The Discrete Fourier Transform (DFT)

- Sampling Periodic Functions
- Inner Product of Discrete Periodic Functions
- Kronecker Delta Basis
- Sampled Harmonic Signal Basis
- The Discrete Fourier Transform (DFT)
- The DFT in Matrix Form
- Matrix Diagonalization
- Convolution of Discrete Periodic Functions
- Circulant Matrices
- Diagonalization of Circulant Matrices
- Polynomial Multiplication

Sampling Periodic Functions

Given a function of period, T, i.e.,

$$f(t) = f(t+T)$$

choose *N* and **sample** f(t) within the interval, $0 \le t \le T$, at *N* equally spaced points, $n\Delta t$, where n = 0, 1, ..., N - 1 and $\Delta t = T/N$. The result is a discrete function of period, *N*, which can be represented as a vector, **f**, in \mathbb{R}^N (or \mathbb{C}^N) where $f_n = f(n\Delta t)$:

$$\mathbf{f} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix}$$

Inner Product of Discrete Periodic Functions

We can define the *inner product* of two discrete functions of period, *N*, as follows:

$$\langle \mathbf{f}, \mathbf{g} \rangle = \sum_{n=0}^{N-1} f_n^* g_n.$$

Kronecker Delta Basis

$$(\mathbf{k}_{m})_{n} = \delta_{mn} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$$

Example:
$$\mathbf{k}_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Because $\langle \mathbf{k}_{m_1}, \mathbf{k}_{m_2} \rangle$ equals zero when $m_1 \neq m_2$ and one when $m_1 = m_2$, the set of \mathbf{k}_m for $0 \leq m < N$ form an orthonormal basis for \mathbb{R}^N (or \mathbb{C}^N) and therefore for discrete functions of period, N.

Sampled Harmonic Signal Basis

A sampled harmonic signal is a discrete function of period, N:

$$W_{n,m} = \frac{1}{\sqrt{N}} e^{j2\pi m \frac{n}{N}}$$

where *m* is frequency and *n* is position. A sampled harmonic signal of frequency, *m*, can be represented by a vector of length *N*:

$$\mathbf{w}_{m} = \begin{bmatrix} W_{0,m} \\ W_{1,m} \\ \vdots \\ W_{N-1,m} \end{bmatrix} = \frac{1}{\sqrt{N}} \begin{bmatrix} e^{j2\pi m \frac{0}{N}} \\ e^{j2\pi m \frac{1}{N}} \\ \vdots \\ e^{j2\pi m \frac{(N-1)}{N}} \end{bmatrix}$$

How "long" is a sampled harmonic signal?

$$\begin{aligned} \|\mathbf{w}_{m}\| &= \langle \mathbf{w}_{m}, \mathbf{w}_{m} \rangle^{\frac{1}{2}} \\ &= \left(\sum_{n=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j2\pi m_{N}^{n}} \frac{1}{\sqrt{N}} e^{j2\pi m_{N}^{n}} \right)^{\frac{1}{2}} \\ &= \left(\sum_{n=0}^{N-1} \frac{1}{N} \right)^{\frac{1}{2}} \\ &= 1 \end{aligned}$$

What is the "angle" between two sampled harmonic signals, \mathbf{w}_{m_1} and \mathbf{w}_{m_2} , when $m_1 \neq m_2$?

$$egin{aligned} &\langle \mathbf{w}_{m_1}, \mathbf{w}_{m_2}
angle &= rac{1}{N} \sum_{n=0}^{N-1} e^{-j 2 \pi m_1 rac{n}{N}} e^{j 2 \pi m_2 rac{n}{N}} \ &= rac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi (m_2 - m_1) rac{n}{N}} \ &= rac{1}{N} \sum_{n=0}^{N-1} \left(e^{j 2 \pi rac{(m_2 - m_1)}{N}}
ight)^n \end{aligned}$$

Substituting α for $e^{j2\pi \frac{(m_2-m_1)}{N}}$ yields

$$\langle \mathbf{w}_{m_1}, \mathbf{w}_{m_2} \rangle = \frac{1}{N} \sum_{n=0}^{N-1} \alpha^n$$

afterwhich the following identity:

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1-\alpha^N}{1-\alpha}$$

can be applied to yield

$$\langle \mathbf{w}_{m_1}, \mathbf{w}_{m_2} \rangle = \frac{1}{N} \left(\frac{1 - \alpha^N}{1 - \alpha} \right).$$

Since
$$\alpha = e^{j2\pi \frac{(m_2 - m_1)}{N}}$$
, it follows that
 $\alpha^N = e^{j2\pi (m_2 - m_1) \frac{N}{N}}$
 $= e^{j2\pi (m_2 - m_1)}$.

