The Discrete Fourier Transform (DFT)

- Sampling Periodic Functions
- Inner Product of Discrete Periodic Functions
- Kronecker Delta Basis
- Sampled Harmonic Signal Basis
- The Discrete Fourier Transform (DFT)
- The DFT in Matrix Form
- Matrix Diagonalization
- Convolution of Discrete Periodic Functions
- Circulant Matrices
- Diagonalization of Circulant Matrices
- Polynomial Multiplication

Sampling Periodic Functions

Given a function of period, T, i.e.,

$$
f(t)=f(t+T)
$$

choose N and sample $f(t)$ within the interval, $0 \leq t \leq T$, at N equally spaced points, $n \Delta t$, where $n=0,1, \ldots, N-1$ and $\Delta t=T / N$. The result is a discrete function of period, N, which can be represented as a vector, \mathbf{f}, in \mathbb{R}^{N} (or \mathbb{C}^{N}) where $f_{n}=f(n \Delta t):$

$$
\mathbf{f}=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{N-1}
\end{array}\right]
$$

Inner Product of Discrete Periodic Functions

We can define the inner product of two discrete functions of period, N, as follows:

$$
\langle\mathbf{f}, \mathbf{g}\rangle=\sum_{n=0}^{N-1} f_{n}^{*} g_{n} .
$$

$\underline{\text { Kronecker Delta Basis }}$

$$
\left(\mathbf{k}_{m}\right)_{n}=\delta_{m n}=\left\{\begin{array}{l}
1 \text { if } m=n \\
0 \text { otherwise }
\end{array}\right.
$$

Example:

$$
\mathbf{k}_{2}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Because $\left\langle\mathbf{k}_{m_{1}}, \mathbf{k}_{m_{2}}\right\rangle$ equals zero when $m_{1} \neq m_{2}$ and one when $m_{1}=m_{2}$, the set of \mathbf{k}_{m} for $0 \leq$ $m<N$ form an orthonormal basis for \mathbb{R}^{N} (or \mathbb{C}^{N}) and therefore for discrete functions of period, N.
$\underline{\text { Sampled Harmonic Signal Basis }}$
A sampled harmonic signal is a discrete function of period, N :

$$
W_{n, m}=\frac{1}{\sqrt{N}} e^{j 2 \pi m \frac{n}{N}}
$$

where m is frequency and n is position. A sampled harmonic signal of frequency, m, can be represented by a vector of length N :

$$
\mathbf{w}_{m}=\left[\begin{array}{c}
W_{0, m} \\
W_{1, m} \\
\vdots \\
W_{N-1, m}
\end{array}\right]=\frac{1}{\sqrt{N}}\left[\begin{array}{c}
e^{j 2 \pi m m_{N}} \\
e^{j 2 \pi m \frac{1}{N}} \\
\vdots \\
e^{j 2 \pi m \frac{(N-1)}{N}}
\end{array}\right] .
$$

Sampled Harmonic Signal Basis (contd.)

How "long" is a sampled harmonic signal?

$$
\begin{aligned}
\left\|\mathbf{w}_{m}\right\| & =\left\langle\mathbf{w}_{m}, \mathbf{w}_{m}\right\rangle^{\frac{1}{2}} \\
& =\left(\sum_{n=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j 2 \pi m \frac{n}{N}} \frac{1}{\sqrt{N}} e^{j 2 \pi m \frac{n}{N}}\right)^{\frac{1}{2}} \\
& =\left(\sum_{n=0}^{N-1} \frac{1}{N}\right)^{\frac{1}{2}} \\
& =1
\end{aligned}
$$

Sampled Harmonic Signal Basis (contd.)

