/

II: Using S to go from a.e. BA to BA \/

III: Implementing S \/

Monday, March 7, 2011

Recap

Once S is known here, aeBA can be performed among
the enforcers at top sypernode (i.e. all procs)

< a,b,c,d,e f,gh, >

S , bin numbers

a,C,d,f,i a/C/e/g/h

S, bin numbers
(aed) Gtn) (odi)

Monday, March 7, 2011

Models where we can
implement S

o Secret channels, adaptive adversary

Breaking the O(n”2) Bit Barrier: Scalable Byzantine agreement with an Adaptive Adversary" by Valerie King and
Jared Saia, Published in Principles of Distributed Computing (PODC),2010. Best Paper award.

o Open channels, nonadaptive adversary

"Fast, scalable Byzantine agreement in the full information model with a Nonadaptive adversary" by Valerie King
and Jared Saia International Symposium on Distributed Computing (DISC), 2009.

o Asynchronous, nonadaptive adversary

"Fast Asynchronous Byzantine Agreement and Leader Election with Full Information" by Bruce Kapron, David
Kempe, Valerie King, Jared Saia and Vishal Sanwalani. In Symposium on Discrete Algorithms (SODA), 2008
(_pdf) Invited submission to "Transactions on Algorithms" best papers of SODA 2008.

Monday, March 7, 2011

http://www.cs.unm.edu/~saia/papers/asynch.pdf
http://www.cs.unm.edu/~saia/papers/asynch.pdf

Uses of S

e Scalable BA

e Scalable Leader election, Global Coin, etc.
(non-adaptive adversary)

o Can specify a set of n small (O(log n) size) and
balanced (no proc in more than O(log n))
quorums which are all good w.h.p

“*Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information" by Valerie King,
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and
Networking(ICDCN), 2010.

Monday, March 7, 2011

Uses of S

e Scalable BA

e Scalable Leader election, Global Coin, etc.
(non-adaptive adversary)

ox Can specify a set of n small (O(log n) size) and
alanced (no proc in more than O(log n))
qiorums which are all good w.h.p

“*Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information" by Valerie King,
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and
Networking(IEDCN), 2010.

Robust Multiparty Computation

Monday, March 7, 2011

Simulations

%10

average # bits sent
N W

-—

11

——our algorithm .'
~CKS algorithm|

Monday, March 7, 2011

Rest of Talk:
Sketch of Other Results

1) Conflict on a Communication Channel

2) Self-Healing Networks

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

3 Player Game

o Alice wants to send a message to Bob
o Adversary wants to block the message

e There is a communication channel between Alice
and Bob, but Adv. can block it

Monday, March 7, 2011

Costs

Costs $S to send on channel
Costs $L to listen on channel
Costs $J to block channel

Adv. spends $B

Monday, March 7, 2011

Costs - Sensors

Costs $S to send on channel 38mW
Costs $L to listen on channel 35mW
Costs $J to block channel >TmW

Adv. spends $B >5,000mW

Monday, March 7, 2011

Costs - Sensors

Costs $S to send on channel 38mW
Costs $L to listen on channel 35mW
Costs $J to block channel >TmW

Adv. spends $B >5,000mW

We assume S, L and] are O(1)

Monday, March 7, 2011

Key Assumptions

o If Alice or Bob listen on channel when Adv. jams
it, they can detect a “collision”

e Adv. can successfully imitate Bob but not Alice

Monday, March 7, 2011

An Idea

e A round consists of n slots

o Alice sends w/ prob c¢/vn

o Bob listens w/ prob c¢/v/n

Monday, March 7, 2011

An Idea

. Assume Adv. blocks w/ prob 1/2.
e A round consists of n slots
Then prob. a given slot is one

o Alice sends w/ prob c¢/vn

where Alice sends and there is no

o Bob listens w/ prob ¢/vn | jamis ;2

Monday, March 7, 2011

An Idea

e A round consists of n slots

o Alice sends w/ prob c¢/vn

o Bob listens w/ prob c¢/v/n

Prob(Bob fails to get message) ~ (1 —

Assume Adv. blocks w/ prob 1/2.
Then prob. a given slot is one
where Alice sends and there is no

