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Group Decisions

e Periodically, components unite in a decision

o Idea: components vote. Problem: Who counts
the votes?
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Idea: Majority Filtering
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Idea: Majority Filtering
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Input Output
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Byzantine Agreement

o Each processor starts with a bit

o Goal: 1) all good procs output the same bit; and
2) this bit equals an input bit of a good proc

e t= # bad procs controlled by an adversary
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Problem

Input Output
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Byzantine
Agreement

MMMMMMMMMMMMMMMMMM



All good procs always output same bit

Output

Byzantine

Agreement
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[f majority bit held by >= 3 good procs,
| then all procs will output majority bit
E;Inpu’t

Byzantine
Agreement

Monday, March 7, 2011



Impossibility Result

o 1982: FLP show that 1 fault makes
deterministic BA impossible in asynch

model

e 2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all of Computer Science”
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Applications

o DPeer-to-peer networks

“These replicas cooperate with one another in a Byzantine

agreement protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ "00]

o Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD 03]

o Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]
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Applications

Peer-to-peer networks

“These replicas cooperate with one another in a Byzantine

agreement protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ "00]

Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD 03]

Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]

Also: Databases, Sensor Networks, Cloud Computing, Control
systems, etc.
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Scalability

“Unfortunately, Byzantine agreement requires a number of
messages quadratic in the number of participants, so it is
infeasible for use in synchronizing a large number of
replicas” [REGZK "03]

“Eventually batching cannot compensate for the quadratic
number of messages [of Practical Byzantine Fault Tolerance
(PBFT)]” [CMLRS '05]

“The communication overhead of Byzantine Agreement is
inherently large” [CWL "09]
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Impossibility

o Any BA (randomized) protocol which
. always uses less than n2 messages will fail

with non-zero probability. Implication of
DR ’85]
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Impossibility

o Any BA (randomized) protocol which

always uses less than n2 messages will fail
with non-zero probability. Implication of

|DR "85]

o To do better than n? messages, we will need
. to fail with non-zero probability
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Our Model

Private channels
Synchronous w/ rushing adversary
Unlimited messages for bad procs

Adaptive adversary
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Our Model

Private channels
Synchronous w/ rushing adversary
Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total
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Our results

Theorem 1 (BA): For any constants ¢, ¢, there is a
constant d and a protocol which solves BA, for t
<= (1/3- &¢)n, with prob. 1-1/n¢, using

O(y/nlog® n) bits per processor and O(logd n) rounds
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Also

Theorem 2: (a.e.BA) For any constants. ¢, ¢, there is a
constant d and a protocol which for t<=(1/3- ¢)
brings

1-O(1/log n) fraction of good procs to agreement
with prob. 1-1/n¢ using

Polylogarithmic bits per processor and O(log® n) rounds
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Previous work

Constant rounds in expectation is possible [FM
'88]

However, all previously known protocols use all-
to-all communication
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KEY IDEA: S

o S5=8. 5, ...8 Isastream of mostly random

numbers.

e Some a.e. globally known random numbers, some
numbers fixed by an adversary which can see the
preceding stream when choosing.
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Algorithm Outline

L Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S
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BA with Global Coin, GC
Rabin’s Algorithm \\w—-l |

il .

s

N

Let fraction be fraction of votes for majority bit

Send your vote to everyone

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Monday, March 7, 2011



BA with Global Coin, GC

Rabin’s Algorithm L |
i
Set your vote to input bit \\ - o

Repeat clogn times: '\

Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Output your vote
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fraction <2/3. I'm

checking the coin.
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20130 20 30 o B0 Bo o o
030 0 B0 o B0 Bo 3o e

Note: The procs with fraction >=2/3
will all change vote to same value
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Probability 1/2 that both groups change
vote to the same value
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Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/ﬁ\ procs will be equal evermore

7

A |

20:230 0 80 B0 20 o e o
030 o B0 Bo B0 B0 e
)
4
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Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e
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Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e
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Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

Prob of success =1 —1/nf

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e
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Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
/H\ procs will be equal evermore

Prob of failure = (1 /Q)Clogn

Prob of success

whp

20:230 0 80 B0 20 o e o
2030 o B0 B0 B0 B0 e
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ocalable a.e.BA w/ GC
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ocalable a.e.BA w/ GC
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ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n
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ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6
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ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!
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ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!
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ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!
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ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

No matter which subset is bad!

