
Conflict on Large Networks

Jared Saia

Research funding:

Collaborators: Bruce Kapron, David Kempe,
Valerie King, Amitabh Trehan, Vishal Sanwalani
and Maxwell Young

Monday, March 7, 2011

Components Fail,
Group Functions

Monday, March 7, 2011

Group Decisions
Periodically, components unite in a decision

Idea: components vote. Problem: Who counts
the votes?

Monday, March 7, 2011

Idea: Majority Filtering
Input Output

0

0

0

1

1

0

0

0

0

0

Monday, March 7, 2011

Idea: Majority Filtering
Input Output

0

0

1

1

0

0

0

0

Monday, March 7, 2011

Problem
Input Output

0

0

1

1

0

0

1

1

0

0

1

1

Monday, March 7, 2011

Byzantine Agreement

Each processor starts with a bit

Goal: 1) all good procs output the same bit; and
2) this bit equals an input bit of a good proc

t = # bad procs controlled by an adversary

Monday, March 7, 2011

Problem
Input Output

0

0

1

1

0

0

1

1

0

0

1

1

Monday, March 7, 2011

Idea
Input Output

Byzantine
Agreement

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

?

Monday, March 7, 2011

Input Output

Byzantine
Agreement

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

?

All good procs always output same bit

Monday, March 7, 2011

Input Output

Byzantine
Agreement

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

?

If majority bit held by >= 3 good procs,
then all procs will output majority bit

Monday, March 7, 2011

1982: FLP show that 1 fault makes
deterministic BA impossible in asynch
model

2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all of Computer Science”

Impossibility Result

Monday, March 7, 2011

Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine
agreement protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH ’08]

• Also: Control systems, Databases, Sensor networks, Cloud
Computing, etc.

Monday, March 7, 2011

Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine
agreement protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH ’08]
Also: Databases, Sensor Networks, Cloud Computing, Control
systems, etc.

Monday, March 7, 2011

Scalability

“Unfortunately, Byzantine agreement requires a number of
messages quadratic in the number of participants, so it is
infeasible for use in synchronizing a large number of
replicas” [REGZK ’03]

“Eventually batching cannot compensate for the quadratic
number of messages [of Practical Byzantine Fault Tolerance
(PBFT)]” [CMLRS ’05]

“The communication overhead of Byzantine Agreement is
inherently large” [CWL ’09]

Monday, March 7, 2011

Impossibility
Any BA (randomized) protocol which
always uses less than n2 messages will fail
with non-zero probability. Implication of
[DR ’85]

• To do better than n2 messages, we will need
to fail with non-zero probability

Monday, March 7, 2011

Impossibility
Any BA (randomized) protocol which
always uses less than n2 messages will fail
with non-zero probability. Implication of
[DR ’85]

To do better than n2 messages, we will need
to fail with non-zero probability

Monday, March 7, 2011

Our Model
Private channels

Synchronous w/ rushing adversary

Unlimited messages for bad procs

Adaptive adversary

Monday, March 7, 2011

Our Model
Private channels

Synchronous w/ rushing adversary

Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total

Monday, March 7, 2011

Our results

Theorem 1 (BA): For any constants c, ε, there is a
constant d and a protocol which solves BA, for t
<= (1/3- ε)n, with prob. 1-1/nc , using

O(
√
n log3 n) bits per processor and O(logd n) rounds

Monday, March 7, 2011

Also

Theorem 2: (a.e.BA) For any constants. c, ε, there is a
constant d and a protocol which for t<=(1/3- ε)
brings

1-O(1/log n) fraction of good procs to agreement
with prob. 1-1/nc using

Polylogarithmic bits per processor and O(logd n) rounds

Monday, March 7, 2011

Previous work

Constant rounds in expectation is possible [FM
’88]

However, all previously known protocols use all-
to-all communication

Monday, March 7, 2011

KEY IDEA: S

S= s1 s2 … sk is a stream of mostly random
numbers.

Some a.e. globally known random numbers, some
numbers fixed by an adversary which can see the
preceding stream when choosing.

Monday, March 7, 2011

Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

Monday, March 7, 2011

fraction >= 2/3. I’m
voting for 0.

0

0

0

0

0

0

1

Monday, March 7, 2011

0

0

0

0

1

1

1

fraction < 2/3. I’m
checking the coin.

