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6 Degrees

Ouisa Kitteridge: “I read somewhere that everybody on 
this planet is separated by only six other people. Six 
degrees of separation between us and everyone else on 
this planet. The President of the United States, a 
gondolier in Venice, just fill in the names. I find it 
extremely comforting that we're so close. I also find it like 
Chinese water torture, that we're so close because you 
have to find the right six people to make the right 
connection.”
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6 Degrees

Ouisa Kitteridge: “I read somewhere that everybody on 
this planet is separated by only six other people. Six 
degrees of separation between us and everyone else on 
this planet. The President of the United States, a 
gondolier in Venice, just fill in the names. I find it 
extremely comforting that we're so close. I also find it like 
Chinese water torture, that we're so close because you 
have to find the right six people to make the right 
connection.”

Tess: “He offered you parts in Cats? I thought you hated Cats. You said it 
was an all time low in a lifetime of theatre going. You said, "Aeschylus did 
not invent the theatre to have it end up a bunch of chorus kids in cat suits 
prancing around wondering which of them will go to kitty-cat heaven."
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Milgram’s 
Experiment

Start: 160 random 
people in Omaha
Target: 1 stock broker 
in Boston

Rule: Only send to a friend or acquaintance

20.3. DECENTRALIZED SEARCH 617

Figure 20.4: An image from Milgram’s original article in Psychology Today, showing a “com-
posite” of the successful paths converging on the target person. Each intermediate step is
positioned at the average distance of all chains that completed that number of steps. (Image
from [297].)

on the much more interesting experiment of constructing paths by “tunneling” through the

network, with the letter advancing just one person at a time — a process that could well

have failed to reach the target, even if a short path existed.

So the success of the experiment raises fundamental questions about the power of collec-

tive search: even if we posit that the social network contains short paths, why should it have

been structured so as to make this type of decentralized search so effective? Clearly the net-

work contained some type of “gradient” that helped participants guide messages toward the

target. As with the Watts-Strogatz model, which sought to provide a simple framework for

thinking about short paths in highly clustered networks, this type of search is also something

we can try to model: can we construct a random network in which decentralized routing

succeeds, and if so, what are the qualitative properties that are crucial for success?

A model for decentralized search. To begin with, it is not difficult to model the kind

of decentralized search that was taking place in the Milgram experiment. Starting with the

grid-based model of Watts and Strogatz, we suppose that a starting node s is given a message

that it must forward to a target node t, passing it along edges of the network. Initially s

only knows the location of t on the grid, but, crucially, it does not know the random edges

out of any node other than itself. Each intermediate node along the path has this partial

information as well, and it must choose which of its neighbors to send the message to next.

These choices amount to a collective procedure for finding a path from s to t — just as the

participants in the Milgram experiment collectively constructed paths to the target person.
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on the much more interesting experiment of constructing paths by “tunneling” through the

network, with the letter advancing just one person at a time — a process that could well

have failed to reach the target, even if a short path existed.

So the success of the experiment raises fundamental questions about the power of collec-

tive search: even if we posit that the social network contains short paths, why should it have

been structured so as to make this type of decentralized search so effective? Clearly the net-

work contained some type of “gradient” that helped participants guide messages toward the

target. As with the Watts-Strogatz model, which sought to provide a simple framework for

thinking about short paths in highly clustered networks, this type of search is also something

we can try to model: can we construct a random network in which decentralized routing

succeeds, and if so, what are the qualitative properties that are crucial for success?

A model for decentralized search. To begin with, it is not difficult to model the kind

of decentralized search that was taking place in the Milgram experiment. Starting with the

grid-based model of Watts and Strogatz, we suppose that a starting node s is given a message

that it must forward to a target node t, passing it along edges of the network. Initially s

only knows the location of t on the grid, but, crucially, it does not know the random edges

out of any node other than itself. Each intermediate node along the path has this partial

information as well, and it must choose which of its neighbors to send the message to next.

These choices amount to a collective procedure for finding a path from s to t — just as the

participants in the Milgram experiment collectively constructed paths to the target person.

Recent: ~6 hops to route via email (Watts, ’01)
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1) Shortest paths are small 

2) Local Clusters 

“Six degrees of separation ... I find it extremely comforting 
that we're so close.”

Social Network
Properties

“Keep your friends close and your enemies closer” - 
Machiavelli
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Watts-Strogatz Model
“Small World” model ensures both:

Short paths (logarithmic)

Many clusters
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Watts-Strogatz Model
“Small World” model ensures both:

Short paths (logarithmic)

Many clusters

Small World is 
ordered + random
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Watts-Strogatz
20.2. STRUCTURE AND RANDOMNESS 615

Figure 20.3: The general conclusions of the Watts-Strogatz model still follow even if only a

small fraction of the nodes on the grid each have a single random link.

two nodes are one grid step apart if they are directly adjacent to each other in either the

horizontal or vertical direction.

We now create a network by giving each node two kinds of links: those explainable purely

by homophily, and those that constitute weak ties. Homophily is captured by having each

node form a link to all other nodes that lie within a radius of up to r grid steps away, for

some constant value of r: these are the links you form to people because you are similar to

them. Then, for some other constant value k, each node also forms a link to k other nodes

selected uniformly at random from the grid — these correspond to weak ties, connecting

nodes who lie very far apart on the grid.

Figure 20.2(b) gives a schematic picture of the resulting network — a hybrid structure

consisting of a small amount of randomness (the weak ties) sprinkled onto an underlying

structured pattern (the homophilous links). Watts and Strogatz observe first that the net-

work has many triangles: any two neighboring nodes (or nearby nodes) will have many

common friends, where their neighborhoods of radius r overlap, and this produces many

triangles. But they also find that there are — with high probability — very short paths

connecting every pair of nodes in the network. Roughly, the argument is as follows. Suppose

1) ordered links: 
neighbors in grid
2) random links: to 
random node in grid 
Each node has one 
random link
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1) ordered links: 
neighbors in grid
2) random links: to 
random node in grid 
Each node has one 
random link

Clear that: 1) Many local clusters;
Can show: 2) All distances at most 
logarithmic.
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triangles. But they also find that there are — with high probability — very short paths
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1) ordered links: 
neighbors in grid
2) random links: to 
random node in grid 
Each node has one 
random link

Clear that: 1) Many local clusters;
Can show: 2) All distances at most 
logarithmic.

Node 
selected 

uniformly at 
random
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A Problem
“Six degrees of separation ... I find it extremely 
comforting that we're so close... I also find it like Chinese 
water torture, that we're so close because you have to 
find the right six people to make the right 
connection.”

Knowing there exist six people is very 
different than finding those six people
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A Problem
“Six degrees of separation ... I find it extremely 
comforting that we're so close... I also find it like Chinese 
water torture, that we're so close because you have to 
find the right six people to make the right 
connection.”

Knowing there exist six people is very 
different than finding those six people

In fact, Watts-Strogatz is wrong!  It doesn’t 
account for finding the six people. 
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start

target
n nodes in grid
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Region containing 
√n nodes

n nodes in grid
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Figure 20.2(b) gives a schematic picture of the resulting network — a hybrid structure
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structured pattern (the homophilous links). Watts and Strogatz observe first that the net-
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start

target
Region containing 
√n nodes

Q: What is expected time 
to get to this red square?

n nodes in grid
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Using short links alone 
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We now create a network by giving each node two kinds of links: those explainable purely

by homophily, and those that constitute weak ties. Homophily is captured by having each

node form a link to all other nodes that lie within a radius of up to r grid steps away, for

some constant value of r: these are the links you form to people because you are similar to

them. Then, for some other constant value k, each node also forms a link to k other nodes

selected uniformly at random from the grid — these correspond to weak ties, connecting

nodes who lie very far apart on the grid.