Monday, March 7, 2011



ocalable a.e.BA w/ GC

A sampler is a sparse graph
ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

A and the degree is just:
SO 9

925 % 2 10g2 (&

No matter which subset is bad!
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ocalable a.e.BA w/ GC

B, A sampler is a sparse graph
& ensuring that >1 -4 fraction
on right has a fraction of bad
neighbors <t¢/n+#6

A and the degree is just:
SO 9
7 925 % 2 10g2 e

= O(logn) if § =1/logn and 8 = O(1)
No matter which subset is bad!
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BA with Global Coin, GC

Rabin’s Algorithm L |
i
Set your vote to input bit \\ - o

Repeat clogn times: '\

Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Output your vote

Monday, March 7, 2011



BA with Global Coin, GC

Rabin’s Algorithm Ll !
v
Set your vote to input bit \\ - o
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to GC

Output your vote
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BA with Global Coin, GC

Rabin’s Algorithm |
v
Set your vote to input bit \\ -
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote tol(GC)e—?

Output your vote
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BA with Global Coin, GC

Rabin’s Algorithm L
v
Set your vote to input bit \\' 3
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set

vote to (€

Output your vote
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BA with Global Coin, GC

Rabin’s Algorithm L
v
Set your vote to input bit \\' 3
Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set

vote to O S;

Output your vote
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BA with Global Coin, GC
Rabin’s Algorithm \\\ P

Set your vote to input bit | -

Repeat clogn times: '\
neighbors in sampler
Send your vote to eVEse&Qe

Let fraction be fraction of votes for majority bit

If fraction >= 2/ 3, set vote to majority bit; else set
vote to € Si  Suyffices that O(log n) of the S;

are random and known a.e.
Output your vote
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Algorithm Outline

L Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S
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Algorithm Outline

L Using S to get a.e. BA \/

II: Using S to go from a.e. BA to BA

III: Implementing S
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Flooding!

Idea: Query random set of procs to ask bit - take
majority

Problem: In our model, the adversary can flood
all procs with queries!

Idea: Use S to decide which queries to answer.
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Flooding!

Idea: Query random set of procs to ask bit - take
majority

Problem: In our model, the adversary can flood
all procs with queries!

Idea: Use S to decide which queries to answer.
Each query will have a tag between 1 and v/n

The elements of S will now be numbers
between 1 and +/n
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a.e. BA to BA

Fori=1 to to c log n:

o Each proc. p picks kvnlogn random queries
<proc,tag> and sends tag to proc.

o (answers only if tag = S. (and not overloaded)

o if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

Monday, March 7, 2011



a.e. BA to BA

Fori=1 to to c log n:

o Each proc. p picks kvnlogn random queries
<proc,tag> and sends tag to proc.

o answers only if tag = S. (and q received vnlogn
queries with this tag)

o if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.
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a.e. BA to BA

without replacement  with replacement
Fori=1] to to c log n:

o EHach proc_ppicks kvnlogn random queries
<proc,tag> and sends tag to proc.

o answers only if tag = S. (and q received vnlogn

queries with this tag)

o if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.
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—a2>-=b 1% =d 1> <fI=vi-dgd
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N
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<a,2> i fi

| 2
N

< 4/n in expectation
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Analysis

’i‘ Each proc receives < nrequests
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Analysis

’i‘ Each proc receives < nrequests

#

,ﬁ\ So expected # requests with tags
& that match S; is < vn

#
#
#
#
#
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QD

o

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

’i‘ Each proc receives < nrequests

#

,ﬁ\ So expected # requests with tags
& that match S; is < vn

#

So in any loop, w/ prob >=1/2,
ﬁ < efraction of procs overloaded

o202
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QD

U-l

0250330 0 0 o o 1o e

0 ,o]