0

1

Monday, March 7, 2011

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Monday, March 7, 2011

All-
to-all

Note: The procs with fraction >= 2/3
will all change vote to same value

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Monday, March 7, 2011

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Monday, March 7, 2011

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Probability 1/2 that both groups change
vote to the same value

Monday, March 7, 2011

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
procs will be equal evermore

Monday, March 7, 2011

All-
to-all

Prob of failure = (1/2)clogn

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
procs will be equal evermore

Monday, March 7, 2011

All-
to-all

Prob of failure = (1/2)clogn

= 1/nc

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
procs will be equal evermore

Monday, March 7, 2011

All-
to-all

Prob of failure = (1/2)clogn

= 1/nc

Prob of success = 1− 1/nc

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
procs will be equal evermore

Monday, March 7, 2011

All-
to-all

Prob of failure = (1/2)clogn

whp

Prob of success = 1− 1/nc

= 1/nc

Probability 1/2 that both groups change
vote to the same value

Once this happens, all votes of good
procs will be equal evermore

Monday, March 7, 2011

All-
to-all

Scalable a.e.BA w/ GC

Monday, March 7, 2011

Sampler

Scalable a.e.BA w/ GC

Monday, March 7, 2011

Scalable a.e.BA w/ GC
A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

Monday, March 7, 2011

Scalable a.e.BA w/ GC
A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

Scalable a.e.BA w/ GC

No matter which subset is bad!

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

Scalable a.e.BA w/ GC

No matter which subset is bad!

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

Scalable a.e.BA w/ GC

No matter which subset is bad!

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

Scalable a.e.BA w/ GC

No matter which subset is bad!

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

Scalable a.e.BA w/ GC

No matter which subset is bad!

and the degree is just:

2− δ

θ2δ · 2 log2 e

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

Scalable a.e.BA w/ GC

No matter which subset is bad!

2− δ

θ2δ · 2 log2 e
= O(log n) if δ = 1/ log n and θ = O(1)

and the degree is just:

A sampler is a sparse graph
ensuring that almost everyone
on right has a fraction of bad
neighbors ~ t/n

≥ 1− δ fraction

≤ t/n+ θ

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

neighbors in sampler

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

neighbors in sampler

?

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

neighbors in sampler

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

neighbors in sampler

si

Monday, March 7, 2011

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Rabin’s Algorithm

neighbors in sampler

si Suffices that O(log n) of the si
are random and known a.e.

Monday, March 7, 2011

Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

Flooding!
Idea: Query random set of procs to ask bit - take
majority

Problem: In our model, the adversary can flood
all procs with queries!

 Idea: Use S to decide which queries to answer.

• Each query will have a tag between 1 and

• The elements of S will now be numbers
between 1 and

Monday, March 7, 2011

Flooding!
Idea: Query random set of procs to ask bit - take
majority

Problem: In our model, the adversary can flood
all procs with queries!

 Idea: Use S to decide which queries to answer.

Each query will have a tag between 1 and

The elements of S will now be numbers
between 1 and

√
n

√
n

Monday, March 7, 2011

a.e. BA to BA
For i = 1 to to c log n:

Each proc. p picks random queries

<proc,tag> and sends tag to proc.

q answers only if tag = si (and not overloaded)
queries with this tag)

if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with
a RANDOM subsequence!

k
√
n log n

Monday, March 7, 2011

a.e. BA to BA
For i = 1 to to c log n:

Each proc. p picks random queries

<proc,tag> and sends tag to proc.

q answers only if tag = si (and q received
queries with this tag)

if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with
a RANDOM subsequence!

k
√
n log n

√
n log n

Monday, March 7, 2011

a.e. BA to BA
For i = 1 to to c log n:

Each proc. p picks random queries

<proc,tag> and sends tag to proc.

q answers only if tag = si (and q received
queries with this tag)

if 2/3 majority of p’s queries with the same tag are
returned and agree on b, then p decides b.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with
a RANDOM subsequence!

k
√
n log n

√
n log n

with replacementwithout replacement

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

<a,2> <b,1> <d,1> <f,2> <h,3>

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

≤ n

<a,2> <b,1> <d,1> <f,2> <h,3>

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

<a,2>

si = 2

<f,2>

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

<a,2>

si = 2

≤
√
n in expectation

<f,2>

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
≤ nEach proc receives requests

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
≤ n

≤
√
n

So expected # requests with tags
that match si is

Each proc receives requests

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
≤ n

≤
√
n

≤ �

Each proc receives requests

So expected # requests with tags
that match si is

So in any loop, w/ prob >=1/2,
fo fraction of procs overloaded

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
Each proc receives requests

So expected # requests with tags
that match si is ≤ √

n

≤ n

≤ �
whp, some loop iteration is “good”:
as fraction of overloaded procs

So in any loop, w/ prob >=1/2,
fo fraction of procs overloaded≤ �

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
Each proc receives requests

So expected # requests with tags
that match si is ≤ √

n

≤ n

≤ �
whp, some loop iteration is “good”:
as fraction of overloaded procs

So in any loop, w/ prob >=1/2,
fo fraction of procs overloaded≤ �

(By Linearity & Markov’s inequality)

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
whp, some loop iteration is “good”:
as fraction of overloaded procs≤ �

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
whp, some loop iteration is “good”:
as fraction of overloaded procs≤ �

Each good proc. sends
queries

k
√
n log n

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
whp, some loop iteration is “good”:
as fraction of overloaded procs≤ �

whp O(log n) of these have tag si

Each good proc. sends
queries

k
√
n log n

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
whp, some loop iteration is “good”:
as fraction of overloaded procs≤ �

whp O(log n) of these have tag si

Each good proc. sends
queries

In a “good” iteration, a majority of
queries are sent to good procs who are
not overloaded