What is the "angle" between two sampled harmonic signals, $\mathbf{w}_{m_{1}}$ and $\mathbf{w}_{m_{2}}$, when $m_{1} \neq m_{2}$?

$$
\begin{aligned}
\left\langle\mathbf{w}_{m_{1}}, \mathbf{w}_{m_{2}}\right\rangle & =\frac{1}{N} \sum_{n=0}^{N-1} e^{-j 2 \pi m_{1} \frac{n}{N}} e^{j 2 \pi m_{2} \frac{n}{N}} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi\left(m_{2}-m_{1}\right) \frac{n}{N}} \\
& =\frac{1}{N} \sum_{n=0}^{N-1}\left(e^{j 2 \pi \frac{\left(m_{2}-m_{1}\right)}{N}}\right)^{n}
\end{aligned}
$$

Sampled Harmonic Signal Basis (contd.)
Substituting α for $e^{j 2 \pi \frac{\left(m_{2}-m_{1}\right)}{N}}$ yields

$$
\left\langle\mathbf{w}_{m_{1}}, \mathbf{w}_{m_{2}}\right\rangle=\frac{1}{N} \sum_{n=0}^{N-1} \alpha^{n}
$$

afterwhich the following identity:

$$
\sum_{n=0}^{N-1} \alpha^{n}=\frac{1-\alpha^{N}}{1-\alpha}
$$

can be applied to yield

$$
\left\langle\mathbf{w}_{m_{1}}, \mathbf{w}_{m_{2}}\right\rangle=\frac{1}{N}\left(\frac{1-\alpha^{N}}{1-\alpha}\right) .
$$

Sampled Harmonic Signal Basis (contd.)

Since $\alpha=e^{j 2 \pi \frac{\left(m_{2}-m_{1}\right)}{N}}$, it follows that

$$
\begin{aligned}
\alpha^{N} & =e^{j 2 \pi\left(m_{2}-m_{1}\right) \frac{N}{N}} \\
& =e^{j 2 \pi\left(m_{2}-m_{1}\right)} .
\end{aligned}
$$

Because $e^{j 2 \pi k}=1$ for all integers, $k \neq 0$, and because $\left(m_{2}-m_{1}\right) \neq 0$ is an integer, it follows that $\alpha^{N}=1$ yet $\alpha \neq 1$. Consequently,

$$
\begin{aligned}
\left\langle\mathbf{w}_{m_{1}}, \mathbf{w}_{m_{2}}\right\rangle & =\frac{1}{N}\left(\frac{1-\alpha^{N}}{1-\alpha}\right) \\
& =0
\end{aligned}
$$

In summary, because $\left\langle\mathbf{w}_{m_{1}}, \mathbf{w}_{m_{2}}\right\rangle=0$ when $m_{1} \neq$ m_{2} and $\left\langle\mathbf{w}_{m_{1}}, \mathbf{w}_{m_{2}}\right\rangle=1$ when $m_{1}=m_{2}$, the set of \mathbf{w}_{m} for $0 \leq m<N$ form an orthonormal basis for \mathbb{R}^{N} (or \mathbb{C}^{N}) and therefore for discrete functions of period, N.

The Discrete Fourier Transform (DFT)

- Question What are the coefficients of \mathbf{f} in the sampled harmonic signal basis?
- Answer Take inner products of \mathbf{f} with the finite set of sampled harmonic signals, \mathbf{w}_{m}, for $0 \leq m<N$.

The result is the analysis formula for the DFT:

$$
\begin{aligned}
F_{m} & =\left\langle\mathbf{w}_{m}, \mathbf{f}\right\rangle \\
& =\left\langle\frac{1}{\sqrt{N}} e^{j 2 \pi m^{n}}, \mathbf{f}\right\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f_{n} e^{-j 2 \pi m \frac{n}{N}}
\end{aligned}
$$

where \mathbf{F} is used to denote the discrete Fourier transform of \mathbf{f}. The function can be reconstructed using the synthesis formula for the DFT:

$$
f_{n}=\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} F_{m} e^{j 2 \pi m_{N}^{n}}
$$

The DFT in Matrix Form

The analysis formula for the DFT:

$$
F_{m}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f_{n} e^{-j 2 \pi m \frac{n}{N}}
$$

can be written as a matrix equation:

$$
\left[\begin{array}{c}
F_{0} \\
\vdots \\
F_{N-1}
\end{array}\right]=\left[\begin{array}{ccc}
W_{0,0}^{*} & \ldots & W_{0, N-1}^{*} \\
\vdots & \ddots & \vdots \\
W_{N-1,0}^{*} & \cdots & W_{N-1, N-1}^{*}
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{N-1}
\end{array}\right]
$$

where $W_{m, n}^{*}=\frac{1}{\sqrt{N}} e^{-j 2 \pi m} \frac{n}{N}$.
More concisely:

$$
\mathbf{F}=\mathbf{W}^{*} \mathbf{f}
$$

The DFT in Matrix Form (contd.)