[

Analysis

’i‘ Each proc receives < nrequests

,ﬁ\ So expected # requests with tags
,ﬁ\ that match S; is < vn

#

So in any loop, w/ prob >=1/2,
i < efraction of procs overloaded

o2

whp, some loop iteration is “good”:
’ﬁ‘ < efraction of overloaded procs

Monday, March 7, 2011
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[

Analysis

’i‘ Each proc receives < nrequests

,ﬁ\ So expected # requests with tags
,ﬁ\ that match S; is < vn

,ﬁ\ So in any loop, w/ prob >=1/2,
i < efraction of procs overloaded
'ﬁ\ (By Linearity & Markov’s inequality)

'ﬁ\ whp, some loop iteration is “good”:
< efraction of overloaded procs
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Analysis

/i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

202030 o 0 o 0 e
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0250330 0 0 o o 1o e

0 ,o]

[

Analysis

i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

o203 o 0 o
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0250330 0 0 o o 1o e

0 ,o]

[

Analysis

i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

whp O(log n) of these have tag S,

202020 o 0 o
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[

Analysis

/i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

#

'ﬁ‘ whp O(log n) of these have tag S,

In a “good” iteration, a majority of
’ﬁ‘ queries are sent to good procs who are
not overloaded

Each good proc. decides on correct bit

Monday, March 7, 2011



QD

Uﬂ

@)

50553050 =80 =0 o 0 T

[

Analysis

/i\ whp, some loop iteration is “good”:
< ¢ fraction of overloaded procs

/ﬁ\ Each good proc. sends kvnlogn
queries

#

whp O(log n) of these have tag S,
,ﬁ\ (by Linearity and Chernoff bounds)
In a “good” iteration, a majority of

’ﬁ‘ queries are sent to good procs who are
not overloaded

Each good proc. decides on correct bit
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Algorithm Outline

I: Using S to get a.e. BA \/
II: Using S to go from a.e. BA to BA \/

III: Implementing S
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ITI: Implementing S
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Idea: Tournament
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Goal: Fraction of bad procs at top supernode is
not much more than t/n

|
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Then the procs at the top super node can
implement S

|
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Problem: How to hold local
elections?

Monday, March 7, 2011



Idea: Lightest Bin Algorith .

1. Each proc. picks a bin uniformly at random

2. Winners are candidates in lightest bin
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a,b,c,d,ef,gh,i
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you guys go firD

ei a,b,c,d,f,gh
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With O(n/log n) bins, whp, each
bin has about same # of good procs
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With O(n/log n) bins, whp, each
bin has about same # of good procs

So fraction of bad in lightest bin
will be not increase by much
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curses, foiled @

Monday, March 7, 2011



Monday, March 7, 2011



Monday, March 7, 2011



Problems:
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Problem 1: Bad procs may be inconsistent in
bin choice

Solution:

o Set of “enforcers” at each supernode who will run
the election

o Higher supernodes have more enforcers

e Samplers map between procs and enforcer sets

Monday, March 7, 2011



Enforcers

a,d,i
a,b,c,d,ef,gh,i

g h,i

a,cegh

a,b,c d,e,f
b,d,gh,i acd i
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Sampler

D DD D E & D
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Almost all enforcer
sets have >=2/3
fraction of good
procs

B @ 6 G & &b
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Enforcers

a,d,i
a,b,c,d,ef,gh,i

g h,i

a,cegh

a,b,c d,e,f
b,d,gh,i acd i

H
&@
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Enforcers

Connections between enforcers
in parent and children
supernodes also given by a

< sampler
bdghi
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Samplers

< a,b,c,d,e f,gh, >
b,d,gh,i

IDIEICREDY
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Samplers
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Problem 2: Adaptive adversary can wait and
take over all procs at the top supernode