Each good proc. decides on correct bit

k
√
n log n

Monday, March 7, 2011

a

b

c

d

e

f

g

h

i

Analysis
whp, some loop iteration is “good”:
as fraction of overloaded procs≤ �

whp O(log n) of these have tag si

Each good proc. sends
queries

Each good proc. decides on correct bit

(by Linearity and Chernoff bounds)
In a “good” iteration, a majority of
queries are sent to good procs who are
not overloaded

k
√
n log n

Monday, March 7, 2011

Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

III: Implementing S

Monday, March 7, 2011

Idea: Tournament

Monday, March 7, 2011

a b c d e f g h i

Monday, March 7, 2011

a b c d e f g h i

Monday, March 7, 2011

a b c d e f g h i

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Goal: Fraction of bad procs at top supernode is
not much more than t/n

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Then the procs at the top super node can
implement S

Monday, March 7, 2011

Problem: How to hold local
elections?

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Monday, March 7, 2011

Idea: Lightest Bin Algorithm

Feige

1. Each proc. picks a bin uniformly at random

2. Winners are candidates in lightest bin

Monday, March 7, 2011

a,b,c,d,e,f,g,h,i

Monday, March 7, 2011

a,b,c,d,f,g,he,i

Monday, March 7, 2011

a,b,c,d,f,g,he,i

you guys go first

Monday, March 7, 2011

e,i

d
a

h

f
c g

b
Monday, March 7, 2011

e,i

With O(n/log n) bins, whp, each
bin has about same # of good procs

d
a

h

f
c g

b
Monday, March 7, 2011

e,i

With O(n/log n) bins, whp, each
bin has about same # of good procs

So fraction of bad in lightest bin
will be not increase by much

d
a

h

f
c g

b
Monday, March 7, 2011

e,i

curses, foiled again!

d
a

h

f
c g

b
Monday, March 7, 2011

ei
d
a

h

f
c g

b
Monday, March 7, 2011

ei
d
a

h

f
c g

b
Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Problems:

Monday, March 7, 2011

Problem 1: Bad procs may be inconsistent in
bin choice

Solution:

 Set of “enforcers” at each supernode who will run
the election

 Higher supernodes have more enforcers

 Samplers map between procs and enforcer sets

Monday, March 7, 2011

Enforcers

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

Sampler

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h, i

b,c, g

a,f,h

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h, i

b,c, g

a,f,h

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h

A sampler ensures that
almost ever on right has
a fraction of bad
neighbors ~

No matter which subset is bad!

and the degree of the
graph is just:

≥ 1− δ fraction

≤ t/n+ θ

2− δ

θ2δ · 2 log2 e

Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,h

a

b

c

d

e

f

g

h

i

c,e,f

d,g,a

a,e,i

b,f,h

c,d,i

b,e,g

d,h,i

b,c, g

a,f,h

Almost all enforcer
sets have >= 2/3
fraction of good
procs

Monday, March 7, 2011

Enforcers

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
Monday, March 7, 2011

a b c d e f g h i

a,b,c d,e,f g,h,i

a,d,i

Enforcers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i b,c, g a,f,h

b,d,g,h,i a,c,d,f,i a,c,e,g,hc e f

b d g h i

Sampler

Connections between enforcers
in parent and children
supernodes also given by a
sampler

Monday, March 7, 2011

Samplers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
Monday, March 7, 2011

Samplers

c e f d g a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
Monday, March 7, 2011

Problem 2: Adaptive adversary can wait and
take over all procs at the top supernode
Solution:

Each proc p generates array of random numbers
and secret shares it with its leaf node

Numbers are revealed as needed to elect which
arrays will be passed on to parent node

As winning array moves up, secret shares are split
up among more and more procs on higher levels

Ap

Monday, March 7, 2011

Secret Sharing

p’s secret is f(0), where f is a polynomial of
degree 3

The shares are f() evaluated at different points

p

s1 s2 s3 s4

Monday, March 7, 2011

Secret Sharing

p’s secret is f(0), where f is a polynomial of
degree 3

The shares are f() evaluated at different points

p

s1 s2 s3 s4

We use secret sharing schemes where just a 2/3
fraction of the shares are needed to reconstruct

Monday, March 7, 2011

Splitting Secrets
As winning array moves up, secret shares are split up among
more and more procs on higher levels and erased from children

p

s1 s2

Monday, March 7, 2011

Splitting Secrets
As winning array moves up, secret shares are split up among
more and more procs on higher levels and erased from children

p

s1

s1,1 s1,2

s2

s2,1 s2,2

Monday, March 7, 2011

Revealing Secrets
Secrets revealed as needed: by reversing communication
downward, reassembling shares at subtrees and leaves
Thus, adversary can’t prevent secret from being exposed
by blocking a single path

s1

s1,1 s1,2

s2

s2,1 s2,2

s1 s1 s2s2

Monday, March 7, 2011

Revealing Secrets
Leaves are sampled deterministically by procs in
subtree root in order to learn the secret value

s1

s1,1 s1,2

s2

s2,1 s2,2

s1 s1 s2s2

Sampler S, bin numbers

Monday, March 7, 2011

Implementing S

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h
Monday, March 7, 2011

S and bin numbers are given by winning arrays of
children supernodes through secret sharing

