Faster Agreement Via a Spectral Method for
 Detecting Malicious Behavior

Valerie King and Jared Saia

Byzantine Agreement

Each node starts with a bit
Goal: I) all good nodes output the same bit; and 2) this bit equals an input bit of a good node
$\mathrm{t}=\#$ bad nodes controlled by an adversary

Applications

- Bitcoin
> "Bitcoin is based on a novel Byzantine agreement protocol in which cryptographic puzzles keep a computationally bounded adversary from gaining too much influence" [ML '13]
- Game Theory (Mediators)
"deep connections between implementing mediators and various agreement problems, such as Byzantine agreement" [ADH '08]
- Peer-to-peer networks
"These replicas cooperate with one another in a Byzantine agreement protocol to choose the final commit order for updates." [KBCCEGGRWWWZ '00]
Also: Secure Multiparty Computation, Databases, State Machine Replication, Sensor Networks, Cloud Computing, Control systems, etc.

Classic Model

- Asynchronous:Adversary schedules message delivery
- Full Information:Adversary knows state of all nodes
- Adaptive Adversary: Adversary takes over nodes at any time up to t total

Previous Work

- [Ben-Or '83] gave first randomized algorithm to solve BA in this model
- [FLP '85] showed BA impossible for deterministic algorithms even when $\mathrm{t}=\mathrm{I}$
- Ben-Or's algorithm is exponential expected communication time
- Communication Time: maximum length of any chain of messages

Our Result

- Las Vegas algorithm that solves Byzantine agreement in the classic model
- We tolerate $t=\theta(n)$
- Expected communication time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Computation time and bits sent are also polynomial in expectation

Ben-Or's algorithm

- Consists of iterations
- Uses private random bits to create a fair global coin with probability $\mathrm{I} / 2^{\mathrm{n}}$ in each iteration
- For each iteration there is a correct direction
- If there is a global coin and it is in this direction, agreement is reached

Our goal: Get a fair global coin after polynomial iterations using the private random bits

Key Idea

- With constant probability, sum of coinflips of good nodes will be in the correct direction and large enough for Ben-Or to succeed
- Bad nodes need to generate bad deviation in the opposite direction of equal magnitude to foil this good event
- If the few bad nodes generate large deviation repeatedly, we can find them

Issues

Ignore in this talk. See paper for details

No more than $2 t$ coins from good nodes, no more than 2 per node that are not common.

Common coins are known to $\mathrm{n}-4 \mathrm{t}$ good nodes.

Remaining Problem

- Bad nodes create biased coinflips

Deviation

- All coinflips are either +I or -I
- The deviation of p in an iteration is the absolute value of the sum of p's coinflips
- The direction of p in an iteration is the sign of the sum of p's coinflips

Iterations and Epochs

- In each iteration, we run modified Ben-Or
- There are $m=\theta(n)$ iterations in an epoch
- In each epoch, we expect a constant fraction of iterations to be good i.e. deviation of good nodes is $\geq \beta$ in correct direction ($\beta=\theta(n)$)
- In a good iteration, bad nodes have deviation $\geq \beta / 2$
- (Remaining "good" deviation undone by scheduler)

Bad deviation

In an epoch with no agreement, there is a set of $\theta(n)$ iterations I and a set of at most t nodes B such that:

$$
\sum_{i \in I} \sum_{p \in B}(\text { deviation of node } \mathrm{p} \text { in iteration } \mathrm{i})=\Omega\left(n^{2}\right)
$$

Spectral Blacklisting

Matrix

- M is a m by n matrix
- $M(i, j)=$ deviation in iteration i of node j
- M_{b} is bad columns of M
- M_{g} is good columns of M
- Assume $M=\left[M_{b} M_{g}\right]$

Algorithm Sketch

Repeat until reaching agreement
I. Run an epoch. Let M be the deviation matrix for that epoch
2. If $|M|$ is "sufficiently large" then
A. Compute the right eigenvector, r, of M
B. Increase bad value of each node i by $r[i]^{2}$
3. Blacklist a node when its bad value reaches I