The synthesis formula for the DFT:

$$
f_{n}=\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} F_{m} e^{j 2 \pi m_{N}^{n}}
$$

can also be written as a matrix equation:

$$
\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{N-1}
\end{array}\right]=\left[\begin{array}{ccc}
W_{0,0} & \ldots & W_{0, N-1} \\
\vdots & \ddots & \vdots \\
W_{N-1,0} & \cdots & W_{N-1, N-1}
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
\vdots \\
F_{N-1}
\end{array}\right]
$$

where $W_{m, n}=\frac{1}{\sqrt{N}} e^{j 2 \pi m \frac{n}{N}}$. More concisely:

$$
\mathbf{f}=\mathbf{W F} .
$$

Note: Because only the product of frequency, m, and position, n, appears in the expression for a sampled harmonic signal, it follows that $W_{m, n}=W_{n, m}$. Therefore $\mathbf{W}=\mathbf{W}^{\mathrm{T}}$. The only difference between the matrices used for the forward and inverse DFT's, i.e., \mathbf{W}^{*} and \mathbf{W}, is conjugation.

The DFT in Matrix Form (contd.)

A matrix product, $\mathbf{y}=\mathbf{A x}$, can be interpreted in two different ways.

1. The i-th component of \mathbf{y} is the inner product of \mathbf{x} with the i-th row of \mathbf{A} :

$$
\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{N-1}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
A_{0,0} & \ldots & A_{0, N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\vdots \\
x_{N-1}
\end{array}\right]} \\
& \vdots & \\
{\left[\begin{array}{lll}
A_{N-1,0} & \ldots & A_{N-1, N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\vdots \\
x_{N-1}
\end{array}\right]}
\end{array}\right]
$$

2. The vector, \mathbf{y}, is a linear combination of the columns of \mathbf{A}. The i-th column is weighted by x_{i} :

$$
\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{N-1}
\end{array}\right]=x_{0}\left[\begin{array}{c}
A_{0,0} \\
\vdots \\
A_{N-1,0}
\end{array}\right]+\cdots+x_{N-1}\left[\begin{array}{c}
A_{0, N-1} \\
\vdots \\
A_{N-1, N-1}
\end{array}\right]
$$

The DFT in Matrix Form (contd.)

Both ways of looking at matrix product are equally correct. However, it is useful to think of the analysis formula, $\mathbf{F}=\mathbf{W}^{*} \mathbf{f}$, the first way:

$$
\left[\begin{array}{c}
F_{0} \\
\vdots \\
F_{N-1}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
W_{0,0}^{*} & \ldots & W_{0, N-1}^{*}
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{N-1}
\end{array}\right]} \\
& \vdots & \\
{\left[\begin{array}{lll}
W_{N-1,0}^{*} & \ldots & W_{N-1, N-1}^{*}
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{N-1}
\end{array}\right]}
\end{array}\right]
$$

i.e., F_{m} is the inner product of \mathbf{f} with the m-th row of \mathbf{W}. Conversely, it is useful to think of the synthesis formula, $\mathbf{f}=\mathbf{W F}$, the second way:

$$
\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{N-1}
\end{array}\right]=F_{0}\left[\begin{array}{c}
W_{0,0} \\
\vdots \\
W_{N-1,0}
\end{array}\right]+\cdots+F_{N-1}\left[\begin{array}{c}
W_{0, N-1} \\
\vdots \\
W_{N-1, N-1}
\end{array}\right]
$$

i.e., \mathbf{f} is a linear combination of the columns of \mathbf{W}. The m-th column is weighted by F_{m}.