Figure 20.2(b) gives a schematic picture of the resulting network — a hybrid structure

consisting of a small amount of randomness (the weak ties) sprinkled onto an underlying

structured pattern (the homophilous links). Watts and Strogatz observe first that the net-

work has many triangles: any two neighboring nodes (or nearby nodes) will have many

common friends, where their neighborhoods of radius r overlap, and this produces many

triangles. But they also find that there are — with high probability — very short paths

connecting every pair of nodes in the network. Roughly, the argument is as follows. Suppose

Using short links alone 
requires √n hops

A long link has prob. 1/√n 
of falling in red square

Expect to have to visit √n nodes before finding a 
long link which falls in red square!

Q: What is expected time 
to get to this red square?

Friday, June 24, 2011



A Problem
Expect to have to visit √n nodes before finding a 

long link which falls in red square!

Friday, June 24, 2011



A Problem
Expect to have to visit √n nodes before finding a 

long link which falls in red square!

307 million people in the United States

Friday, June 24, 2011



A Problem
Expect to have to visit √n nodes before finding a 

long link which falls in red square!

307 million people in the United States

√307 million is about 17,500

Friday, June 24, 2011



A Problem
Expect to have to visit √n nodes before finding a 

long link which falls in red square!

307 million people in the United States

√307 million is about 17,500

Need much quicker routing!!! 
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Kleinberg Model
1) ordered links: 
neighbors in grid
2) random links: to 
random node in grid 
Each node has one 
random link

Watts-Strogatz: 
Node selected 
uniformly at 

random
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1) ordered links: 
neighbors in grid
2) random links: to 
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Each node has one 
random link

Watts-Strogatz: 
Node selected 
uniformly at 

random

Kleinberg: Node x selected 
with probability 
∝1/(distance to x)2
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Kleinberg Model
618 CHAPTER 20. THE SMALL-WORLD PHENOMENON

(a) A small clustering exponent (b) A large clustering exponent

Figure 20.5: With a small clustering exponent, the random edges tend to span long distances

on the grid; as the clustering exponent increases, the random edges become shorter.

We will evaluate different search procedures according to their delivery time — the expected

number of steps required to reach the target, over a randomly generated set of long-range

contacts, and randomly chosen starting and target nodes.

Unfortunately, given this set-up, one can prove that decentralized search in the Watts-

Strogatz model will necessarily require a large number of steps to reach a target — much

larger than the true length of the shortest path [248]. As a mathematical model, the Watts-

Strogatz network is thus effective at capturing the density of triangles and the existence of

short paths, but not the ability of people, working together in the network, to actually find

the paths. Essentially, the problem is that the weak ties that make the world small are “too

random” in this model: since they’re completely unrelated to the similarity among nodes

that produces the homophily-based links, they’re hard for people to use reliably.

One way to think about this is in terms of Figure 20.4, a hand-drawn image from Mil-

gram’s original article in Psychology Today. In order to reach a far-away target, one must

use long-range weak ties in a fairly structured, methodical way, constantly reducing the dis-

tance to the target. As Milgram observed in the discussion accompanying this picture, “The

geographic movement of the [letter] from Nebraska to Massachusetts is striking. There is a

progressive closing in on the target area as each new person is added to the chain” [297]. So

it is not enough to have a network model in which weak ties span only the very long ranges;

it is necessary to span all the intermediate ranges of scale as well. Is there a simple way to

adapt the model to take this into account?

1) ordered links: 
neighbors in grid
2) random links: to 
random node in grid 
Each node has one 
random link

Watts-Strogatz: 
Node selected 
uniformly at 

random

Kleinberg: Node x selected 
with probability 
∝1/(distance to x)2
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Kleinberg

Result: In Kleinberg model, can route from any 
start node to any goal node in essentially log2 n 
hops!
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Data
622 CHAPTER 20. THE SMALL-WORLD PHENOMENON

Figure 20.8: The population density of the LiveJournal network studied by Liben-Nowell et
al. (Image from [277].)

20.5 Empirical Analysis and Generalized Models

The results we’ve seen thus far have been for stylized models, but they raise a number of

qualitative issues that one can try corroborating with data from real social networks. In

this section we discuss empirical studies that analyze geographic data to look for evidence

of the exponent q = 2, as well as more general versions of these models that incorporate

non-geographic notions of social distance.

Geographic Data on Friendship. In the past few years, the rich data available on social

networking sites has made it much easier to get large-scale data that provides insight into

how friendship links scale with distance. Liben-Nowell et al. [277] used the blogging site

LiveJournal for precisely this purpose, analyzing roughly 500,000 users who provided a U.S.

ZIP code for their home address, as well as links to their friends on the system. Note that

LiveJournal is serving here primarily as a very useful “model system,” containing data on

the geographic basis of friendship links on a scale that would be enormously difficult to

obtain by more traditional survey methods. From a methodological point of view, it is an

interesting and fairly unresolved issue to understand how closely the structure of friendships

defined in on-line communities corresponds to the structure of friendships as we understand

them in off-line settings.

A number of things have to be done in order to align the LiveJournal data with the

basic grid model, and perhaps the most subtle involves the fact that the population density

of the users is extremely non-uniform (as it is for the U.S. as a whole). See Figure 20.8

for a visualization of the population density in the LiveJournal data. In particular, the
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Figure 20.8: The population density of the LiveJournal network studied by Liben-Nowell et
al. (Image from [277].)

20.5 Empirical Analysis and Generalized Models

The results we’ve seen thus far have been for stylized models, but they raise a number of

qualitative issues that one can try corroborating with data from real social networks. In

this section we discuss empirical studies that analyze geographic data to look for evidence

of the exponent q = 2, as well as more general versions of these models that incorporate

non-geographic notions of social distance.

Geographic Data on Friendship. In the past few years, the rich data available on social

networking sites has made it much easier to get large-scale data that provides insight into

how friendship links scale with distance. Liben-Nowell et al. [277] used the blogging site

LiveJournal for precisely this purpose, analyzing roughly 500,000 users who provided a U.S.

ZIP code for their home address, as well as links to their friends on the system. Note that

LiveJournal is serving here primarily as a very useful “model system,” containing data on

the geographic basis of friendship links on a scale that would be enormously difficult to

obtain by more traditional survey methods. From a methodological point of view, it is an

interesting and fairly unresolved issue to understand how closely the structure of friendships

defined in on-line communities corresponds to the structure of friendships as we understand

them in off-line settings.

A number of things have to be done in order to align the LiveJournal data with the

basic grid model, and perhaps the most subtle involves the fact that the population density

of the users is extremely non-uniform (as it is for the U.S. as a whole). See Figure 20.8

for a visualization of the population density in the LiveJournal data. In particular, the
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rank 7

(a) w is the 7th closest node to v.

distance d

rank ~ d
2

(b) Rank-based friendship with uniform population den-
sity.

Figure 20.9: When the population density is non-uniform, it can be useful to understand

how far w is from v in terms of its rank rather than its physical distance. In (a), we say that

w has rank 7 with respect to v because it is the 7th closest node to v, counting outward in

order of distance. In (b), we see that for the original case in which the nodes have a uniform

population density, a node w at distance d from v will have a rank that is proportional to

d2, since all the nodes inside the circle of radius d will be closer to v than w is.

inverse-square distribution is useful for finding targets when nodes are uniformly spaced in

two dimensions; what’s a reasonable generalization to the case in which they can be spread

very non-uniformly?

Rank-Based Friendship. One approach that works well is to determine link probabilities

not by physical distance, but by rank. Let’s suppose that as a node v looks out at all other

nodes, it ranks them by proximity: the rank of a node w, denoted rank(w), is equal to the

number of other nodes that are closer to v than w is. For example, in Figure 20.9(a), node

w would have rank seven, since seven others nodes (including v itself) are closer to v than

w is. Now, suppose that for some exponent p, node v creates a random link as follows: it

chooses a node w as the other end with probability proportional to rank(w)−p. We will call

this rank-based friendship with exponent p.