S, bin numbers

S, bin numbers

c,e,f d,g,a

a,b,c,d,e,f,g,h,i

a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h

Implementing S

Monday, March 7, 2011

Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Implementing S

Monday, March 7, 2011

Recap
Once S is known here, aeBA can be performed among
the enforcers at top supernode (i.e. all procs)

S, bin numbers

S, bin numbers

c,e,f d,g,a a,e,i b,f,h c,d,i b,e,g d,h, i

b,d,g,h,i a,c,d,f,i a,c,e,g,h

b,c, g a,f,h

a,b,c,d,e,f,g,h,i

Monday, March 7, 2011

Models where we can
implement S
Secret channels, adaptive adversary

• Breaking the O(n^2) Bit Barrier: Scalable Byzantine agreement with an Adaptive Adversary'' by Valerie King and
Jared Saia, Published in Principles of Distributed Computing (PODC), 2010. Best Paper award.

Open channels, nonadaptive adversary
• "Fast, scalable Byzantine agreement in the full information model with a Nonadaptive adversary" by Valerie King

and Jared Saia International Symposium on Distributed Computing (DISC), 2009.

Asynchronous, nonadaptive adversary
• "Fast Asynchronous Byzantine Agreement and Leader Election with Full Information" by Bruce Kapron, David

Kempe, Valerie King, Jared Saia and Vishal Sanwalani. In Symposium on Discrete Algorithms (SODA), 2008
(pdf) Invited submission to "Transactions on Algorithms" best papers of SODA 2008.

Monday, March 7, 2011

http://www.cs.unm.edu/~saia/papers/asynch.pdf
http://www.cs.unm.edu/~saia/papers/asynch.pdf

Uses of S
Scalable BA

Scalable Leader election, Global Coin, etc.
(non-adaptive adversary)

Can specify a set of n small (O(log n) size) and
balanced (no proc in more than O(log n))
quorums which are all good w.h.p

• ``Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information'' by Valerie King,
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and
Networking(ICDCN), 2010.

Monday, March 7, 2011

Uses of S
Scalable BA

Scalable Leader election, Global Coin, etc.
(non-adaptive adversary)

Can specify a set of n small (O(log n) size) and
balanced (no proc in more than O(log n))
quorums which are all good w.h.p

• ``Load balanced Scalable Byzantine Agreement through Quorum Building, with Full Information'' by Valerie King,
Steve Lonargan, Jared Saia and Amitabh Trehan. In the International Conference on Distributed Computing and
Networking(ICDCN), 2010.

Robust Multiparty Computation

Monday, March 7, 2011

Simulations

Monday, March 7, 2011

Rest of Talk:
Sketch of Other Results

1) Conflict on a Communication Channel

2) Self-Healing Networks

Monday, March 7, 2011

Monday, March 7, 2011

m

Monday, March 7, 2011

m

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

m

Monday, March 7, 2011

m

Monday, March 7, 2011

m

Monday, March 7, 2011

m

Did he
get it???

Monday, March 7, 2011

Alice wants to send a message to Bob

Adversary wants to block the message

There is a communication channel between Alice
and Bob, but Adv. can block it

3 Player Game

Monday, March 7, 2011

Costs $S to send on channel

Costs $L to listen on channel

Costs $J to block channel

Adv. spends $B

Costs

Monday, March 7, 2011

Costs $S to send on channel 38mW

Costs $L to listen on channel 35mW

Costs $J to block channel >1mW

Adv. spends $B >5,000mW

Costs - Sensors

Monday, March 7, 2011

Costs $S to send on channel 38mW

Costs $L to listen on channel 35mW

Costs $J to block channel >1mW

Adv. spends $B >5,000mW

Costs - Sensors

We assume S, L and J are O(1)

Monday, March 7, 2011

Key Assumptions

If Alice or Bob listen on channel when Adv. jams
it, they can detect a “collision”

Adv. can successfully imitate Bob but not Alice

Monday, March 7, 2011

An Idea
A round consists of slots

Alice sends w/ prob

Bob listens w/ prob

n

c/
√
n

c/
√
n

Monday, March 7, 2011

An Idea
A round consists of slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

n

Monday, March 7, 2011

An Idea
A round consists of slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

Prob(Bob fails to get message) ∼
�
1− c

2
√
n

�c
√
n

≤ e−c2/2

n

Monday, March 7, 2011

An Idea
A round consists of slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

Prob(Bob fails to get message) ∼
�
1− c

2
√
n

�c
√
n

≤ e−c2/2

n

Bob can request a resend if necessary

Monday, March 7, 2011

An Idea
A round consists of slots

Alice sends w/ prob

Bob listens w/ prob

c/
√
n

c/
√
n

Assume Adv. blocks w/ prob 1/2.