Matrix Diagonalization

A vector, \mathbf{x}, is a right eigenvector when $\mathbf{A x}$ points in the same direction as \mathbf{x} but is (possibly) of different length:

$$
\lambda \mathbf{x}=\mathbf{A} \mathbf{x}
$$

A vector, \mathbf{y}, is a left eigenvector when $\mathbf{y}^{\mathrm{T}} \mathbf{A}$ points in the same direction as \mathbf{y}^{T} but is (possibly) of different length:

$$
\lambda \mathbf{y}^{\mathrm{T}}=\mathbf{y}^{\mathrm{T}} \mathbf{A}
$$

A diagonalizable matrix of rank, N, has N linearly independent right eigenvectors

$$
\mathbf{x}_{0}, \ldots, \mathbf{x}_{N-1}
$$

and N linearly independent left eigenvectors

$$
\mathbf{y}_{0}, \ldots, \mathbf{y}_{N-1}
$$

which share the N eigenvalues

$$
\lambda_{0}, \ldots, \lambda_{N-1} .
$$

Matrix Diagonalization (contd.)

Such a matrix can be factored as follows:

$$
\mathbf{A}=\mathbf{X D Y} \mathbf{Y}^{\mathrm{T}}
$$

where the i-th column of \mathbf{X} is \mathbf{x}_{i} and the i-th row of \mathbf{Y}^{T} is \mathbf{y}_{i} and \mathbf{D} is diagonal with $D_{i, i}=\lambda_{i}$:

$$
\mathbf{D}=\left[\begin{array}{cccc}
\lambda_{0} & 0 & \ldots & 0 \\
0 & \lambda_{1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{N-1}
\end{array}\right]
$$

We also observe that

$$
\mathbf{X Y} \mathbf{Y}^{\mathrm{T}}=\mathbf{I}
$$

i.e., \mathbf{X} and \mathbf{Y}^{T} are inverses. We say that \mathbf{A} has been diagonalized. Stated differently, in the basis formed by its right eigenvectors, the linear operator, \mathbf{A}, is represented by the diagonal matrix, D.

Matrix Diagonalization (contd.)

When \mathbf{A} is real and symmetric, i.e., $\mathbf{A}=\mathbf{A}^{\mathrm{T}}$, the left and right eigenvectors are the same. Consequently, $\mathbf{X}=\mathbf{Y}$. In this case, \mathbf{A} can be factored as follows:

$$
\mathbf{A}=\mathbf{X D X}^{\mathrm{T}}
$$

Since $\mathbf{X X} \mathbf{X}^{\mathrm{T}}=\mathbf{I}$, we conclude that the eigenvectors of \mathbf{A} form an orthonormal basis.

Matrix Diagonalization (contd.)

The hermitian transpose, \mathbf{A}^{H}, of a complex matrix, \mathbf{A}, is defined to be $\left(\mathbf{A}^{*}\right)^{\mathrm{T}}$. When \mathbf{A} is complex and symmetric, the left and right eigenvectors are complex conjugates. In this case, \mathbf{A} can be factored as follows:

$$
\mathbf{A}=\mathbf{X D X}^{\mathrm{H}}
$$

When the matrix of eigenvectors, \mathbf{X}, is also symmetric, i.e., $\mathbf{X}=\mathbf{X}^{\mathrm{T}}$, the above simplifies to:

$$
\mathbf{A}=\mathbf{X D X}^{*}
$$

Convolution of Discrete Periodic Functions

Let \mathbf{f} and \mathbf{g} be vectors in \mathbb{R}^{N}. Because \mathbf{f} and \mathbf{g} represent discrete functions of period, N, we adopt the convention that $f(k \pm N)=f(k)$. The k-th component of the convolution of \mathbf{f} and \mathbf{g} is then

$$
\{\mathbf{f} * \mathbf{g}\}_{k}=\sum_{j=0}^{N-1} f_{j} g_{k-j}
$$

$\underline{\text { Example of Discrete Periodic Convolution }}$

Calculate $\{\mathbf{f} * \mathbf{g}\}_{k}$ when

$$
\mathbf{g}=\left[\begin{array}{llllll}
2 & 1 & 0 & \ldots & 0 & 1
\end{array}\right]^{\mathrm{T}}
$$

Since $\mathbf{f} * \mathbf{g}=\mathbf{g} * \mathbf{f}$ and since

$$
\{\mathbf{g} * \mathbf{f}\}_{k}=\sum_{j=0}^{N-1} g_{j} f_{k-j}
$$

it follows that

$$
\begin{aligned}
\{\mathbf{f} * \mathbf{g}\}_{k} & =g_{0} f_{k}+g_{1} f_{k-1}+\cdots+g_{N-1} f_{k-(N-1)} \\
& =2 f_{k}+1 f_{k-1}+1 f_{k-(N-1)} \\
& =f_{k-1}+2 f_{k}+1 f_{k+1}
\end{aligned}
$$

This operation performs a local weighted averaging of \mathbf{f}.