Which choice of exponent p would generalize the inverse-square distribution for uniformly-

spaced nodes? As Figure 20.9(b) shows, if a node w in a uniformly-spaced grid is at distance

d from v, then it lies on the circumference of a disc of radius d, which contains about d2 closer

nodes — so its rank is approximately d2. Thus, linking to w with probability proportional

to d−2 is approximately the same as linking with probability rank(w)−1, so this suggests

that exponent p = 1 is the right generalization of the inverse-square distribution. In fact,

Liben-Nowell et al. were able to prove that for essentially any population density, if random

General Case: prob. of link to node w/ rank r is 
∝1/r
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Figure 20.8: The population density of the LiveJournal network studied by Liben-Nowell et
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20.5 Empirical Analysis and Generalized Models

The results we’ve seen thus far have been for stylized models, but they raise a number of

qualitative issues that one can try corroborating with data from real social networks. In

this section we discuss empirical studies that analyze geographic data to look for evidence

of the exponent q = 2, as well as more general versions of these models that incorporate

non-geographic notions of social distance.

Geographic Data on Friendship. In the past few years, the rich data available on social

networking sites has made it much easier to get large-scale data that provides insight into

how friendship links scale with distance. Liben-Nowell et al. [277] used the blogging site

LiveJournal for precisely this purpose, analyzing roughly 500,000 users who provided a U.S.

ZIP code for their home address, as well as links to their friends on the system. Note that

LiveJournal is serving here primarily as a very useful “model system,” containing data on

the geographic basis of friendship links on a scale that would be enormously difficult to

obtain by more traditional survey methods. From a methodological point of view, it is an

interesting and fairly unresolved issue to understand how closely the structure of friendships

defined in on-line communities corresponds to the structure of friendships as we understand

them in off-line settings.

A number of things have to be done in order to align the LiveJournal data with the

basic grid model, and perhaps the most subtle involves the fact that the population density

of the users is extremely non-uniform (as it is for the U.S. as a whole). See Figure 20.8

for a visualization of the population density in the LiveJournal data. In particular, the
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Figure 20.9: When the population density is non-uniform, it can be useful to understand

how far w is from v in terms of its rank rather than its physical distance. In (a), we say that

w has rank 7 with respect to v because it is the 7th closest node to v, counting outward in

order of distance. In (b), we see that for the original case in which the nodes have a uniform

population density, a node w at distance d from v will have a rank that is proportional to

d2, since all the nodes inside the circle of radius d will be closer to v than w is.

inverse-square distribution is useful for finding targets when nodes are uniformly spaced in

two dimensions; what’s a reasonable generalization to the case in which they can be spread

very non-uniformly?

Rank-Based Friendship. One approach that works well is to determine link probabilities

not by physical distance, but by rank. Let’s suppose that as a node v looks out at all other

nodes, it ranks them by proximity: the rank of a node w, denoted rank(w), is equal to the

number of other nodes that are closer to v than w is. For example, in Figure 20.9(a), node

w would have rank seven, since seven others nodes (including v itself) are closer to v than

w is. Now, suppose that for some exponent p, node v creates a random link as follows: it

chooses a node w as the other end with probability proportional to rank(w)−p. We will call

this rank-based friendship with exponent p.

Which choice of exponent p would generalize the inverse-square distribution for uniformly-

spaced nodes? As Figure 20.9(b) shows, if a node w in a uniformly-spaced grid is at distance

d from v, then it lies on the circumference of a disc of radius d, which contains about d2 closer

nodes — so its rank is approximately d2. Thus, linking to w with probability proportional

to d−2 is approximately the same as linking with probability rank(w)−1, so this suggests

that exponent p = 1 is the right generalization of the inverse-square distribution. In fact,

Liben-Nowell et al. were able to prove that for essentially any population density, if random

General Case: prob. of link to node w/ rank r is 
∝1/r
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(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: East and West coasts

Figure 20.10: The probability of a friendship as a function of geographic rank on the blogging
site LiveJournal. (Image from [277].)

links are constructed using rank-based friendship with exponent 1, the resulting network

allows for efficient decentralized search with high probability. In addition to generalizing the

inverse-square result for the grid, this result has a nice qualitative summary: to construct

a network that is efficiently searchable, create a link to each node with probability that is

inversely proportional to the number of closer nodes.

Now one can go back to LiveJournal and see how well rank-based friendship fits the

distribution of actual social network links: we consider pairs of nodes where one assigns

the other a rank of r, and we ask what fraction f of these pairs are actually friends, as a

function of r. Does this fraction decrease approximately like r−1? Since we’re looking for a

power-law relationship between the rank r and the fraction of edges f , we can proceed as

in Chapter 18: rather than plotting f as a function of r, we can plot log f as a function of

log r, see if we find an approximately straight line, and then estimate the exponent p as the

slope of this line.

Figure 20.10(a) shows this result for the LiveJournal data; we see that much of the body

of the curve is approximately a straight line sandwiched between slopes of −1.15 and −1.2,

and hence close to the optimal exponent of −1. It is also interesting to work separately with

the more structurally homogeneous subsets of the data consisting of West-Coast users and

East-Coast users, and when one does this the exponent becomes very close to the optimal

value of −1. Figure 20.10(b) shows this result: The lower dotted line is what you should

see if the points followed the distribution rank−1, and the upper dotted line is what you

should see if the points followed the distribution rank−1.05. The proximity of the rank-

based exponent on real networks to the optimal value of −1 has also been corroborated by

subsequent research. In particular, as part of a recent large-scale study of several geographic

phenomena in the Facebook social network, Backstrom et al. [33] returned to the question

of rank-based friendship and again found an exponent very close to −1; in their case, the

Observed probability fits very close to 1/r
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(a) A set of nodes arranged in a ring.
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(b) A ring augmented with random long-
range links.

Figure 20.14: The analysis of decentralized search is a bit cleaner in one dimension than
in two, although it is conceptually easy to adapt the arguments to two dimensions. As a
result, we focus most of the discussion on a one-dimensional ring augmented with random
long-range links.

20.7 Advanced Material: Analysis of Decentralized Search

In Section 20.4, we gave some basic intuition for why an inverse-square distribution of links

with distance makes effective decentralized search possible. Even given this way of thinking

about it, however, it still requires further work to really see why search succeeds with this

distribution. In this section, we describe the complete analysis of the process [249].

To make the calculations a bit simpler, we vary the model in one respect: we place the

nodes in one dimension rather than two. In fact, the argument is essentially the same no

matter how many dimensions the nodes are in, but one dimension makes things the cleanest

(even if not the best match for the actual geographic structure of a real population). It turns

out, as we will argue more generally later in this section, that the best exponent for search is

equal to the dimension, so in our one-dimensional analysis we will be using an exponent of

q = 1 rather than q = 2. At the end, we will discuss the minor ways in which the argument

needs to be adapted in two or higher dimensions.

We should also mention, recalling the discussion earlier in the chapter, that there is a

second fundamental part of this analysis as well — showing that this choice of q is in fact the

best for decentralized search in the limit of increasing network size. At the end, we sketch

why this is true, but the full details are beyond what we will cover here.

Easier to do analysis on a ring (but same 
techniques work for a grid)

Random link to x will now happen with 
probability ∝1/(distance to x) 
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Figure 20.15: In myopic search, the current message-holder chooses the contact that lies

closest to the target (as measured on the ring), and it forwards the message to this contact.