$\left|M_{b}\right| \geq C\left|M_{g}\right|$

- Lemma I: In an epoch with no agreement, whp, for any constant C, for $t=c_{1} n$ chosen sufficiently small, $\left|M_{b}\right| \geq C\left|M_{g}\right|$
- Fact I: Whp $\left|M_{g}\right|=O(n)$ "sufficiently large"
- Fact 2: $\left|M_{b}\right|=\Omega(n)$ in such an epoch
- Lemma I then follows by algebra

r_{b} and r_{g}

- Let \mathbf{r} be the top right eigenvector of M
- Let r_{b} be the vector such that $r_{b}[i]=r[i]$ for $\mathrm{I} \leq \mathrm{i} \leq \mathrm{t}$ and all other entries are 0
- Let r_{g} be the vector such that $r_{g}[i]=r[i]$ for $\mathrm{t}+\mathrm{I} \leq \mathrm{i} \leq \mathrm{n}$ and all other entries are 0
- Expect $\left|r_{g}\right|^{2}$ to be bigger than $\left|r_{b}\right|^{2}$

Lemma 2

Lemma 2: Whp, $\left|\mathrm{r}_{\mathrm{g}}\right|^{2}<\left|\mathrm{rb}_{\mathrm{b}}\right|^{2} / 2$
Proof: Assume not. Then $\left|r_{b}\right|^{2} \leq 2 / 3$

$$
\begin{aligned}
\left|M_{B}\right| & \leq|M| \\
& =\ell^{T}(M \boldsymbol{r}) \\
& \leq|\ell||M \boldsymbol{r}| \\
& \leq\left|M_{B}\right|\left|\boldsymbol{r}_{\boldsymbol{b}}\right|+\left|M_{G}\right|\left|\boldsymbol{r}_{\boldsymbol{g}}\right| \\
& \leq\left|M_{B}\right|\left(\left|\boldsymbol{r}_{\boldsymbol{b}}\right|+(1 / C)\left|\boldsymbol{r}_{\boldsymbol{g}}\right|\right) \\
& \leq\left|M_{B}\right|(\sqrt{2 / 3}+1 / C) \\
& <\left|M_{B}\right|
\end{aligned}
$$

where the last line holds if $C \geq 5.45$ (i.e. $\mathrm{t} \leq .004 \mathrm{n}$)

Implications

Lemma 2: Whp, $\left|\mathrm{r}_{\mathrm{g}}\right|^{2}<\left|\mathrm{rb}_{\mathrm{b}}\right|^{2} / 2$
So, whp, bad values for bad nodes increase at twice the rate as bad values for good nodes

Thus "most" good nodes:
I) Blacklist no more than t good nodes
2) Blacklist all bad nodes within n epochs

Conclusion

- First expected fully polynomial time algorithm for classic Byzantine agreement
- Previous best algorithm (Ben-or's) was expected exponential time
- New technique: design algorithms that force attackers into statistically deviant behavior that is detectable

Open Problems

- Can we use spectral blacklisting in problems where an adversary is trying to attack reputations or page rank?
- Can we learn bad nodes faster via different scoring e.g. weighted majority?
- Connections to planted clique type problems?
- Improve latency, resilience, and bandwidth

Questions?

(D)etector/(N)eutralizer Game

I. N claims columns, provided total claimed over game $\leq \mathrm{t}$
2. Entries in unclaimed columns set to sum of n indep coinflips
3. Each row selected indep. with prob. I/2
4. N sets all entries in its columns
5. D sees matrix \& may remove columns provided total removed over game $\leq 2 t$

N's goal: Deviation of all "selected" rows $\leq 2 n$
D wins if N fails in its goal

Our result: Win for D in expected $O(n)$ iterations

(D)etector/(N)eutralizer Game

I. N claims columns, provided total claimed over game $\leq t$
2. Entries in unclaimed columns set to sum of n indep coinflips
3. Each row selected indep. with prob. I/2
4. N sets all entries in its columns
5. D sees matrix \& may remove columns provided total removed over game $\leq 2 t$