Solution:

o Each proc p generates array 4, of random numbers
and secret shares it with its leaf node

e Numbers are revealed as needed to elect which
arrays will be passed on to parent node

e As winning array moves up, secret shares are split
up among more and more procs on higher levels

Monday, March 7, 2011



oecret Sharing

S )

/4

o p’ssecretis f(0), where f is a polynomial of
degree 3

o The shares are f() evaluated at different points
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oecret Sharing

S )

N/

o p’ssecret is f(0), where f is a polynomial of
degree 3

o The shares are f() evaluated at different points

o We use secret sharing schemes where justa 2/3
fraction of the shares are needed to reconstruct

Monday, March 7, 2011



Splitting Secrets

As winning array moves up, secret shares are split up among
more and more procs on higher levels and erased from children

E . 5

ocpoooocood
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Splitting Secrets

As winning array moves up, secret shares are split up among
more and more procs on higher levels and erased from children

C_ D £

OHOOOOOOD

%
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Revealing Secrets

o Secrets revealed as needed: by reversing communication
downward, reassembling shares at subtrees and leaves

o Thus, adversary can’t prevent secret from being exposed
by blocking a single path

C_ D £

C O C OC 20O C
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Revealing Secrets

o Leaves are sampled deterministically by procs in
subtree root in order to learn the secret value

Sampler

DIrcielelelolele

A

C_ > (.

S , bin numbers
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Implementing S

< a,b,c,d,e f,gh, >
b,d,gh,i

IDIEICREDY
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Implementing S

S and bin numbers are given by winning arrays of
children supernodes through secret sharing

< a,b,c,d,e f,gh, >

S , bin numbers

b,d,gh,i

S, bin numbers
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Algorithm Outline

L Using S to get a.e. BA \/

II: Using S to go from a.e. BA to BA \/

III: Implementing S \/
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Recap

Once S is known here, aeBA can be performed among
the enforcers at top sypernode (i.e. all procs)

< a,b,c,d,e f,gh, >

S , bin numbers

a,C,d,f,i a/C/e/g/h

S, bin numbers
(aed) Gtn) (odi)
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Models where we can
implement S

o Secret channels, adaptive adversary

Breaking the O(n”2) Bit Barrier: Scalable Byzantine agreement with an Adaptive Adversary" by Valerie King and
Jared Saia, Published in Principles of Distributed Computing (PODC),2010. Best Paper award.

o Open channels, nonadaptive adversary

"Fast, scalable Byzantine agreement in the full information model with a Nonadaptive adversary" by Valerie King
and Jared Saia International Symposium on Distributed Computing (DISC), 2009.

o Asynchronous, nonadaptive adversary

"Fast Asynchronous Byzantine Agreement and Leader Election with Full Information" by Bruce Kapron, David
Kempe, Valerie King, Jared Saia and Vishal Sanwalani. In Symposium on Discrete Algorithms (SODA), 2008
(_pdf) Invited submission to "Transactions on Algorithms" best papers of SODA 2008.

Monday, March 7, 2011
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Uses of S

e Scalable BA

e Scalable Leader election, Global Coin, etc.
(non-adaptive adversary)

o Can specify a set of n small (O(log n) size) and
balanced (no proc in more than O(log n))
quorums which are all good w.h.p

“*Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information" by Valerie King,
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and
Networking(ICDCN), 2010.
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Uses of S

e Scalable BA

e Scalable Leader election, Global Coin, etc.
(non-adaptive adversary)

ox Can specify a set of n small (O(log n) size) and
alanced (no proc in more than O(log n))
qiorums which are all good w.h.p

“*Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information" by Valerie King,
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and
Networking(IEDCN), 2010.