A. The Optimal Exponent in One Dimension

Here, then, is the model we will be looking at. A set of n nodes are arranged on a one-

dimensional ring as shown in Figure 20.14(a), with each node connected by directed edges

to the two others immediately adjacent to it. Each node v also has a single directed edge

to some other node on the ring; the probability that v links to any particular node w is

proportional to d(v, w)
−1

, where d(v, w) is their distance apart on the ring. We will call the

nodes to which v has an edge its contacts: the two nodes adjacent to it on the ring are its

local contacts, and the other one is its long-range contact. The overall structure is thus a ring

that is augmented with random edges, as shown in Figure 20.14(b). Again, this is essentially

just a one-dimensional version of the grid with random edges that we saw in Figure 20.5.
1

Myopic Search. Let’s choose a random start node s and a random target node t on this

augmented ring network. The goal, as in the Milgram experiment, is to forward a message

from the start to the target, with each intermediate node on the way only knowing the

locations of its own neighbors, and the location of t, but nothing else about the full network.

The forwarding strategy that we analyze, which works well on the ring when q = 1, is a

1We could also analyze a model in which nodes have more outgoing edges, but this only makes the search
problem easier; our result here will show that even when each node has only two local contacts and a single
long-range contact, search can still be very efficient.
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Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2j and 2j+1.

We can write X, the number of steps taken by the full search, as

X = X1 + X2 + · · · + Xlog n;

that is, the total time taken by the search is simply the sum of the times taken in each phase.

Linearity of expectation says that the expectation of a sum of random variables is equal to

the sum of their individual expectations, and so we have

E [X] = E [X1 + X2 + · · · + Xlog n] = E [X1] + E [X2] + · · · + E [Xlog n] .

We will now show — and this is the crux of the argument — that the expected value of each

Xj is at most proportional to log n. In this way, E [X] will be a sum of log n terms, each at

most proportional to log n, and so we will have shown that E [X] is at most proportional to

(log n)2.

This will achieve our overall goal of showing that myopic search is very efficient with the

given distribution of links: the full network has n nodes, but myopic search constructs a

path that is exponentially smaller: proportional to the square of log n.

We’ll say we’re in phase j of the
algorithm when distance from 

target is between 2j and 2j-1
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Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2j and 2j+1.

We can write X, the number of steps taken by the full search, as

X = X1 + X2 + · · · + Xlog n;

that is, the total time taken by the search is simply the sum of the times taken in each phase.

Linearity of expectation says that the expectation of a sum of random variables is equal to

the sum of their individual expectations, and so we have

E [X] = E [X1 + X2 + · · · + Xlog n] = E [X1] + E [X2] + · · · + E [Xlog n] .

We will now show — and this is the crux of the argument — that the expected value of each

Xj is at most proportional to log n. In this way, E [X] will be a sum of log n terms, each at

most proportional to log n, and so we will have shown that E [X] is at most proportional to

(log n)2.

This will achieve our overall goal of showing that myopic search is very efficient with the

given distribution of links: the full network has n nodes, but myopic search constructs a

path that is exponentially smaller: proportional to the square of log n.

We’ll say we’re in phase j of the
algorithm when distance from 

target is between 2j and 2j-1

Number of phases is log n
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Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2j and 2j+1.

We can write X, the number of steps taken by the full search, as

X = X1 + X2 + · · · + Xlog n;

that is, the total time taken by the search is simply the sum of the times taken in each phase.

Linearity of expectation says that the expectation of a sum of random variables is equal to

the sum of their individual expectations, and so we have

E [X] = E [X1 + X2 + · · · + Xlog n] = E [X1] + E [X2] + · · · + E [Xlog n] .

We will now show — and this is the crux of the argument — that the expected value of each

Xj is at most proportional to log n. In this way, E [X] will be a sum of log n terms, each at

most proportional to log n, and so we will have shown that E [X] is at most proportional to

(log n)2.

This will achieve our overall goal of showing that myopic search is very efficient with the

given distribution of links: the full network has n nodes, but myopic search constructs a

path that is exponentially smaller: proportional to the square of log n.

We’ll say we’re in phase j of the
algorithm when distance from 

target is between 2j and 2j-1

Number of phases is log n

Let X = # hops total; Xi= # hops in phase i
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Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2j and 2j+1.

We can write X, the number of steps taken by the full search, as

X = X1 + X2 + · · · + Xlog n;

that is, the total time taken by the search is simply the sum of the times taken in each phase.

Linearity of expectation says that the expectation of a sum of random variables is equal to

the sum of their individual expectations, and so we have

E [X] = E [X1 + X2 + · · · + Xlog n] = E [X1] + E [X2] + · · · + E [Xlog n] .

We will now show — and this is the crux of the argument — that the expected value of each

Xj is at most proportional to log n. In this way, E [X] will be a sum of log n terms, each at

most proportional to log n, and so we will have shown that E [X] is at most proportional to

(log n)2.

This will achieve our overall goal of showing that myopic search is very efficient with the

given distribution of links: the full network has n nodes, but myopic search constructs a

path that is exponentially smaller: proportional to the square of log n.

We’ll say we’re in phase j of the
algorithm when distance from 

target is between 2j and 2j-1

Number of phases is log n

Let X = # hops total; Xi= # hops in phase i

Then X = X1 + X2 + ... + Xlog n
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Then X = X1 + X2 + ... + Xlog n

E(X) = E(X1 + X2 + ... + Xlog n)
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Then X = X1 + X2 + ... + Xlog n

E(X) = E(X1 + X2 + ... + Xlog n)

E(X) = E(X1) + E(X2)+ ... + E(Xlog n)

By Linearity of Expectation!
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E(X) = E(X1) + E(X2)+ ... + E(Xlog n)

Now we “just” need to calculate 
E(Xi), the expected number of hops 

in phase i 

To do this, we calculate the probability 
that a single random link allows us to 

end phase i
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Z ≤ 2(1 + 1/2 + 1/3 + 1/4 + . . . 1/(n/2))
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(a) A set of nodes arranged in a ring.
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(b) A ring augmented with random long-
range links.

Figure 20.14: The analysis of decentralized search is a bit cleaner in one dimension than
in two, although it is conceptually easy to adapt the arguments to two dimensions. As a
result, we focus most of the discussion on a one-dimensional ring augmented with random
long-range links.

20.7 Advanced Material: Analysis of Decentralized Search

In Section 20.4, we gave some basic intuition for why an inverse-square distribution of links

with distance makes effective decentralized search possible. Even given this way of thinking

about it, however, it still requires further work to really see why search succeeds with this

distribution. In this section, we describe the complete analysis of the process [249].

To make the calculations a bit simpler, we vary the model in one respect: we place the

nodes in one dimension rather than two. In fact, the argument is essentially the same no

matter how many dimensions the nodes are in, but one dimension makes things the cleanest

(even if not the best match for the actual geographic structure of a real population). It turns

out, as we will argue more generally later in this section, that the best exponent for search is

equal to the dimension, so in our one-dimensional analysis we will be using an exponent of

q = 1 rather than q = 2. At the end, we will discuss the minor ways in which the argument

needs to be adapted in two or higher dimensions.

We should also mention, recalling the discussion earlier in the chapter, that there is a

second fundamental part of this analysis as well — showing that this choice of q is in fact the

best for decentralized search in the limit of increasing network size. At the end, we sketch

why this is true, but the full details are beyond what we will cover here.
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Figure 20.17: Determining the normalizing constant for the probability of links involves
evaluating the sum of the first n/2 reciprocals. An upper bound on the value of this sum
can be determined from the area under the curve y = 1/x.

Intermediate Step: The Normalizing Constant In implementing this high-level strat-

egy, the first thing we need to work out is in fact something very basic: we’ve been saying

all along that v forms its long-range link to w with probability proportional to d(v, w)−1, but

what is the constant of proportionality? As in any case when we know a set of probabilities

up to a missing constant of proportionality 1/Z, the value of Z is here simply the sum of

d(v, u)−1 over all nodes u �= v on the ring. Dividing everything down by this normalizing

constant Z, the probability of v linking to w is then equal to 1
Z d(v, w)−1.