Because $e^{j2\pi k} = 1$ for all integers, $k \neq 0$, and because $(m_2 - m_1) \neq 0$ is an integer, it follows that $\alpha^N = 1$ yet $\alpha \neq 1$. Consequently,

$$\langle \mathbf{w}_{m_1}, \mathbf{w}_{m_2} \rangle = \frac{1}{N} \left(\frac{1 - \alpha^N}{1 - \alpha} \right)$$

= 0.

In summary, because $\langle \mathbf{w}_{m_1}, \mathbf{w}_{m_2} \rangle = 0$ when $m_1 \neq m_2$ and $\langle \mathbf{w}_{m_1}, \mathbf{w}_{m_2} \rangle = 1$ when $m_1 = m_2$, the set of \mathbf{w}_m for $0 \leq m < N$ form an orthonormal basis for \mathbb{R}^N (or \mathbb{C}^N) and therefore for discrete functions of period, N.

The Discrete Fourier Transform (DFT)

- Question What are the coefficients of **f** in the sampled harmonic signal basis?
- Answer Take inner products of **f** with the finite set of sampled harmonic signals, **w**_m, for 0 ≤ m < N.

The result is the analysis formula for the DFT:

$$egin{aligned} F_m &= \langle \mathbf{w}_m, \mathbf{f} \,
angle \ &= \langle rac{1}{\sqrt{N}} e^{j 2 \pi m_N^n}, \mathbf{f} \,
angle \ &= rac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f_n e^{-j 2 \pi m_N^n} \end{aligned}$$

where **F** is used to denote the discrete Fourier transform of **f**. The function can be reconstructed using the *synthesis formula* for the DFT:

$$f_n = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} F_m e^{j2\pi m \frac{n}{N}}.$$

The DFT in Matrix Form

The analysis formula for the DFT:

$$F_{m} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f_{n} e^{-j2\pi m_{N}^{n}}$$

can be written as a matrix equation:

$$\begin{bmatrix} F_0 \\ \vdots \\ F_{N-1} \end{bmatrix} = \begin{bmatrix} W_{0,0}^* & \dots & W_{0,N-1}^* \\ \vdots & \ddots & \vdots \\ W_{N-1,0}^* & \dots & W_{N-1,N-1}^* \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_{N-1} \end{bmatrix}$$

where $W_{m,n}^* = \frac{1}{\sqrt{N}} e^{-j2\pi m_N^n}$.

More concisely:

 $\mathbf{F} = \mathbf{W}^* \mathbf{f}.$

The DFT in Matrix Form (contd.)

The synthesis formula for the DFT:

$$f_n = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} F_m e^{j2\pi m_N^n}$$

can also be written as a matrix equation:

$$\begin{bmatrix} f_0 \\ \vdots \\ f_{N-1} \end{bmatrix} = \begin{bmatrix} W_{0,0} & \dots & W_{0,N-1} \\ \vdots & \ddots & \vdots \\ W_{N-1,0} & \dots & W_{N-1,N-1} \end{bmatrix} \begin{bmatrix} F_0 \\ \vdots \\ F_{N-1} \end{bmatrix}$$

where $W_{m,n} = \frac{1}{\sqrt{N}} e^{j2\pi m \frac{n}{N}}$. More concisely:
 $\mathbf{f} = \mathbf{W}\mathbf{F}$.

Note: Because only the **product** of frequency, *m*, and position, *n*, appears in the expression for a sampled harmonic signal, it follows that $W_{m,n} = W_{n,m}$. Therefore $\mathbf{W} = \mathbf{W}^{\mathrm{T}}$. The only difference between the matrices used for the forward and inverse DFT's, *i.e.*, \mathbf{W}^* and \mathbf{W} , is conjugation.

The DFT in Matrix Form (contd.)

A matrix product, $\mathbf{y} = \mathbf{A}\mathbf{x}$, can be interpreted in two different ways.

1. The *i*-th component of **y** is the inner product of **x** with the *i*-th row of **A**:

$$\begin{bmatrix} y_0 \\ \vdots \\ y_{N-1} \end{bmatrix} = \begin{bmatrix} A_{0,0} \dots A_{0,N-1} \end{bmatrix} \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix}$$
$$\begin{bmatrix} A_{0,0} \dots A_{0,N-1} \end{bmatrix} \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix}$$

2. The vector, y, is a linear combination of the columns of A. The *i*-th column is weighted by x_i:

$$\begin{bmatrix} y_0 \\ \vdots \\ y_{N-1} \end{bmatrix} = x_0 \begin{bmatrix} A_{0,0} \\ \vdots \\ A_{N-1,0} \end{bmatrix} + \dots + x_{N-1} \begin{bmatrix} A_{0,N-1} \\ \vdots \\ A_{N-1,N-1} \end{bmatrix}$$

The DFT in Matrix Form (contd.)