Circulant Matrices

The convolution formula for discrete periodic functions

$$
\{\mathbf{f} * \mathbf{g}\}_{k}=\sum_{j=0}^{N-1} f_{j} g_{k-j}
$$

can be written as a matrix equation:

$$
\mathbf{f} * \mathbf{g}=\mathbf{C f}
$$

where $C_{k, j}=g_{k-j}$:

$$
\mathbf{C}=\left[\begin{array}{ccccc}
g_{0} & g_{N-1} & g_{N-2} & \ldots & g_{1} \\
g_{1} & g_{0} & g_{N-1} & \ldots & g_{2} \\
g_{2} & g_{1} & g_{0} & \ldots & g_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{N-1} & g_{N-2} & g_{N-3} & \ldots & g_{0}
\end{array}\right]
$$

Matrices like \mathbf{C} are termed circulant. It is a fact that the right eigenvectors of all circulant matrices are sampled harmonic signals. Furthermore, the left eigenvectors of all circulant matrices are sampled conjugated harmonic signals.

Diagonalization of Circulant Matrices

Consequently, any circulant matrix, \mathbf{C}, can be factored as follows:

$$
\mathbf{C}=\mathbf{W D W}^{*}
$$

where $W_{m, n}=e^{j 2 \pi m \frac{n}{N}}$ and

$$
\mathbf{D}=\left[\begin{array}{cccc}
G_{0} & 0 & \ldots & 0 \\
0 & G_{1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & G_{N-1}
\end{array}\right]
$$

Here $D_{m, m}=G_{m}$, the m-th coefficient of the discrete Fourier transform of \mathbf{g}. We can use this result to compute $\mathbf{f} * \mathbf{g}$

$$
\mathbf{f} * \mathbf{g}=\mathbf{W D W}^{*} \mathbf{f}
$$

This is just the Convolution Theorem. Multiplication with a circulant matrix, \mathbf{C}, in the space domain is multiplication with a diagonal matrix, \mathbf{D}, in the frequency domain.

$\underline{\text { Polynomial Multiplication }}$

$$
\begin{gathered}
p(x)=p_{0} x^{0}+p_{1} x^{1}+p_{2} x^{2}+\cdots+p_{m} x^{m} \\
q(x)=q_{0} x^{0}+q_{1} x^{1}+q_{2} x^{2}+\cdots+q_{n} x^{n} \\
p(x) q(x)=p_{0} q_{0} x^{0}+ \\
\left(p_{0} q_{1}+p_{1} q_{0}\right) x^{1}+ \\
\left(p_{0} q_{2}+p_{1} q_{1}+p_{2} q_{0}\right) x^{2}+ \\
\left(p_{0} q_{3}+p_{1} q_{2}+p_{2} q_{1}+p_{3} q_{0}\right) x^{3}+ \\
\left(p_{0} q_{4}+p_{1} q_{3}+p_{2} q_{2}+p_{3} q_{1}+p_{4} q_{0}\right) x^{4}+ \\
\vdots \\
\left(p_{0} q_{n+m}+p_{1} q_{n+m-1}+\cdots+p_{n+m-1} q_{1}+p_{n+m} q_{0}\right) x^{n+m}
\end{gathered}
$$

$\underline{\text { Polynomial Multiplication (contd.) }}$

$$
\begin{aligned}
r(x) & =p(x) q(x) \\
& =r_{0} x^{0}+r_{1} x^{1}+r_{2} x^{2}+\cdots+r_{n+m} x^{n+m}
\end{aligned}
$$

where

$$
\begin{aligned}
r_{i} & =p_{0} q_{i}+p_{1} q_{i-1}+\cdots+p_{i-1} q_{1}+p_{i} q_{0} \\
& =\sum_{j=0}^{i} p_{j} q_{i-j} \\
& =\sum_{j=-\infty}^{\infty} p_{j} q_{i-j} \\
& =\{\mathbf{p} * \mathbf{q}\}_{i}
\end{aligned}
$$