To work out the value of Z, we note that there are two nodes at distance 1 from v, two

at distance 2, and more generally two at each distance d up to n/2. Assuming n is even,

there is also a single node at distance n/2 from v — the node diametrically opposite it on

the ring. Therefore, we have

Z ≤ 2

�
1 +

1

2
+

1

3
+

1

4
+ · · · +

1

n/2

�
. (20.1)

The quantity inside parentheses on the right is a common expression in probabilistic calcu-

lations: the sum of the first k reciprocals, for some k, in this case n/2. To put an upper

bound on its size, we can compare it to the area under the curve y = 1/x, as shown in

Figure 20.17. As that figure indicates, a sequence of rectangles of unit widths and heights

1/2, 1/3, 1/4, . . . , 1/k fits under the curve y = 1/x as x ranges from 1 to k. Combined with

a single rectangle of height and width 1, we see that
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dx = 1 + ln k.
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Figure 20.17: Determining the normalizing constant for the probability of links involves
evaluating the sum of the first n/2 reciprocals. An upper bound on the value of this sum
can be determined from the area under the curve y = 1/x.

Intermediate Step: The Normalizing Constant In implementing this high-level strat-

egy, the first thing we need to work out is in fact something very basic: we’ve been saying

all along that v forms its long-range link to w with probability proportional to d(v, w)−1, but

what is the constant of proportionality? As in any case when we know a set of probabilities

up to a missing constant of proportionality 1/Z, the value of Z is here simply the sum of

d(v, u)−1 over all nodes u �= v on the ring. Dividing everything down by this normalizing

constant Z, the probability of v linking to w is then equal to 1
Z d(v, w)−1.

To work out the value of Z, we note that there are two nodes at distance 1 from v, two

at distance 2, and more generally two at each distance d up to n/2. Assuming n is even,

there is also a single node at distance n/2 from v — the node diametrically opposite it on

the ring. Therefore, we have
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The quantity inside parentheses on the right is a common expression in probabilistic calcu-

lations: the sum of the first k reciprocals, for some k, in this case n/2. To put an upper

bound on its size, we can compare it to the area under the curve y = 1/x, as shown in

Figure 20.17. As that figure indicates, a sequence of rectangles of unit widths and heights

1/2, 1/3, 1/4, . . . , 1/k fits under the curve y = 1/x as x ranges from 1 to k. Combined with

a single rectangle of height and width 1, we see that
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Figure 20.17: Determining the normalizing constant for the probability of links involves
evaluating the sum of the first n/2 reciprocals. An upper bound on the value of this sum
can be determined from the area under the curve y = 1/x.

Intermediate Step: The Normalizing Constant In implementing this high-level strat-

egy, the first thing we need to work out is in fact something very basic: we’ve been saying

all along that v forms its long-range link to w with probability proportional to d(v, w)−1, but

what is the constant of proportionality? As in any case when we know a set of probabilities

up to a missing constant of proportionality 1/Z, the value of Z is here simply the sum of

d(v, u)−1 over all nodes u �= v on the ring. Dividing everything down by this normalizing

constant Z, the probability of v linking to w is then equal to 1
Z d(v, w)−1.

To work out the value of Z, we note that there are two nodes at distance 1 from v, two

at distance 2, and more generally two at each distance d up to n/2. Assuming n is even,

there is also a single node at distance n/2 from v — the node diametrically opposite it on

the ring. Therefore, we have
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all along that v forms its long-range link to w with probability proportional to d(v, w)−1, but

what is the constant of proportionality? As in any case when we know a set of probabilities

up to a missing constant of proportionality 1/Z, the value of Z is here simply the sum of

d(v, u)−1 over all nodes u �= v on the ring. Dividing everything down by this normalizing

constant Z, the probability of v linking to w is then equal to 1
Z d(v, w)−1.

To work out the value of Z, we note that there are two nodes at distance 1 from v, two

at distance 2, and more generally two at each distance d up to n/2. Assuming n is even,
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bound on its size, we can compare it to the area under the curve y = 1/x, as shown in

Figure 20.17. As that figure indicates, a sequence of rectangles of unit widths and heights
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Probabilities
So:

Z ≤ 2(1 + ln(n/2) ≤ 2 log2 n

Let d(u,v) = distance from u to v.  Then prob. u 
links to v is 

1

Z
d(u, v)−1 ≥ 1

2 log n
d(u, v)−1

Only remaining task is to add up these 
probabilities over all vertices v that will let us 

exit the current phase
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t

s

v

w
distance d/2distance d/2

distance d

there are d+1 nodes within distance 

d/2 of t, and each has prob. at least 

proportional to 1/(d log n)

Figure 20.19: Showing that, with reasonable probability, v’s long-range contact lies within

half the distance to the target.

Analyzing the Time Spent in One Phase of Myopic Search. Finally, we come to

the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

Probabilities

d+1 nodes within distance d/2 of t 
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the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

Probabilities

d+1 nodes within distance d/2 of t 

Prob. of hitting particular node v in there at least:
1

2 log n
d(u, v)−1 ≥ 1

2 log n

1

3d/2
=

1

3d log n
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Analyzing the Time Spent in One Phase of Myopic Search. Finally, we come to

the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

Probabilities

d+1 nodes within distance d/2 of t 

Prob. of hitting particular node v in there at least:
1

2 log n
d(u, v)−1 ≥ 1

2 log n

1

3d/2
=

1

3d log n

d+1 total nodes; prob. of hitting one is at least:   

(d+ 1)
1

3d log n
=

1

3 log n
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Figure 20.19: Showing that, with reasonable probability, v’s long-range contact lies within

half the distance to the target.

Analyzing the Time Spent in One Phase of Myopic Search. Finally, we come to

the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

Phases

So we’re walking around in phase j

Every time we see a random edge, it has prob.
at least 1/(3 log n) of taking us to next phase

Q: How long do we expect to walk before finding 
one of these special edges?
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Analyzing the Time Spent in One Phase of Myopic Search. Finally, we come to

the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

Phases

Q: How long do we expect to walk before finding 
one of these special edges?

Q: If a coin has probability p of coming up heads, 
how many times do you expect to flip it before 

you get heads?

A: 1/p
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Figure 20.18 for an illustration of all this notation in context.) The phase will come to an
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happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

Phases

Q: How long do we expect to walk before finding 
one of these special edges?

Q: If a coin has probability p of coming up heads, 
how many times do you expect to flip it before 

you get heads?

A: 1/p

E(X) = p*1 + (1-p)(1 + E(X))
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Wrapup

Recall: E(X) = E(X1) + E(X2)+ ... + E(Xlog n)

Thus: E(X) ≤ 3 log n + 3 log n + ... + 3log n

 ≤ 3 log2 n
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Wrapup

Recall: E(X) = E(X1) + E(X2)+ ... + E(Xlog n)

Thus: E(X) ≤ 3 log n + 3 log n + ... + 3log n

 ≤ 3 log2 n

The End!

Or is It???
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Open Questions

Why do friendship links have the Kleinberg 
exponent?

Why should routing speed determine the way in 
which we make friends?