Then prob. a given slot is one

where Alice sends and there is no

jam is c
2
√
n

Bob can request a resend if necessary

Prob(Bob fails to get message) ∼
�
1− c

2
√
n

�c
√
n

≤ e−c2/2

After each failed round, n can double in size

n

Monday, March 7, 2011

Problem

Adv. can imitate Bob and keep sending fake
requests and thereby bankrupt Alice

Idea: Impose a larger cost to trigger a resend, to
mitigate increased cost to Alice

Monday, March 7, 2011

BRIEF ARTICLE

THE AUTHOR

Send Phase: For 2ci slots do

• Alice sends with prob. 2/2i

• Bob listens with prob. 2/2(c−1)i

Req Phase: For 2i slots do

• If Bob has not received m, Bob sends req message
• Alice listens with prob. 4/2i

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

1

Our Algorithm:
Round i

Monday, March 7, 2011

BRIEF ARTICLE

THE AUTHOR

Send Phase: For 2ci slots do

• Alice sends with prob. 2/2i

• Bob listens with prob. 2/2(c−1)i

Req Phase: For 2i slots do

• If Bob has not received m, Bob sends req message
• Alice listens with prob. 4/2i

If Alice listened in Req phase and detected no req message
or collision then algorithm terminates

1

Analysis shows it’s best to set

Our Algorithm:
Round i

c = ϕ

Monday, March 7, 2011

Theorem: Our algorithm has the following properties:

• The expected cost to Alice and Bob is O(Bϕ−1 + 1) = O(B0.62 + 1).

• Alice and Bob terminate within O(Bϕ) slots in expectation.

Result

Monday, March 7, 2011

6

1 2 3 4 5 6 7 8 9 10
8.5

9

9.5

10

10.5

Maximum Number of Jamming Instances (κ) × 102

M
e

a
n

 A
b

so
lu

te
 C

o
st

1 2 3 4 5 6 7 8 9 10

40

50

60

70

80

90

Maximum Number of Jamming Instances (κ) × 102

M
e

a
n

 A
b

so
lu

te
 C

o
st

Fig. 2. Mean absolute cost (maximum of either
player) for a random jammer with pj = 0.5

(top) and 0.9 (bottom). Dotted lines signify 95%
confidence intervals.

1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Number of Jamming Instances (κ) × 102

M
e

a
n

 E
n

e
rg

y
R

a
tio

p
j
=0.9

p
j
=0.95

p
j
=1.0

6.5κ
−0.382

Fig. 3. Mean energy ratio (maximum of either
player) for a random jammer with pj = 0.9,
0.95 and 1.0. Dashed line is 0.6 ·κϕ−2. Dotted
lines signify 95% confidence intervals.

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

T × 104

M
e

a
n

 E
n

e
rg

y
R

a
tio

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

T × 104

M
e

a
n

 E
n

e
rg

y
R

a
tio p

t
=0.4

p
t
=0.6

p
t
=0.3

p
t
=0.5

Fig. 4. Mean energy ratio (maximum of ei-
ther player) for a reactive jammer with pt =

0.3, 0.4, 0.5 and 0.6, separated for clarity. Dotted
lines signify 95% confidence intervals.

Discussion: Note that there is an O(1) up-front cost per
execution of the protocol when there are no jamming-1 or
jamming-2 attacks. This is the price for communication in the
presence of a powerful adversary, even if that adversary is
not always active. In exchange, an adversary incurs a penalty
that increases commensurate with the amount of disruption it
causes. Therefore, the unfairness property does not hold.

Finally, might players share a secret schedule? This would
reduce the active costs in Theorem 1 where neither player
knows if the other is active with certainty. Unfortunately, such
a schedule becomes known to the adversary if the receiver
suffers a Byzantine fault which invalidates any improved
analysis and allows Player A to be manipulated.

C. Numerical Results

We further evaluate COMPETITIVE COMMUNICATION since
it is a building block for our next two protocols. Our aims
are modest, we: (1) show small constants in our asymptotic
analysis and (2) use back-of-the-envelope calculations to esti-
mate the behavior for pessimistic αcor and αadv values. The
impact of radio irregularity, weather and terrain should be
evaluated with a prototype; however, this is outside the scope
of our paper. This is left to future work and we note that such
detrimental factors affect other DoS-resistant proposals, and
there exist many results on mitigating their effect.

