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Byzantine Agreement

Each node starts with a bit	


Goal: 1) all good nodes output the same bit; 
and 2) this bit equals an input bit of a good 
node	


t = # bad nodes controlled by an adversary



Applications
!

•Bitcoin	

“Bitcoin is based on a novel Byzantine agreement protocol in 
which cryptographic puzzles keep a computationally bounded 
adversary from gaining too much influence” [ML ’13]!

•Game Theory (Mediators)	

“deep connections between implementing mediators and various 
agreement problems, such as Byzantine agreement” [ADH ’08]!

•Peer-to-peer networks	

“These replicas cooperate with one another in a Byzantine agreement 
protocol to choose the final commit order for 
updates.” [KBCCEGGRWWWZ ’00]!

•Also: Control systems, Databases, Sensor networks, Cloud Computing, etc	

!
!

Also: Secure Multiparty Computation, Databases, 
State Machine Replication, Sensor Networks, Cloud 
Computing, Control systems,  etc.	




Classic Model

• Asynchronous: Adversary schedules 
message delivery	


• Full Information: Adversary knows state of 
all nodes	


• Adaptive Adversary: Adversary takes over 
nodes at any time up to t total



Previous Work
• [Ben-Or ’83] gave first randomized 

algorithm to solve BA in this model	


• [FLP ’85] showed BA impossible for 
deterministic algorithms even when t=1	


• Ben-Or’s algorithm is exponential expected 
communication time	


• Communication Time: maximum length of 
any chain of messages



Our Result

• Las Vegas algorithm that solves Byzantine 
agreement in the classic model 	


• We tolerate    	


• Expected communication time is O(n3) 	


• Computation time and bits sent are also 
polynomial in expectation

≤

t = θ(n)



Ben-Or’s algorithm
• Consists of iterations 	


• Uses private random bits to create a fair global 
coin with probability 1/2n in each iteration	


• For each iteration there is a correct direction 

• If there is a global coin and it is in this direction, 
agreement is reached

Our goal: Get a fair global coin after polynomial 
iterations using the private random bits



Key Idea

• With constant probability, sum of coinflips 
of good nodes will be in the correct 
direction and large enough for Ben-Or to 
succeed	


• Bad nodes need to generate bad deviation 
in the opposite direction of equal 
magnitude to foil this good event	


• If the few bad nodes generate large 
deviation repeatedly, we can find them



Equivocation: Bad nodes send different coins to different nodes

Issues

Missing coins: Adversary delays messages so that different 
nodes receive different coins

Bracha’s Reliable Broadcast: If a good node receives a 
message from a bad node, q, all other good nodes that 
receive a message from q will receive the same message

Common coins: coins known to most nodes	


No more than 2t coins from good nodes, no more 
than 2 per node that are not common. 	


Common coins are known to n-4t good nodes.

Ignore  in this talk. 	

 See paper for details



Remaining Problem

• Bad nodes create biased coinflips



Deviation

• All coinflips are either +1 or -1	


• The deviation of p in an iteration is the 
absolute value of the sum of p’s coinflips	


• The direction of p in an iteration is the 
sign of the sum of p’s coinflips



Iterations and Epochs
• In each iteration, we run modified Ben-Or 	


• There are             iterations in an epoch 

• In each epoch, we expect a constant 
fraction of iterations to be good i.e. 
deviation of good nodes is        in correct 
direction (          )� = ✓(n)

m = ✓(n)

� �

•In a good iteration, bad nodes have deviation   	


•(Remaining “good” deviation undone by scheduler)

� �/2



Bad deviation

In an epoch with no agreement, there is a set of ✓(n) iterations I
and a set of at most t nodes B such that:

P
i2I

P
p2B (deviation of node p in iteration i) = ⌦(n2

)



Spectral Blacklisting



Matrix

• M is a m by n matrix	


• M(i,j) = deviation in iteration i of node j	


• Mb is bad columns of M	


• Mg is good columns of M	


• Assume M = [Mb Mg]