Why do we have friends? 
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Graph Coloring
Must color each node in a graph (network)

A coloring is valid if any pair of nodes that are 
linked have different colors

Goal: Find a valid coloring using the smallest 
number of colors
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Graph Coloring

Example graph and valid 3 coloring
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Graph Coloring

Unlike shortest paths, coloring is 
computational hard even when centralized

Sudoku is a graph coloring problem (with 
some colors already fixed)

How? 
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Distributed Coloring

Division of resources in social networks

Nodes are people, links represent friendships

Colors are resources

Goal: Assign resources to people so that friends 
don’t fight over the same resource

Distributed: Each node knows only local 
neighborhood
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Example Resources

Time: scheduling talks in conference rooms

Economic: pursuing different expertise/
markets by people/companies

Political: pursuing different political offices 

Technological: selecting a channel unused by 
close parties in a wireless network
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An Experiment

model (10), in which vertices already highly
connected are more likely to receive further
connections as the network is formed incre-
mentally. Such networks are known to generate
a number of structural properties frequently
documented empirically, including the presence
of highly connected Bhubs.[

Six or seven trials (20) of each of the six
networks were performed under varying infor-
mational conditions. Subjects sat at work-
stations running a browser-based client of a
distributed computer system built for the
experiments. The interface provided each sub-
ject with a local view (including their own
color and those of their neighbors) of the
current state (Fig. 2). In a minority of trials,
subjects were given a global view. Subjects
were familiarized with the coloring problem but
given no guidance on how to play; subjects
could update their colors at any time from a
fixed menu that provided the minimum number
of colors required to solve the problem for the

given network. The experimental protocol for-
bade all communication outside the confines of
the system, and physical partitions prevented
subjects from seeing beyond the information
view provided on their own workstation. In ac-
cordance with standard practices in behavioral
game theory and economics (21), participants
received $5 for each experiment in which they
were Bsuccessful[ (22).

Subjects could indeed solve the coloring
problem across a wide range of network struc-
tures. Of the 38 experiments we conducted, 31
(82%) resulted in an optimal coloring of the
network in less than the allotted 5 min (300 s),
with the mean completion time of the solved
networks only 82 s (SD, 75 s) and the median
just 44 s, indicating considerable skew toward
low solution times. All six of the network struc-
tures were solved at least twice when subjects
could see only their neighbors_ color choices
(low-information view).

Collective performance was strongly af-
fected by network structure. The networks
generated by preferential attachment proved
considerably more difficult than any of the
cycle-based networks: Six of the seven ex-
periments that ended without an optimal col-
oring after 5 min were on networks of the former
type, and the mean experiment duration Ewhich
includes 300-s values for unsolved networks
(23)^ for preferential attachment graphs was
higher than for all others (Table 1). The du-
ration times for the cycle-based networks and
those for the preferential attachment networks
passed a two-tailed, unequal variance t test for
different means at P 0 0.03. Within the cycle-
based family, there was a monotonic rela-
tionship between solution time and network
average distance (the average shortest distance,
measured in number of links traveled, across all
pairs of vertices), with smaller average distance
leading to shorter solution times. (For the cycle-
based networks, the correlation between aver-

Table 1. For each of the six experimental networks, the first six columns
provide statistics summarizing structural properties, including the
chromatic number (smallest number of colors required for solution), and
statistics on the distribution of the degree (number of links) of each vertex.
Network average distance is the average shortest-path distance, measured

in number of links traveled, over all pairs of vertices. Also displayed are the
average experiment duration for each network, along with the fraction of
trials on which it was solved within 300 s and the number of steps
(measured in color changes) for a natural distributed computer heuristic.
Pref. att., preferential attachment.

Graph statistics

Colors
required (No.)

Min.
links (No.)

Max.
links (No.)

Avg.
links (No.)

SD
Avg. distance
(No. of links)

Avg. experiment
duration (s)

and fraction solved

Distributed
heuristic (No. of
color changes)

Simple cycle 2 2 2 2 0 9.76 144.17 5/6 378
5-chord cycle 2 2 4 2.26 0.60 5.63 121.14 7/7 687
20-chord cycle 2 2 7 3.05 1.01 3.34 65.67 6/6 8265
Leader cycle 2 3 19 3.84 3.62 2.31 40.86 7/7 8797
Pref. att., n 0 2 3 2 13 3.84 2.44 2.63 219.67 2/6 1744
Pref. att., n 0 3 4 3 22 5.68 4.22 2.08 154.83 4/6 4703

Fig. 2. In the low-information view (left), subjects could see only the color
they chose for their own vertices and the colors of their immediate
neighbors in the graph. The medium-information view (center) is similar,
but each neighbor is labeled by its number of links. In the high-information
view (right), each subject could see the current color choices of the entire

network. The text at the bottom of each screenshot reads as follows: ‘‘1
conflict in your immediate neighborhood. A thick line indicates a conflict
that must be resolved. A thin line is shown when color choices do not
conflict.’’ The bar at the bottom of each screen gave subjects an indication
of global progress toward a solution.

www.sciencemag.org SCIENCE VOL 313 11 AUGUST 2006 825

REPORTS

Kearns et al. ’06 ran a distributed coloring 
experiment on people
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Graphs Used

An Experimental Study of the Coloring
Problem on Human Subject Networks
Michael Kearns,* Siddharth Suri, Nick Montfort

Theoretical work suggests that structural properties of naturally occurring networks are important
in shaping behavior and dynamics. However, the relationships between structure and behavior
are difficult to establish through empirical studies, because the networks in such studies are
typically fixed. We studied networks of human subjects attempting to solve the graph or network
coloring problem, which models settings in which it is desirable to distinguish one’s behavior
from that of one’s network neighbors. Networks generated by preferential attachment made solving
the coloring problem more difficult than did networks based on cyclical structures, and ‘‘small
worlds’’ networks were easier still. We also showed that providing more information can have
opposite effects on performance, depending on network structure.

I
t is often thought that structural properties of
naturally occurring networks are influential
in shaping individual and collective behavior

and dynamics. Examples include the popular
notion that Bhubs[ or Bconnectors[ are inordi-
nately important in the routing of information in
social and organizational networks (1, 2). A
long history of research has established the
frequent empirical appearance of certain struc-
tural properties in networks from many do-
mains, including sociology (1, 3–5), biology
(6, 7), and technology (8). These properties
include small diameter (the Bsix degrees of
separation[ phenomenon), local clustering of
connectivity (9), and heavy-tailed distributions
of connectivity (10). Theoretical models have
sought to explain how some of these may in-
teract with network dynamics (11).

The relationships between structure and be-
havior are difficult to establish in empirical field
studies of existing networks. In such studies,
the network structure is fixed and given, thus
preventing the investigation of alternatives. A
different approach is to conduct controlled lab-
oratory studies in which network structure is
deliberately varied.

We have been performing human subject ex-
periments in distributed problem-solving from
local information on a variety of simple and
complex networks. Subjects each simultaneous-
ly control a single vertex in a network of 38
vertices and attempt to solve the challenging
graph coloring problem (12) on the network. In
this problem, the collective goal is for every
player to select a color for their vertex that
differs from the colors of all of their network
neighbors. The number of colors made availa-
ble is the minimum necessary to color the entire
network without conflicts (edges connecting
two vertices with the same color), known as the
chromatic number of the network.

The graph coloring problem is a natural
abstraction of many human and organizational
problems in which it is desirable or necessary to
distinguish one_s behavior from that of neighbor-
ing parties. As a specific scenario, consider the
problem faced by faculty members scheduling
departmental events—recurring classes, one-time
seminars, exams, and so on—in a limited number
of available rooms. We can view the events to be
scheduled as the vertices in a network,with an edge
connecting any pair of events that temporally
overlap, even partially. Clearly, two such events
must be assigned to different rooms or Bcolors,[
thus yielding a natural graph coloring problem.
Furthermore, even when there is a centralized first-
come, first-serve sign-up sheet for rooms, this
mechanism is simply the starting point for the
negotiation of a solution, and the problem is still
solved in a largely distributed fashion by the
participants: Facultymembers routinely query the
current holder of a room whether they might be
able to switch to a different room, whether their
event will really require their entire time slot, and
the like. Other coloring-like problems arise in a

variety of social activities (such as selecting a cell
phone ringtone that differs from those of family
members, friends, and colleagues); technological
coordination Eselecting a channel unused by near-
by parties in a wireless communication network
(13, 14)^; and individual differentiation within an
organization (developing an expertise not du-
plicated by others nearby). Graph coloring also
generalizes many traditional problems in logistics
and operations research (12).