Robust Multiparty Computation
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Simulations
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Rest of Talk:
Sketch of Other Results

1) Conflict on a Communication Channel

2) Self-Healing Networks
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3 Player Game

o Alice wants to send a message to Bob
o Adversary wants to block the message

e There is a communication channel between Alice
and Bob, but Adv. can block it
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Costs

Costs $S to send on channel
Costs $L to listen on channel
Costs $J to block channel

Adv. spends $B
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Costs - Sensors

Costs $S to send on channel 38mW
Costs $L to listen on channel  35mW
Costs $J to block channel >TmW

Adv. spends $B >5,000mW
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Costs - Sensors

Costs $S to send on channel 38mW
Costs $L to listen on channel  35mW
Costs $J to block channel >TmW

Adv. spends $B >5,000mW

We assume S, L and ] are O(1)
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Key Assumptions

o If Alice or Bob listen on channel when Adv. jams
it, they can detect a “collision”

e Adv. can successfully imitate Bob but not Alice

Monday, March 7, 2011



An Idea

e A round consists of n slots

o Alice sends w/ prob c¢/vn

o Bob listens w/ prob c¢/v/n
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An Idea

. Assume Adv. blocks w/ prob 1/2.
e A round consists of n slots
Then prob. a given slot is one

o Alice sends w/ prob c¢/vn

where Alice sends and there is no

o Bob listens w/ prob ¢/vn | jamis ;2
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An Idea

e A round consists of n slots

o Alice sends w/ prob c¢/vn

o Bob listens w/ prob c¢/v/n

Prob(Bob fails to get message) ~ (1 —

Assume Adv. blocks w/ prob 1/2.
Then prob. a given slot is one
where Alice sends and there is no

: e
jam is 5o

< 6_C2/2
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An Idea

e A round consists of n slots

o Alice sends w/ prob c¢/vn

o Bob listens w/ prob c¢/v/n

Prob(Bob fails to get message) ~ (1 —

Assume Adv. blocks w/ prob 1/2.
Then prob. a given slot is one

where Alice sends and there is no

jam is ﬁ
C v
251
< 6—62/2

Bob can request a resend if necessary
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An Idea

. Assume Adv. blocks w/ prob 1/2.
e A round consists of n slots
Then prob. a given slot is one

o Alice sends w/ prob c¢/vn

where Alice sends and there is no

o Bob listens w/ prob ¢/vn | jamis ;2

Prob(Bob fails to get message) ~ (1 —

< 6—62/2

Bob can request a resend if necessary

After each failed round, n can double in size
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Problem

o Adv. can imitate Bob and keep sending fake
requests and thereby bankrupt Alice

o Idea: Impose a larger cost to trigger a resend, to
mitigate increased cost to Alice
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Our Algorithm:
Round i

Send Phase: For 2¢ slots do

e Alice sends with prob. 2/2°

e Bob listens with prob. 2/2(¢—1)¢
Req Phase: For 2¢ slots do

e If Bob has not received m, Bob sends req message
e Alice listens with prob. 4/2°

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates
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Our Algorithm:
Round i

Send Phase: For 2¢ slots do

e Alice sends with prob. 2/2°
e Bob listens with prob. 2/2(¢~D):

Req Phase: For 2¢ slots do

e If Bob has not received m, Bob sends req message
e Alice listens with prob. 4/2°

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

Analysis shows it's best to set ¢ = @
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Result

Theorem: Our algorithm has the following properties:
e The expected cost to Alice and Bob is O(B¥~! + 1) = O(B%%% + 1).

e Alice and Bob terminate within O(B¥) slots in expectation.
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Simulations
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Many Receivers

Theorem: There exists an algorithm for one sender and n receivers that
ensures the message is delivered to all receivers and has the following costs:

e The sender’s expected cost is O(B¥!logn + log? n)
e The expected cost to any receiver is O(B?~! + logn)

e The worst case number of slots used is O((B + 10g¢_1)“0+1)

£ 4R
Mfﬁ
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Many Players

o One player (dealer) wants to transmit a message to all
other players in an arbitrary graph (graph and dealer
location known to all)

o Assume in any broadcast neighborhood, that the
fraction of adversarial players is small enough to
achieve broadcast