Algorithm Sketch
Repeat until reaching agreement	


1. Run an epoch.  Let M be the deviation 
matrix for that epoch	


2. If |M| is “sufficiently large” then	


A. Compute the right eigenvector, r, of M	


B. Increase bad value of each node i by 
r[i]2	


3. Blacklist a node when its bad value 
reaches 1



|Mb|≥ C |Mg| 

• Lemma 1: In an epoch with no agreement, 
whp, for any constant C, for t=c1n chosen 
sufficiently small, |Mb|≥ C |Mg| 

• Fact 1: Whp  

• Fact 2:                    in such an epoch  

• Lemma 1 then follows by algebra	


“sufficiently large”
|Mb| = ⌦(n)

|Mg| = O(n)



rb and rg

• Let r be the top right eigenvector of M	


• Let rb be the vector such that rb[i] = r[i] 
for 1≤i≤t and all other entries are 0  	


• Let rg be the vector such that rg[i] = r[i] for 
t+1≤i≤n and all other entries are 0	


• Expect |rg|2  to be bigger than |rb|2



=Mb Mg

rb

rg

Mbrb

Mgrg



Lemma 2
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where the first step holds via Corollary 1.
Hence, for any constant C, for �1 chosen su�ciently small,

we can ensure that w.h.p. |MB | � C|MG|.
Let M be an m by n matrix such that M(i, j) is the devi-

ation in the i-th iteration of the j-th processor. For analy-
sis, we assume that the columns of M are arranged so that
the columns for the t bad processors are to the left of the
columns for the n � t good processors. We note that this
rearrangement is equivalent to multiplying M by a permu-
tation matrix and so will not e↵ect the singular values of
M .

We thus let M = [MBMG]. Now let ` and r be the top
left and right singular vectors of M and let �1 be the top
singular vector of M i.e. �1 = |M |. We note that �1 � |MB |
and that `TMr = �1.
Now let rb be defined such that for all 1  i  t rb[i] =

r[i] and all other entries of rb are 0. Similarly, define rg

such that for all t + 1  i  n rg[i] = r[i] and all other
entries of rg are 0. Note that by construction, r = rb + rg.

Lemma 2. The following holds w.h.p., |rg|2 < |rb|2/2
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2/3. We further
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Putting this together, we have:
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where the third line follows by the Cauchy-Schwartz inequal-
ity, and the last line follows for C su�ciently large.
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Implications

So, whp, bad values for bad nodes increase at twice the 
rate as bad values for good nodes	


Thus “most” good nodes: 

 1) Blacklist no more than t good nodes	


 2) Blacklist all bad nodes within n epochs

Lemma 2: Whp, |rg|2 < |rb|2 /2	


Lemma 2: Whp, |rg|2 < |rb|2 /2	




Conclusion

• First expected fully polynomial time 
algorithm for classic Byzantine agreement 	


• Previous best algorithm (Ben-or’s) was 
expected exponential time	


• New technique: design algorithms that 
force attackers into statistically deviant 
behavior that is detectable



Open Problems

• Can we use spectral blacklisting in 
problems where an adversary is trying to 
attack reputations or page rank?	


• Can we learn bad nodes faster via different 
scoring e.g. weighted majority?	


• Connections to planted clique type 
problems?	


• Improve latency, resilience, and bandwidth



Questions?