: e
jam is 5o

< 6_C2/2

Monday, March 7, 2011

An Idea

e A round consists of n slots

o Alice sends w/ prob c¢/vn

o Bob listens w/ prob c¢/v/n

Prob(Bob fails to get message) ~ (1 —

Assume Adv. blocks w/ prob 1/2.
Then prob. a given slot is one

where Alice sends and there is no

jam is ﬁ
C v
251
< 6—62/2

Bob can request a resend if necessary

Monday, March 7, 2011

An Idea

. Assume Adv. blocks w/ prob 1/2.
e A round consists of n slots
Then prob. a given slot is one

o Alice sends w/ prob c¢/vn

where Alice sends and there is no

o Bob listens w/ prob ¢/vn | jamis ;2

Prob(Bob fails to get message) ~ (1 —

< 6—62/2

Bob can request a resend if necessary

After each failed round, n can double in size

Monday, March 7, 2011

Problem

o Adv. can imitate Bob and keep sending fake
requests and thereby bankrupt Alice

o Idea: Impose a larger cost to trigger a resend, to
mitigate increased cost to Alice

Monday, March 7, 2011

Our Algorithm:
Round i

Send Phase: For 2¢ slots do

e Alice sends with prob. 2/2°

e Bob listens with prob. 2/2(¢—1)¢
Req Phase: For 2¢ slots do

e If Bob has not received m, Bob sends req message
e Alice listens with prob. 4/2°

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

Monday, March 7, 2011

Our Algorithm:
Round i

Send Phase: For 2¢ slots do

e Alice sends with prob. 2/2°
e Bob listens with prob. 2/2(¢~D):

Req Phase: For 2¢ slots do

e If Bob has not received m, Bob sends req message
e Alice listens with prob. 4/2°

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

Analysis shows it's best to set ¢ = @

Monday, March 7, 2011

Result

Theorem: Our algorithm has the following properties:
e The expected cost to Alice and Bob is O(B¥~! + 1) = O(B%%% + 1).

e Alice and Bob terminate within O(B¥) slots in expectation.

Monday, March 7, 2011

Simulations

1 ‘ T T T T T T T T
\ —p.=0.9
\ J
09 4 \ —_— p=095
I J
. o \ —— p]=1 0
D3 AN
o0 087K - - - 6.5 032
T
oc
> 0.7
o2
[0
(T
. 0.6
I
o
=
0.5
0.4

0.3 ' ' '

1 2 3 4 5 6 7 8 9 10

Maximum Number of Jamming Instances (k) x 102

p; 1s probability adversary jams a slot

Monday, March 7, 2011

Many Receivers

Theorem: There exists an algorithm for one sender and n receivers that
ensures the message is delivered to all receivers and has the following costs:

e The sender’s expected cost is O(B¥!logn + log? n)
e The expected cost to any receiver is O(B?~! + logn)

e The worst case number of slots used is O((B + 10g¢_1)“0+1)

£ 4R
Mfﬁ

Monday, March 7, 2011

Many Players

o One player (dealer) wants to transmit a message to all
other players in an arbitrary graph (graph and dealer
location known to all)

o Assume in any broadcast neighborhood, that the
fraction of adversarial players is small enough to
achieve broadcast

Then can achieve broadcast, and adversary can force
good players to expend only o(B) additional energy

Monday, March 7, 2011

Self-Healing Network

Monday, March 7, 2011

Original Network

T =
*
ﬁ/ﬁ\ﬁ\—ﬁ
A &
/ﬁ\\ //ﬁ\/
\ﬁ/ 2 l\’ﬁ\ ﬁr\ﬁr
£\
e
ﬁr\

MMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMM

S
i &
. \
\ﬁ /ﬁ K ﬁr\ﬁ
f
b
x 3

MMMMMMMMMMMMMMMMMM

e A
—4
b ?
i e
i
Y

MMMMMMMMMMMMMMMMMM

%Recovered Network

MMMMMMMMMMMMMMMMMM

Problem

Game between adversary and algorithm on a

graph

Adversary deletes nodes

Algorithm adds edges

Goal of algorithm: Keep distances “small” while
ensuring no node gets overloaded with edges

Monday, March 7, 2011

B R R R R LR

Monday, March 7, 2011

Result

Our algorithm ensures:

o Shortest path between any pair of nodes
increases by no more than log n mult. factor

o Each node increases degree by no more than
mult. factor of 3

o Each “healing” requires latency and messages
per proc. that is logarithmic

Monday, March 7, 2011

Idea

e Maintain a collection of distributed data
structures called RT’s

o These RT’s give information on what new
links should be maintained

o When a node is deleted, quickly update the
RT’s

Monday, March 7, 2011

.