Parameters: The Telos mote is powered by two AA batteries
used in series which yields roughly 18000 J assuming a com-
bined 1.8V cut-off voltage (see [3]). The send/receive costs are
35 mW/38mW; however, we use the total operational cost of
41 mW [3]. Let |m| denote the packet (message) size. Headers
and footers of 2 bytes each are possible (see [35], [36]). With
|m| = 8 and 12 bytes this gives a respective payload of 4 and
8 bytes. The Telos’ CC2420 radio has a specification of 250
kbps, but in practice the data rate is typically less. Therefore,
we overestimate the time for sending/receiving at 3 ms which
accommodates our message sizes and is a reasonable TDMA
slot size. With these parameters, a player can be active for
M = 18000 J/(41 mW×3ms)≈ 1.4×108 slots. A MATLAB
implementation of our protocol is used to investigate (1) and
(2) with random and reactive jammers.

Random Jammers: We start by considering the absolute costs
for each player when jamming occurs with probability pj =
0.5 and 0.9 in each slot of an epoch. The adversary is able
to jam for at most κ instances. Each trial terminates upon
successful communication, or when κ is exhausted, and a run
consists of 50 trials. Each point in Figure 2 represents the mean
of 3 such runs and the maximum of Player A and Player B is
plotted. For pj = 0.5, the absolute cost is negligible. For pj =
0.9, the cost is slow growing and still very small relative to
M . This is representative for pj ≤ 0.9 (omitted for space) and
we observe that the absolute costs in our analysis are tolerable
up to this point. For larger values of pj , we consider energy
ratios. Figure 3 depicts the energy ratio for pj = 0.9, 0.95
and 1.0 (constant jammer). Clearly, the energy ratio favors
the players. Finally, a loose upper bound of 6κϕ−2 is plotted
which implies a small constant in our asymptotic analysis.

It is also important to consider αcor > αadv. There is no
consensus on the size of a jamming packet, |mj |, required to
disrupt a transmission. In [22], |mj | = 20 bytes using MICA2
motes. However, smaller jamming packets have examined in
more general wireless local area networks. In [23], |mj | ≈ 3
bytes and, in [24], |mj | is just a few bits! In comparison to
an adversary that transmits |mj| = 2, 3 or 5 bits, the players
must handle a |m| = 96 bit (12 byte) message. This implies
a factor discrepancy of 96/5≈ 20, 96/3 ≈ 30, 96/2 ≈ 50,
respectively. Consequently, we consider αadv = 1 but αcor =
20, 30 and 50. Extrapolating using αcor · 6 · κϕ−2, we note
that the energy ratios for αcor = 30 and 50 drop below 1 for
κ larger than 2.8× 105, 8 × 105 and 3.1 × 106, respectively.
These values are still small relative to M . For example, with
|mj | = 5 bits, the adversary must allow successful delivery of
the first packet or face spending M − 2.8 × 105 ≈ 108 time
slots suffering a disadvantageous energy ratio. By the same
argument, hundreds of communications can occur before the
players exhaust their energy supply.

Reactive Jammers: As discussed above, our protocol is
resistant to indiscriminate jamming. Now consider a reactive
adversary who can listen to 2 bytes of a header in a |m| = 8
byte packet and then decide whether to jam at zero cost.
Therefore, αadv = 1 while αcor = 4. In each slot, channel

pj is probability adversary jams a slot

Simulations

Monday, March 7, 2011

Theorem: There exists an algorithm for one sender and n receivers that
ensures the message is delivered to all receivers and has the following costs:

• The sender’s expected cost is O(Bϕ−1 log n+ logϕ n)

• The expected cost to any receiver is O(Bϕ−1 + log n)

• The worst case number of slots used is O((B + logϕ−1)ϕ+1)

Many Receivers

Monday, March 7, 2011

One player (dealer) wants to transmit a message to all
other players in an arbitrary graph (graph and dealer
location known to all)

Assume in any broadcast neighborhood, that the
fraction of adversarial players is small enough to
achieve broadcast

Then can achieve broadcast, and adversary can force
good players to expend only additional energy

Many Players

o(B)

Monday, March 7, 2011

Self-Healing Network

Monday, March 7, 2011

Original Network

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

Monday, March 7, 2011

?

?

?

?

?

Monday, March 7, 2011

Recovered Network

Monday, March 7, 2011

Game between adversary and algorithm on a
graph

Adversary deletes nodes

Algorithm adds edges

Goal of algorithm: Keep distances “small” while
ensuring no node gets overloaded with edges

Problem

Monday, March 7, 2011

Monday, March 7, 2011

Our algorithm ensures:

Shortest path between any pair of nodes
increases by no more than log n mult. factor

Each node increases degree by no more than
mult. factor of 3

Each “healing” requires latency and messages
per proc. that is logarithmic

Result

Monday, March 7, 2011

Maintain a collection of distributed data
structures called RT’s

These RT’s give information on what new
links should be maintained

When a node is deleted, quickly update the
RT’s

Idea

Monday, March 7, 2011

(x,y)

t

v

(x,v)

x

u

w

y

z

(a) The original graph. Node v attacked.

w’

t u

w

y

z

x’

x

u’

(b) Healed graph. The new nodes inside ellipse

are helper nodes.

w’

t u

w

y

z

x’

x

u’

(c) Node y attacked.

x’’

t u

w

z

x’

x

u’w’

z’

(d) Healed Graph. Notice two RTs with common

leaf nodes.

x’’

t u

w

z

x’

x

u’w’

z’

(e) Node w attacked: notice w is a common leaf

of both RTs

u’’

t u

x’

u’

z
x

x’’

z’

(f) Healed Graph. The RTs have merged. Some

of the leaf nodes (x’s, u’s) are identical (so the

picture no longer shows the RT resembling a haft.