The coloring problem was chosen for both its
simplicity of description and its contrast to other
distributed network optimization problems. Un-
like the well-studied studied navigation or
shortest-paths problem, optimal coloring is noto-
riously intractable from the viewpoint of even
centralized computation (12, 15). In fact, even
weak approximations (in which many more
colors than the chromatic number are permitted)
are known to be equally difficult (16, 17).

We report here on the findings from two
extensive experimental sessions held in January
2006 with 55 University of Pennsylvania under-
graduate students (18). Subjects were given a
series of coloring experiments in which the
network had one of six topologies, each chosen
according to recently proposed models of net-
work formation (Fig. 1 and Table 1). Three of
these six begin with a simple cycle and then
add a varying number of randomly chosen
chords while preserving a chromatic number of
two. These Bsmall worlds[ networks (9, 19) are
intended to model the mixture of local connec-
tivity (as induced by geography) with long-
distance connectivity (as induced by travel or
chance meetings) often found in social and
other networks. The fourth cycle-based network
adopted a more engineered or hierarchical
structure, with two distinguished individuals
having inordinately high connectivity. The fifth
and sixth networks were generated according
to the well-studied preferential attachment

University of Pennsylvania, Department of Computer and
Information Science, 3330 Walnut Street, Philadelphia, PA
19104, USA.

*To whom correspondence should be addressed. E-mail:
mkearns@cis.upenn.edu

Fig. 1. Network topologies with sample colorings found by subjects. From left to right and top to
bottom: simple cycle, 5-chord cycle, 20-chord cycle, leader cycle, and preferential attachment with
two and three links initially added to each new vertex.

11 AUGUST 2006 VOL 313 SCIENCE www.sciencemag.org824

REPORTS

Preferential attachment

“Small World”
(Watts-

Strogatz)

Kleinberg?!?
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Empirical Results

model (10), in which vertices already highly
connected are more likely to receive further
connections as the network is formed incre-
mentally. Such networks are known to generate
a number of structural properties frequently
documented empirically, including the presence
of highly connected Bhubs.[

Six or seven trials (20) of each of the six
networks were performed under varying infor-
mational conditions. Subjects sat at work-
stations running a browser-based client of a
distributed computer system built for the
experiments. The interface provided each sub-
ject with a local view (including their own
color and those of their neighbors) of the
current state (Fig. 2). In a minority of trials,
subjects were given a global view. Subjects
were familiarized with the coloring problem but
given no guidance on how to play; subjects
could update their colors at any time from a
fixed menu that provided the minimum number
of colors required to solve the problem for the

given network. The experimental protocol for-
bade all communication outside the confines of
the system, and physical partitions prevented
subjects from seeing beyond the information
view provided on their own workstation. In ac-
cordance with standard practices in behavioral
game theory and economics (21), participants
received $5 for each experiment in which they
were Bsuccessful[ (22).

Subjects could indeed solve the coloring
problem across a wide range of network struc-
tures. Of the 38 experiments we conducted, 31
(82%) resulted in an optimal coloring of the
network in less than the allotted 5 min (300 s),
with the mean completion time of the solved
networks only 82 s (SD, 75 s) and the median
just 44 s, indicating considerable skew toward
low solution times. All six of the network struc-
tures were solved at least twice when subjects
could see only their neighbors_ color choices
(low-information view).

Collective performance was strongly af-
fected by network structure. The networks
generated by preferential attachment proved
considerably more difficult than any of the
cycle-based networks: Six of the seven ex-
periments that ended without an optimal col-
oring after 5 min were on networks of the former
type, and the mean experiment duration Ewhich
includes 300-s values for unsolved networks
(23)^ for preferential attachment graphs was
higher than for all others (Table 1). The du-
ration times for the cycle-based networks and
those for the preferential attachment networks
passed a two-tailed, unequal variance t test for
different means at P 0 0.03. Within the cycle-
based family, there was a monotonic rela-
tionship between solution time and network
average distance (the average shortest distance,
measured in number of links traveled, across all
pairs of vertices), with smaller average distance
leading to shorter solution times. (For the cycle-
based networks, the correlation between aver-

Table 1. For each of the six experimental networks, the first six columns
provide statistics summarizing structural properties, including the
chromatic number (smallest number of colors required for solution), and
statistics on the distribution of the degree (number of links) of each vertex.
Network average distance is the average shortest-path distance, measured

in number of links traveled, over all pairs of vertices. Also displayed are the
average experiment duration for each network, along with the fraction of
trials on which it was solved within 300 s and the number of steps
(measured in color changes) for a natural distributed computer heuristic.
Pref. att., preferential attachment.

Graph statistics

Colors
required (No.)

Min.
links (No.)

Max.
links (No.)

Avg.
links (No.)

SD
Avg. distance
(No. of links)

Avg. experiment
duration (s)

and fraction solved

Distributed
heuristic (No. of
color changes)

Simple cycle 2 2 2 2 0 9.76 144.17 5/6 378
5-chord cycle 2 2 4 2.26 0.60 5.63 121.14 7/7 687
20-chord cycle 2 2 7 3.05 1.01 3.34 65.67 6/6 8265
Leader cycle 2 3 19 3.84 3.62 2.31 40.86 7/7 8797
Pref. att., n 0 2 3 2 13 3.84 2.44 2.63 219.67 2/6 1744
Pref. att., n 0 3 4 3 22 5.68 4.22 2.08 154.83 4/6 4703

Fig. 2. In the low-information view (left), subjects could see only the color
they chose for their own vertices and the colors of their immediate
neighbors in the graph. The medium-information view (center) is similar,
but each neighbor is labeled by its number of links. In the high-information
view (right), each subject could see the current color choices of the entire

network. The text at the bottom of each screenshot reads as follows: ‘‘1
conflict in your immediate neighborhood. A thick line indicates a conflict
that must be resolved. A thin line is shown when color choices do not
conflict.’’ The bar at the bottom of each screen gave subjects an indication
of global progress toward a solution.

www.sciencemag.org SCIENCE VOL 313 11 AUGUST 2006 825

REPORTS

Small world easy

Preferential attachment hard
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Maximal 
Independent Set

To solve distributed graph coloring, we first 
address a simpler problem:

Independent Set: A set of nodes in a network, 
such that there is no edge between any pair in 
the set

An independent set is maximal if no nodes can 
be added
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Maximal 
Independent Set

To solve distributed graph coloring, we first 
address a simpler problem:

Independent Set: A set of nodes in a network, 
such that there is no edge between any pair in 
the set

An independent set is maximal if no nodes can 
be added

Acknowledgement: Much of the discussion here is based on lecture notes by Roger Wattenhoffer at 
http://www.dcg.ethz.ch/lectures/podc/
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Maximal 
Independent Set

This is a maximal independent set
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Maximal 
Independent Set

This is a maximal independent set
Note: all nodes in an independent set can be 

colored with the same color
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An MIS Algorithm
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An MIS Algorithm

1) Each node v chooses a random value, r(v), in 
[0,1] and sends it to its neighbors 

.21 .42

.08

.34

.71 .65
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An MIS Algorithm

1) Each node v chooses a random value, r(v), in 
[0,1] and sends it to its neighbors 

.21 .42

.08

.34

.71 .65

2) If r(v) < r(w) for all neighbors w of v, then v 
enters the MIS and informs its neighbors
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An MIS Algorithm

1) Each node v chooses a random value, r(v), in 
[0,1] and sends it to its neighbors 