(b) Healed graph. The new nodes inside ellipse
are helper nodes.

(d) Healed Graph. Notice two RTs with common
leaf nodes.

t C

z O

(e) Node w attacked: notice w is a common leaf (f) Healed Graph. The RTs have merged. Some

of both RT's of the leaf nodes (z’s, u’s) are identical (so the
picture no longer shows the RT resembling a haft.
However, refer figure 10).

Monday, March 7, 2011

Outcomes

o Keep Shortest Paths Small

"The Forgiving Graph: A Distributed Data Structure for Maintaining Low Stretch under
Adversarial Attack" by Tom Hayes, Jared Saia and Amitabh Trehan, Principles of Distributed
Computing(PODC), 2009.

o Keep Diameter Small

"The Forgiving Tree: A Self-Healing Distributed Data Structure" by Tom Hayes and Navin
Rustagi and Jared Saia and Amitabh Trehan, Principles of Distributed Computing(PODC), 2008.

o Maintain Connectivity

"Picking up the Pieces: Self-Healing in Reconfigurable Networks" by Jared Saia and Amitabh Trehan In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2008

Monday, March 7, 2011

20

15

10

Maximum Degrees Incresss

ATy

LogN ——

Binary graph Heal ==-i=--

Binary tree Heal
S0asH ---u
DgsH --8--

Log M

12

18

Monday, March 7, 2011

Defense

Monday, March 7, 2011

Vision®

Monday, March 7, 2011

Vision

&
L 22 8
) £
2 4 .2 %
&
£ 2 3 2

MMMMMMMMMMMMMMMMMM

Vision

e Many small, interchangeable components
e Simple, decentralized algorithms

e Security through obscurity? Yes! But obscurity
encapsulated in random bits

Monday, March 7, 2011

Vision

e Provably maintain invariants under attack

o Invariants: 1) consensus; 2) communication; 3)
short paths

o Attack: 1) control of procs; 2) jamming
channels; 3) deletion of procs

Monday, March 7, 2011

Future Work

Practical Byzantine agreement; Scalable
Distributed Computation: e.g. MapReduce
without a master

Web Censorship: Can we obtain an asymptotic
economic analysis, like for jamming?

Social networks: Self-healing and conflict around
information diffusion

Monday, March 7, 2011

Future Work

e Amortized Robustness: “Fool me once, shame on
you. Fool me w(logn) times, shame on me.”

e (Can we enable enforcement of a “distributed
treaty” in systems like Bittorrent?

Monday, March 7, 2011

Questions

Monday, March 7, 2011

L.essons LLearned

1) Don’t trust a processor to run its own code!
Instead share state of a processor over more of
the network as that processor gets more
important.

2) Don’t let bad guys group together! Use
samplers to spread them out.

3) More efficient to render cheating ineffective
than to create infrastructure to catch cheaters

Monday, March 7, 2011

Bits vs n (log-1og)

40- :
——our algorithm
~CKS algorithm

© 35-
(/2]

®

e

® 30"
(@)

o

O ////
>

@©
o225~
o

N
()

(00)
e
o
N
N
N
N
-
(0))
-
00
N
o
N
N

log n

Monday, March 7, 2011

Reactive Jammer

o
E 1.24. —e— P.=0.3 |7
5 L. —v—P=05
& 0.8 e, 1
S N) o
W 0.6 e TR g v
C Ol T g TS g
©o04r T v
2 0.2 L L L L L L L

3 4 5 6 7 8 9 10

o

[
111111111
,,,,,,
' [
8.

'''''
'''''''
"""""""""""""""
,,,,,,,

/
vvvvvvvvvvv
''''''''''''

vvvvvvvvvvvvvv

e
N

O
........
.............

Mean Energy Ratio
o
»

©
N

Fig. 4. Mean energy ratio (maximum of ei-
ther player) for a reactive jammer with p; =
0.3,0.4, 0.5 and 0.6, separated for clarity. Dotted
lines signify 95% confidence intervals.

Monday, March 7, 2011