Then can achieve broadcast, and adversary can force
good players to expend only o(B) additional energy
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Self-Healing Network
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Original Network

T =
*
ﬁ/ﬁ\ﬁ\—ﬁ
A &
/ﬁ\\ //ﬁ\/
\ﬁ/ 2 l\’ﬁ\ ﬁr\ﬁr
£\
e
# ﬁr\

MMMMMMMMMMMMMMMMMM



MMMMMMMMMMMMMMMMMM



MMMMMMMMMMMMMMMMMM



S
i &
. \
\ﬁ /ﬁ K ﬁr\ﬁ
f
b
x 3

MMMMMMMMMMMMMMMMMM



e A
—4
b ?
i e
i
Y

MMMMMMMMMMMMMMMMMM



%Recovered Network

MMMMMMMMMMMMMMMMMM



Problem

Game between adversary and algorithm on a

graph

Adversary deletes nodes

Algorithm adds edges

Goal of algorithm: Keep distances “small” while
ensuring no node gets overloaded with edges
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Result

Our algorithm ensures:

o Shortest path between any pair of nodes
increases by no more than log n mult. factor

o Each node increases degree by no more than
mult. factor of 3

o Each “healing” requires latency and messages
per proc. that is logarithmic
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Idea

e Maintain a collection of distributed data
structures called RT’s

o These RT’s give information on what new
links should be maintained

o When a node is deleted, quickly update the
RT’s
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.

(b) Healed graph. The new nodes inside ellipse
are helper nodes.

(d) Healed Graph. Notice two RTs with common
leaf nodes.

t C

z O

(e) Node w attacked: notice w is a common leaf (f) Healed Graph. The RTs have merged. Some

of both RT's of the leaf nodes (z’s, u’s) are identical (so the
picture no longer shows the RT resembling a haft.
However, refer figure 10).
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Outcomes

o Keep Shortest Paths Small

"The Forgiving Graph: A Distributed Data Structure for Maintaining Low Stretch under
Adversarial Attack" by Tom Hayes, Jared Saia and Amitabh Trehan, Principles of Distributed
Computing(PODC), 2009.

o Keep Diameter Small

"The Forgiving Tree: A Self-Healing Distributed Data Structure" by Tom Hayes and Navin
Rustagi and Jared Saia and Amitabh Trehan, Principles of Distributed Computing(PODC), 2008.

o Maintain Connectivity

"Picking up the Pieces: Self-Healing in Reconfigurable Networks" by Jared Saia and Amitabh Trehan In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2008
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Defense
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Vision®

Monday, March 7, 2011



Vision
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Vision

e Many small, interchangeable components
e Simple, decentralized algorithms

e Security through obscurity? Yes! But obscurity
encapsulated in random bits
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Vision

e Provably maintain invariants under attack

o Invariants: 1) consensus; 2) communication; 3)
short paths

o Attack: 1) control of procs; 2) jamming
channels; 3) deletion of procs
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Future Work

Practical Byzantine agreement; Scalable
Distributed Computation: e.g. MapReduce
without a master

Web Censorship: Can we obtain an asymptotic
economic analysis, like for jamming?

Social networks: Self-healing and conflict around
information diffusion
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Future Work

e Amortized Robustness: “Fool me once, shame on
you. Fool me w(logn) times, shame on me.”

e (Can we enable enforcement of a “distributed
treaty” in systems like Bittorrent?
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Questions
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L.essons LLearned

1) Don’t trust a processor to run its own code!
Instead share state of a processor over more of
the network as that processor gets more
important.

2) Don’t let bad guys group together! Use
samplers to spread them out.

3) More efficient to render cheating ineffective
than to create infrastructure to catch cheaters
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Bits vs n (log-1og)
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Reactive Jammer
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Fig. 4. Mean energy ratio (maximum of ei-
ther player) for a reactive jammer with p; =
0.3,0.4, 0.5 and 0.6, separated for clarity. Dotted
lines signify 95% confidence intervals.
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