However, refer figure 10).

Figure 9: Effect of 3 deletions on a graph. The RT for each deleted node consists of the
helper nodes, plus the neighbors of the deleted node which form the leaves of the tree. In
this example, the deleted nodes form an independent set, so the structure of the RTs does
not depend on the deletion order.

these nodes. A node takes part in a RT only if one of its neighbors got deleted. It can
only have two edges into a RT if two of its neighbors have already been deleted. Each edge

13

Monday, March 7, 2011

 Keep Shortest Paths Small
"The Forgiving Graph: A Distributed Data Structure for Maintaining Low Stretch under
Adversarial Attack" by Tom Hayes, Jared Saia and Amitabh Trehan, Principles of Distributed
Computing(PODC), 2009.

 Keep Diameter Small
"The Forgiving Tree: A Self-Healing Distributed Data Structure" by Tom Hayes and Navin
Rustagi and Jared Saia and Amitabh Trehan, Principles of Distributed Computing(PODC), 2008.

 Maintain Connectivity
"Picking up the Pieces: Self-Healing in Reconfigurable Networks" by Jared Saia and Amitabh Trehan In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2008

Outcomes

Monday, March 7, 2011

Chapter 2. DASH

Figure 2.10: Maximum Degree increase: DASH vs other algorithms

2.4.7 Heuristics and experiments involving Stretch

Stretch is an important property we would also like our self-healing algorithms to

minimize. The stretch for any two nodes is the ratio between their distance in the new

healed network and their distance in the original network. Stretch for the network

is the maximum stretch over all pairs of nodes. Stretch is also closely related to the

diameter of the network. In some sense, maintaining low degree increase and low

stretch are contradictory aims since a high-degree node will lead to shorter paths

and possibly lower stretch in the network.

SDASH: a strategy with good empirical results

SDASH is an algorithm we have devised which empirically has both low degree

increase and low stretch. During self-healing, we say a node surrogates if it replaces

50

Monday, March 7, 2011

Defense

Monday, March 7, 2011

Vision?

Monday, March 7, 2011

Vision

Monday, March 7, 2011

Vision

Many small, interchangeable components

Simple, decentralized algorithms

Security through obscurity? Yes! But obscurity
encapsulated in random bits

Monday, March 7, 2011

Vision

Provably maintain invariants under attack

Invariants: 1) consensus; 2) communication; 3)
short paths

Attack: 1) control of procs; 2) jamming
channels; 3) deletion of procs

Monday, March 7, 2011

Future Work

Practical Byzantine agreement; Scalable
Distributed Computation: e.g. MapReduce
without a master

Web Censorship: Can we obtain an asymptotic
economic analysis, like for jamming?

Social networks: Self-healing and conflict around
information diffusion

Monday, March 7, 2011

Future Work

Amortized Robustness: “Fool me once, shame on
you. Fool me times, shame on me.”

Can we enable enforcement of a “distributed
treaty” in systems like Bittorrent?

ω(log n)

Monday, March 7, 2011

Questions

?

Monday, March 7, 2011

Lessons Learned

1) Don’t trust a processor to run its own code!
Instead share state of a processor over more of
the network as that processor gets more
important.

2) Don’t let bad guys group together! Use
samplers to spread them out.

3) More efficient to render cheating ineffective
than to create infrastructure to catch cheaters

Monday, March 7, 2011

Bits vs n (log-log)

Monday, March 7, 2011

Reactive Jammer
6

1 2 3 4 5 6 7 8 9 10
8.5

9

9.5

10

10.5

Maximum Number of Jamming Instances (κ) × 102

M
e
a
n
 A

b
so

lu
te

 C
o
st

1 2 3 4 5 6 7 8 9 10

40

50

60

70

80

90

Maximum Number of Jamming Instances (κ) × 102

M
e
a
n
 A

b
so

lu
te

 C
o
st

Fig. 2. Mean absolute cost (maximum of either
player) for a random jammer with pj = 0.5

(top) and 0.9 (bottom). Dotted lines signify 95%
confidence intervals.

1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Number of Jamming Instances (κ) × 102

M
e
a
n
 E

n
e
rg

y
R

a
tio

p
j
=0.9

p
j
=0.95

p
j
=1.0

6.5κ
−0.382

Fig. 3. Mean energy ratio (maximum of either
player) for a random jammer with pj = 0.9,
0.95 and 1.0. Dashed line is 0.6 ·κϕ−2. Dotted
lines signify 95% confidence intervals.