Both ways of looking at matrix product are equally correct. However, it is useful to think of the analysis formula, $\mathbf{F} = \mathbf{W}^* \mathbf{f}$, the first way:

$$\begin{bmatrix} F_{0} \\ \vdots \\ F_{N-1} \end{bmatrix} = \begin{bmatrix} W_{0,0}^{*} \dots W_{0,N-1}^{*} \end{bmatrix} \begin{bmatrix} f_{0} \\ \vdots \\ f_{N-1} \end{bmatrix}$$
$$\begin{bmatrix} W_{N-1,0}^{*} \dots W_{N-1,N-1}^{*} \end{bmatrix} \begin{bmatrix} f_{0} \\ \vdots \\ f_{N-1} \end{bmatrix}$$

i.e., F_m is the inner product of **f** with the *m*-th row of **W**. Conversely, it is useful to think of the synthesis formula, $\mathbf{f} = \mathbf{WF}$, the second way:

$$\begin{bmatrix} f_0 \\ \vdots \\ f_{N-1} \end{bmatrix} = F_0 \begin{bmatrix} W_{0,0} \\ \vdots \\ W_{N-1,0} \end{bmatrix} + \dots + F_{N-1} \begin{bmatrix} W_{0,N-1} \\ \vdots \\ W_{N-1,N-1} \end{bmatrix}$$

i.e., **f** is a linear combination of the columns of **W**. The *m*-th column is weighted by F_m .

Matrix Diagonalization

A vector, \mathbf{x} , is a **right** eigenvector when $\mathbf{A}\mathbf{x}$ points in the same direction as \mathbf{x} but is (possibly) of different length:

$$\lambda \mathbf{x} = \mathbf{A}\mathbf{x}$$

A vector, \mathbf{y} , is a **left** eigenvector when $\mathbf{y}^{T}\mathbf{A}$ points in the same direction as \mathbf{y}^{T} but is (possibly) of different length:

$$\lambda \mathbf{y}^{\mathrm{T}} = \mathbf{y}^{\mathrm{T}} \mathbf{A}$$

A diagonalizable matrix of rank, *N*, has *N* linearly independent right eigenvectors

$$\mathbf{x}_0, ..., \mathbf{x}_{N-1}$$

and N linearly independent left eigenvectors

$$y_0, ..., y_{N-1}$$

which share the *N* eigenvalues

 $\lambda_0, ..., \lambda_{N-1}.$

Matrix Diagonalization (contd.)

Such a matrix can be factored as follows:

$$\mathbf{A} = \mathbf{X} \mathbf{D} \mathbf{Y}^{\mathrm{T}}$$

where the *i*-th column of **X** is \mathbf{x}_i and the *i*-th row of \mathbf{Y}^T is \mathbf{y}_i and **D** is diagonal with $D_{i,i} = \lambda_i$:

$$\mathbf{D} = egin{bmatrix} \lambda_0 & 0 & \dots & 0 \ 0 & \lambda_1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \lambda_{N-1} \end{bmatrix}$$

We also observe that

$$\mathbf{X}\mathbf{Y}^{\mathrm{T}} = \mathbf{I}$$

i.e., **X** and \mathbf{Y}^{T} are inverses. We say that **A** has been *diagonalized*. Stated differently, in the basis formed by its right eigenvectors, the linear operator, **A**, is represented by the diagonal matrix, **D**.

Matrix Diagonalization (contd.)

When **A** is real and symmetric, *i.e.*, $\mathbf{A} = \mathbf{A}^{T}$, the left and right eigenvectors are the **same**. Consequently, $\mathbf{X} = \mathbf{Y}$. In this case, **A** can be factored as follows:

$$\mathbf{A} = \mathbf{X}\mathbf{D}\mathbf{X}^{\mathrm{T}}$$

Since $XX^T = I$, we conclude that the eigenvectors of **A** form an orthonormal basis.

Matrix Diagonalization (contd.)