(D)etector/(N)eutralizer 
Game

1. N claims columns, provided total claimed over game ≤ t	


2. Entries in unclaimed columns set to sum of n indep coinflips	


3. Each row selected indep. with prob. 1/2	


4. N sets all entries in its columns	


5. D sees matrix & may remove columns provided total removed 
over game ≤ 2t

N’s goal: Deviation of all “selected” rows ≤ 2n	

D wins if N fails in its goal 

Our result:  Win for D in expected O(n) iterations



1. N claims columns, provided total claimed 
over game ≤ t	


2. Entries in unclaimed columns set to sum of 
n indep coinflips	


3. Each row selected indep. with prob. 1/2	


4. N sets all entries in its columns	


5. D sees matrix & may remove columns 
provided total removed over game ≤ 2t

(D)etector/(N)eutralizer 
Game



Related Work 
(Spectral)

• Page Rank	


• Eigentrust	


• Hidden Clique



Page Rank [PBMW ’99]

• Google’s $300 billion “secret sauce”	


• M is a stochastic matrix, representing a 
random walk over the web link graph	


• r is top right eigenvector of M (and 
stationary distribution of M’s walk)	


• For a web page, i, r[i] = “authority” of i



Eigentrust [KSG ’03]
• M is a matrix s.t. M(i,j) represents amount 

which party i trusts party j	


• r is top right eigenvector of M	


• For a party, i, r[i] = “trustworthiness” of i	


• Party i is trustworthy if it is trusted by 
parties that are themselves trustworthy



Differences

• Eigentrust and PageRank: Want to identify 
good players based on feedback from 
other players	


• D/N Game: Want to identify bad players 
based on deviation from random 
coinflips



Hidden Clique
• The problem	


• A random G(n,1/2) graph is chosen	


• A k-clique is randomly placed in G	


• [AKS ’98] give an algorithm for k = √n	


1. v is second eigenvector of adj. matrix of G	


2. W is top k vertices sorted by abs. value in v	


3. Returns all nodes with 3k/4 neighbors in W



Differences

• Hidden Clique: Matrix entries are 0 and 1; 
Want to find submatrix that is all 1’s	


• D/N Game: Matrix entries in [-n,+n].  Want 
to find submatrix where sum of each row 
has high absolute value  



Reliable Broadcast 
(Bracha)

• All coinflip values sent using reliable broadcast	


• Ensures if a message is “received” by a good 
node, same message is eventually “received” by 
all nodes 	


• Prevents equivocation	


• Doesn’t solve BA	


• If a bad player reliably broadcasts, may be 
case that no good player “receives” the 
message



Common Coins

• There are at least n(n-2t) common coins 
and no more than 2t coins from good 
nodes, no more than 2 per node that are 
not common	


• The common coins are known to n-4t 
good nodes



Bipartite Graph
|R| = cn

c2nt

� �/2 weightBe Ie

|L| = n

nodes iterations

edge between 
each node p and 
each iter i with 

weight = dvtn of 
p in iter i	


n/10
n/2



|Mg|

Fact 1: Whp, |Mg| ≤ 5(n(m+n))1/2	


• Mg is a random matrix	


• Each entry is an independent r.v. with 
expectation 0; s.d. = √n; and range [-k,k] 
where k ~ n 1/2 log n	


• Fact 1 follows from Theorem 3 in [AS 
’07]



|Mb|
Fact 2: |Mb|≥ (mn)1/2 /(2c1)     (where t = c1 
n)	


• x is a unit vector with all values 1/t1/2	


• y is a unit vector with entries ± 1/(m/
10)1/2  for the m/10 good iterations and 0 
everywhere else (sign of non-zero entries 
is direction of bad deviation)	


• Then y^t Mb x ≥ (mn/20)/(mt/10) 1/2 ≥ 
(mn)1/2 /(2c1)



When to update bad 
values

• Some good nodes may not receive the 
coinflips of the bad nodes in a given epoch

•If |M|≤ (mn)1/2 /(2c1) then don’t do bad 
updates (recall t = c1n)	


•If there is no agreement, a linear 
number of good nodes will perform 
updates



Deviation Probabilities 

sum

probability n-t nodes 

t nodes 

prob n-t nodes	

have dev ≥ kn

kn-kn
prob t good 
nodes have 
dev ≤ -kn

observed 
prob for t 
bad nodes