.21 .42

.08

.34

.71 .65

2) If r(v) < r(w) for all neighbors w of v, then v 
enters the MIS and informs its neighbors

3) If v or a neighbor entered the MIS, it terminates
(removing all edges); otherwise go back to step 1
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Some Facts

The algorithm always finds a MIS

The algorithm terminates since in each loop, at 
least one node is added

Q: How fast is the algorithm?
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Analysis
We’ll show that, in expectation, half of the edges 
are removed in each loop of the algorithms

This implies that number of loops is only log m 
where m is number of edges, n number of nodes

Since m ≤ n2 , we know that log m ≤ 2 log n

We’ll let d(x) be the “degree of x” i.e. number of 
edges incident to x
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A Clever Trick
Let v⇒w be the event that r(v) ≤ r(w) and r(v) ≤ r(x) 
for all neighbors x of w
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A Clever Trick
Let v⇒w be the event that r(v) ≤ r(w) and r(v) ≤ r(x) 
for all neighbors x of w

Let Xv⇒w = d(w) if event v⇒w occurs and 0 otherwise
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Let X = ∑ ((v,w) in E) Xv⇒w , where E is the set of edges
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Let v⇒w be the event that r(v) ≤ r(w) and r(v) ≤ r(x) 
for all neighbors x of w

Let Xv⇒w = d(w) if event v⇒w occurs and 0 otherwise

Let X = ∑ ((v,w) in E) Xv⇒w , where E is the set of edges

Note that X ≤ (1/2)*total number of edges removed! 
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A Clever Trick
Let v⇒w be the event that r(v) ≤ r(w) and r(v) ≤ r(x) 
for all neighbors x of w

Let Xv⇒w = d(w) if event v⇒w occurs and 0 otherwise

Let X = ∑ ((v,w) in E) Xv⇒w , where E is the set of edges

Note that X ≤ (1/2)*total number of edges removed! 

Since for any edge (s,t), at most one event X*⇒s and at 
most one event X*⇒t can happen.
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A Clever Trick
Now all that remains is to compute E(X)

E(X) = E(∑ ((v,w) in E) Xv⇒w )
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A Clever Trick
Now all that remains is to compute E(X)

E(X) = E(∑ ((v,w) in E) Xv⇒w )

E(X) = ∑ ((v,w) in E) E(Xv⇒w) + E(Xw⇒v)
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A Clever Trick
Now all that remains is to compute E(X)

E(X) = E(∑ ((v,w) in E) Xv⇒w )

E(X) = ∑ ((v,w) in E) E(Xv⇒w) + E(Xw⇒v)

         = ∑ ((v,w) in E) Pr(event v⇒w) d(w) + Pr(event w⇒v)d(v) 
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A Clever Trick
Now all that remains is to compute E(X)

E(X) = E(∑ ((v,w) in E) Xv⇒w )

E(X) = ∑ ((v,w) in E) E(Xv⇒w) + E(Xw⇒v)

         = ∑ ((v,w) in E) Pr(event v⇒w) d(w) + Pr(event w⇒v)d(v) 

         ≥ ∑ ((v,w) in E) d(w)/(d(v)+d(w)) + d(v)/(d(w) + d(v))
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A Clever Trick
Now all that remains is to compute E(X)

E(X) = E(∑ ((v,w) in E) Xv⇒w )

E(X) = ∑ ((v,w) in E) E(Xv⇒w) + E(Xw⇒v)

         = ∑ ((v,w) in E) Pr(event v⇒w) d(w) + Pr(event w⇒v)d(v) 

         ≥ ∑ ((v,w) in E) d(w)/(d(v)+d(w)) + d(v)/(d(w) + d(v))

         = ∑ ((v,w) in E) 1
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A Clever Trick
Now all that remains is to compute E(X)

E(X) = E(∑ ((v,w) in E) Xv⇒w )

E(X) = ∑ ((v,w) in E) E(Xv⇒w) + E(Xw⇒v)

         = ∑ ((v,w) in E) Pr(event v⇒w) d(w) + Pr(event w⇒v)d(v) 

         ≥ ∑ ((v,w) in E) d(w)/(d(v)+d(w)) + d(v)/(d(w) + d(v))

         = ∑ ((v,w) in E) 1

         = m
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Recap

We’ve shown that E(X) = m

We also shown that the number of edges 
removed in each loop is at least X/2

Implies that we expect half the edges to be 
removed in each loop

Thus, we expect only log m iterations of the 
loop!
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We also shown that the number of edges 
removed in each loop is at least X/2

Implies that we expect half the edges to be 
removed in each loop

Thus, we expect only log m iterations of the 
loop! The End!
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Recap

We’ve shown that E(X) = m

We also shown that the number of edges 
removed in each loop is at least X/2

Implies that we expect half the edges to be 
removed in each loop

Thus, we expect only log m iterations of the 
loop! The End!

Or is It???
Friday, June 24, 2011



Open Problems

A major open problem in distributed 
computing is whether or not we can do better 
than logarithmic time for MIS

Or at least come up with a deterministic 
algorithm that takes logarithmic time.
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Open Problems

A major open problem in distributed 
computing is whether or not we can do better 
than logarithmic time for MIS

Or at least come up with a deterministic 
algorithm that takes logarithmic time.

Also: hey, what about graph coloring?

Friday, June 24, 2011



Create New Graph

1) Each node v makes d(v)+1 clones.  All clones 
of v are linked together

2) If u and v neighbors, then for all i, the i-th 
clone of u is linked to the i-th clone of v
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Create New Graph

1) Each node v makes d(v)+1 clones.  All clones 
of v are linked together

2) If u and v neighbors, then for all i, the i-th 
clone of u is linked to the i-th clone of v

Only links between 1st 
clones shown
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Create New Graph

1) Each node v makes d(v)+1 clones.  All clones 
of v are linked together

2) If u and v neighbors, then for all i, the i-th 
clone of u is linked to the i-th clone of v

3) We now run the MIS algorithm on the new graph.  
If the i-th clone of v is in the MIS, v is colored i!

Only links between 1st 
clones shown
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A Coloring Algorithm
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A Coloring Algorithm

Fact 1: For any node v, at most one clone is in 
the MIS
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A Coloring Algorithm

Fact 1: For any node v, at most one clone is in 
the MIS

Fact 2: For any node v, at least one clone is in 
the MIS
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A Coloring Algorithm

Fact 1: For any node v, at most one clone is in 
the MIS

Fact 2: For any node v, at least one clone is in 
the MIS

Fact 3: The running time is logarithmic since the 
new graph has at most m2 edges
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Wrapup
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Wrapup

The algorithm colors any graph with ∆+1 colors, 
where ∆ is the maximum degree of a node
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Wrapup

The algorithm colors any graph with ∆+1 colors, 
where ∆ is the maximum degree of a node

The algorithm takes time logarithmic in n
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Wrapup

The algorithm colors any graph with ∆+1 colors, 
where ∆ is the maximum degree of a node

The algorithm takes time logarithmic in n

Note: ∆ is not necessarily the minimum number of 
colors needed!
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Questions
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Questions

Note: There are faster coloring algorithms (log 
log n is even possible)
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Questions

Note: There are faster coloring algorithms (log 
log n is even possible)

Question: How does the structure of the graph 
(small world, preferential attachment) effect the 

difficulty of graph coloring in practice?
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Questions

Note: There are faster coloring algorithms (log 
log n is even possible)

Question: How does the structure of the graph 
(small world, preferential attachment) effect the 

difficulty of graph coloring in practice?

Answer: We don’t know!
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Conclusion
Many problems can be solved efficiently over 
large networks

Randomness is a powerful tool, but need to get 
the distributions right!

Interaction between Form (topology) and 
Function (computation) is critical

Still much work needed to understand this 
interaction
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