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

T × 104

M
e
a
n
 E

n
e
rg

y
R

a
tio

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

T × 104

M
e
a
n
 E

n
e
rg

y
R

a
tio p

t
=0.4

p
t
=0.6

p
t
=0.3

p
t
=0.5

Fig. 4. Mean energy ratio (maximum of ei-
ther player) for a reactive jammer with pt =

0.3, 0.4, 0.5 and 0.6, separated for clarity. Dotted
lines signify 95% confidence intervals.

Discussion: Note that there is an O(1) up-front cost per
execution of the protocol when there are no jamming-1 or
jamming-2 attacks. This is the price for communication in the
presence of a powerful adversary, even if that adversary is
not always active. In exchange, an adversary incurs a penalty
that increases commensurate with the amount of disruption it
causes. Therefore, the unfairness property does not hold.

Finally, might players share a secret schedule? This would
reduce the active costs in Theorem 1 where neither player
knows if the other is active with certainty. Unfortunately, such
a schedule becomes known to the adversary if the receiver
suffers a Byzantine fault which invalidates any improved
analysis and allows Player A to be manipulated.

C. Numerical Results

We further evaluate COMPETITIVE COMMUNICATION since
it is a building block for our next two protocols. Our aims
are modest, we: (1) show small constants in our asymptotic
analysis and (2) use back-of-the-envelope calculations to esti-
mate the behavior for pessimistic αcor and αadv values. The
impact of radio irregularity, weather and terrain should be
evaluated with a prototype; however, this is outside the scope
of our paper. This is left to future work and we note that such
detrimental factors affect other DoS-resistant proposals, and
there exist many results on mitigating their effect.

Parameters: The Telos mote is powered by two AA batteries
used in series which yields roughly 18000 J assuming a com-
bined 1.8V cut-off voltage (see [3]). The send/receive costs are
35 mW/38mW; however, we use the total operational cost of
41 mW [3]. Let |m| denote the packet (message) size. Headers
and footers of 2 bytes each are possible (see [35], [36]). With
|m| = 8 and 12 bytes this gives a respective payload of 4 and
8 bytes. The Telos’ CC2420 radio has a specification of 250
kbps, but in practice the data rate is typically less. Therefore,
we overestimate the time for sending/receiving at 3 ms which
accommodates our message sizes and is a reasonable TDMA
slot size. With these parameters, a player can be active for
M = 18000 J/(41 mW×3ms)≈ 1.4×108 slots. A MATLAB
implementation of our protocol is used to investigate (1) and
(2) with random and reactive jammers.

Random Jammers: We start by considering the absolute costs
for each player when jamming occurs with probability pj =
0.5 and 0.9 in each slot of an epoch. The adversary is able
to jam for at most κ instances. Each trial terminates upon
successful communication, or when κ is exhausted, and a run
consists of 50 trials. Each point in Figure 2 represents the mean
of 3 such runs and the maximum of Player A and Player B is
plotted. For pj = 0.5, the absolute cost is negligible. For pj =
0.9, the cost is slow growing and still very small relative to
M . This is representative for pj ≤ 0.9 (omitted for space) and
we observe that the absolute costs in our analysis are tolerable
up to this point. For larger values of pj , we consider energy
ratios. Figure 3 depicts the energy ratio for pj = 0.9, 0.95
and 1.0 (constant jammer). Clearly, the energy ratio favors
the players. Finally, a loose upper bound of 6κϕ−2 is plotted
which implies a small constant in our asymptotic analysis.

It is also important to consider αcor > αadv. There is no
consensus on the size of a jamming packet, |mj |, required to
disrupt a transmission. In [22], |mj | = 20 bytes using MICA2
motes. However, smaller jamming packets have examined in
more general wireless local area networks. In [23], |mj | ≈ 3
bytes and, in [24], |mj | is just a few bits! In comparison to
an adversary that transmits |mj| = 2, 3 or 5 bits, the players
must handle a |m| = 96 bit (12 byte) message. This implies
a factor discrepancy of 96/5≈ 20, 96/3 ≈ 30, 96/2 ≈ 50,
respectively. Consequently, we consider αadv = 1 but αcor =
20, 30 and 50. Extrapolating using αcor · 6 · κϕ−2, we note
that the energy ratios for αcor = 30 and 50 drop below 1 for
κ larger than 2.8× 105, 8 × 105 and 3.1 × 106, respectively.
These values are still small relative to M . For example, with
|mj | = 5 bits, the adversary must allow successful delivery of
the first packet or face spending M − 2.8 × 105 ≈ 108 time
slots suffering a disadvantageous energy ratio. By the same
argument, hundreds of communications can occur before the
players exhaust their energy supply.

Reactive Jammers: As discussed above, our protocol is
resistant to indiscriminate jamming. Now consider a reactive
adversary who can listen to 2 bytes of a header in a |m| = 8
byte packet and then decide whether to jam at zero cost.
Therefore, αadv = 1 while αcor = 4. In each slot, channel

Monday, March 7, 2011