The hermitian transpose, A^{H} , of a complex matrix, A, is defined to be $(A^{*})^{T}$. When A is complex and symmetric, the left and right eigenvectors are **complex conjugates**. In this case, A can be factored as follows:

$\mathbf{A} = \mathbf{X}\mathbf{D}\mathbf{X}^{\mathrm{H}}$

When the matrix of eigenvectors, **X**, is also symmetric, *i.e.*, $\mathbf{X} = \mathbf{X}^{T}$, the above simplifies to:

$\mathbf{A} = \mathbf{X}\mathbf{D}\mathbf{X}^*$

Convolution of Discrete Periodic Functions

Let **f** and **g** be vectors in \mathbb{R}^N . Because **f** and **g** represent discrete functions of period, *N*, we adopt the convention that $f(k \pm N) = f(k)$. The *k*-th component of the *convolution* of **f** and **g** is then

$$\{\mathbf{f} * \mathbf{g}\}_k = \sum_{j=0}^{N-1} f_j g_{k-j}.$$

Example of Discrete Periodic Convolution

Calculate $\{\mathbf{f} * \mathbf{g}\}_k$ when

$$\mathbf{g} = \begin{bmatrix} 2 \ 1 \ 0 \ \dots \ 0 \ 1 \end{bmatrix}^{\mathrm{T}}$$

Since $\mathbf{f} * \mathbf{g} = \mathbf{g} * \mathbf{f}$ and since

$$\{\mathbf{g} * \mathbf{f}\}_k = \sum_{j=0}^{N-1} g_j f_{k-j}$$

it follows that

$$\{\mathbf{f} * \mathbf{g}\}_{k} = g_{0}f_{k} + g_{1}f_{k-1} + \dots + g_{N-1}f_{k-(N-1)}$$

= $2f_{k} + 1f_{k-1} + 1f_{k-(N-1)}$
= $f_{k-1} + 2f_{k} + 1f_{k+1}$

This operation performs a local weighted averaging of **f**.

Circulant Matrices

The convolution formula for discrete periodic functions

$$\{\mathbf{f} * \mathbf{g}\}_k = \sum_{j=0}^{N-1} f_j g_{k-j}$$

can be written as a matrix equation:

$$\mathbf{f} * \mathbf{g} = \mathbf{C}\mathbf{f}$$

where $C_{k,j} = g_{k-j}$:

$$\mathbf{C} = \begin{bmatrix} g_0 & g_{N-1} & g_{N-2} & \dots & g_1 \\ g_1 & g_0 & g_{N-1} & \dots & g_2 \\ g_2 & g_1 & g_0 & \dots & g_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{N-1} & g_{N-2} & g_{N-3} & \dots & g_0 \end{bmatrix}$$

Matrices like **C** are termed *circulant*. It is a fact that the right eigenvectors of **all** circulant matrices are sampled harmonic signals. Furthermore, the left eigenvectors of **all** circulant matrices are sampled conjugated harmonic signals. Consequently, **any** circulant matrix, **C**, can be factored as follows:

$\mathbf{C} = \mathbf{W}\mathbf{D}\mathbf{W}^*$

where $W_{m,n} = e^{j2\pi m \frac{n}{N}}$ and

$\mathbf{D} =$	$\int G_0$	0	•••	0
	0	G_1	•••	0
	•	:	•••	:
		0	• • •	G_{N-1}

Here $D_{m,m} = G_m$, the *m*-th coefficient of the discrete Fourier transform of **g**. We can use this result to compute $\mathbf{f} * \mathbf{g}$

$$\mathbf{f} * \mathbf{g} = \mathbf{W} \mathbf{D} \mathbf{W}^* \mathbf{f}$$

This is just the *Convolution Theorem*. Multiplication with a circulant matrix, **C**, in the space domain is multiplication with a diagonal matrix, **D**, in the frequency domain. Polynomial Multiplication

$$p(x) = p_0 x^0 + p_1 x^1 + p_2 x^2 + \dots + p_m x^m$$

$$q(x) = q_0 x^0 + q_1 x^1 + q_2 x^2 + \dots + q_n x^n$$

$$p(x)q(x) = p_0 q_0 x^0 + (p_0 q_1 + p_1 q_0) x^1 + (p_0 q_2 + p_1 q_1 + p_2 q_0) x^2 + (p_0 q_3 + p_1 q_2 + p_2 q_1 + p_3 q_0) x^3 + (p_0 q_4 + p_1 q_3 + p_2 q_2 + p_3 q_1 + p_4 q_0) x^4 + \vdots$$

 $(p_0q_{n+m}+p_1q_{n+m-1}+\cdots+p_{n+m-1}q_1+p_{n+m}q_0)x^{n+m}$

Polynomial Multiplication (contd.)

$$r(x) = p(x)q(x) = r_0 x^0 + r_1 x^1 + r_2 x^2 + \dots + r_{n+m} x^{n+m}$$

where

$$r_{i} = p_{0}q_{i} + p_{1}q_{i-1} + \dots + p_{i-1}q_{1} + p_{i}q_{0}$$

= $\sum_{j=0}^{i} p_{j}q_{i-j}$
= $\sum_{j=-\infty}^{\infty} p_{j}q_{i-j}$
= $\{\mathbf{p} * \mathbf{q}\}_{i}$