Related Work (Spectral)

- Page Rank
- Eigentrust
- Hidden Clique

Page Rank [PBMW '99]

- Google's $\$ 300$ billion "secret sauce"
- M is a stochastic matrix, representing a random walk over the web link graph
- r is top right eigenvector of M (and stationary distribution of M's walk)
- For a web page, $\mathrm{i}, \mathrm{r}[\mathrm{i}]=$ "authority" of i

Eigentrust [KSG '03]

- M is a matrix s.t. $M(i, j)$ represents amount which party i trusts party j
- r is top right eigenvector of M
- For a party, $i, r[i]=$ "trustworthiness" of i
- Party i is trustworthy if it is trusted by parties that are themselves trustworthy

Differences

- Eigentrust and PageRank:Want to identify good players based on feedback from other players
- D/N Game:Want to identify bad players based on deviation from random coinflips

Hidden Clique

- The problem
- A random $G(n, I / 2)$ graph is chosen
- A k-clique is randomly placed in G
- [AKS '98] give an algorithm for $k=\sqrt{n}$
I. \mathbf{v} is second eigenvector of adj. matrix of G

2. W is top k vertices sorted by abs. value in v
3. Returns all nodes with $3 \mathrm{k} / 4$ neighbors in W

Differences

- Hidden Clique: Matrix entries are 0 and I; Want to find submatrix that is all I's
- D/N Game: Matrix entries in [-n,+n]. Want to find submatrix where sum of each row has high absolute value

Reliable Broadcast (Bracha)

- All coinflip values sent using reliable broadcast
- Ensures if a message is "received" by a good node, same message is eventually "received" by all nodes
- Prevents equivocation
- Doesn't solve BA
- If a bad player reliably broadcasts, may be case that no good player "receives" the message

Common Coins

- There are at least $n(n-2 t)$ common coins and no more than $2 t$ coins from good nodes, no more than 2 per node that are not common
- The common coins are known to $\mathrm{n}-4 \mathrm{t}$ good nodes

Bipartite Graph

$\left|M_{g}\right|$

Fact I: Whp, $\left|M_{\mathrm{g}}\right| \leq 5(\mathrm{n}(\mathrm{m}+\mathrm{n}))^{1 / 2}$

- M_{g} is a random matrix
- Each entry is an independent r.v. with expectation 0 ; s.d. $=\sqrt{ } \mathrm{n}$; and range $[-\mathrm{k}, \mathrm{k}]$ where $k \sim n^{1 / 2} \log n$
- Fact I follows from Theorem 3 in [AS '07]

$\left|M_{b}\right|$

Fact 2: $\left|M_{b}\right| \geq(m n)^{1 / 2} /\left(2 c_{1}\right) \quad$ (where $t=c_{l}$ n)

- \mathbf{x} is a unit vector with all values $I / t^{1 / 2}$
- y is a unit vector with entries $\pm 1 /(\mathrm{m} /$ $10)^{1 / 2}$ for the $\mathrm{m} / \mathrm{l} 0$ good iterations and 0 everywhere else (sign of non-zero entries is direction of bad deviation)
- Then $y^{\wedge} t M_{b} x \geq(m n / 20) /(\mathrm{mt} / \mathrm{l} 0)^{1 / 2} \geq$ $(\mathrm{mn})^{1 / 2} /\left(2 \mathrm{c}_{\mathrm{I}}\right)$

When to update bad values

- Some good nodes may not receive the coinflips of the bad nodes in a given epoch
- If $|M| \leq(m n)^{1 / 2} /\left(2 \mathrm{c}_{\mathrm{l}}\right)$ then don't do bad updates (recall $\mathrm{t}=\mathrm{c}, \mathrm{n}$)
- If there is no agreement, a linear number of good nodes will perform updates

Deviation Probabilities

