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Sampling Periodic Functions

Given a function of period, T , i.e.,

f (t) = f (t +T )

choose N and sample f (t) within the interval,
0≤ t ≤T , at N equally spaced points, n∆t, where
n = 0,1, ...,N− 1 and ∆t = T/N. The result is
a discrete function of period, N, which can be
represented as a vector, f, in RN (or CN) where
fn = f (n∆t):

f =


f0

f1
...

fN−1

 .



Inner Product of Discrete Periodic Functions

We can define the inner product of two discrete
functions of period, N, as follows:

〈f,g〉=
N−1

∑
n=0

f ∗n gn.



Standard Basis

(km)n = δmn =

{
1 if m = n
0 otherwise

Example:

k2 =


0
0
1
0
...
0


Because 〈km1,km2〉 equals zero when m1 6= m2

and one when m1 = m2, the set of km for 0 ≤
m < N form an orthonormal basis for RN (or
CN) and therefore for discrete functions of pe-
riod, N.



Sampled Harmonic Signal Basis

A sampled harmonic signal is a discrete func-
tion of period, N:

Wn,m =
1√
N

e j2πm n
N

where m is frequency and n is position. A sam-
pled harmonic signal of frequency, m, can be
represented by a vector of length N:

wm =


W0,m

W1,m
...

WN−1,m

=
1√
N


e j2πm 0

N

e j2πm 1
N

...

e j2πm(N−1)
N

 .



Sampled Harmonic Signal Basis (contd.)

How “long” is a sampled harmonic signal?

‖wm‖ = 〈wm,wm〉
1
2

=

(
N−1

∑
n=0

1√
N

e− j2πm n
N

1√
N

e j2πm n
N

)1
2

=

(
N−1

∑
n=0

1
N

)1
2

= 1



Sampled Harmonic Signal Basis (contd.)

What is the “angle” between two sampled har-
monic signals, wm1 and wm2, when m1 6= m2?

〈wm1,wm2〉 =
1
N

N−1

∑
n=0

e− j2πm1
n
N e j2πm2

n
N

=
1
N

N−1

∑
n=0

e j2π(m2−m1)
n
N

=
1
N

N−1

∑
n=0

(
e j2π

(m2−m1)
N

)n



Sampled Harmonic Signal Basis (contd.)

Substituting α for e j2π
(m2−m1)

N yields

〈wm1,wm2〉 =
1
N

N−1

∑
n=0

α
n

afterwhich the following identity:
N−1

∑
n=0

α
n =

1−αN

1−α

can be applied to yield

〈wm1,wm2〉=
1
N

(
1−αN

1−α

)
.



Sampled Harmonic Signal Basis (contd.)

Since α = e j2π
(m2−m1)

N , it follows that

α
N = e j2π(m2−m1)

N
N

= e j2π(m2−m1).

Because e j2πk = 1 for all integers, k 6= 0, and
because (m2−m1) 6= 0 is an integer, it follows
that αN = 1 yet α 6= 1. Consequently,

〈wm1,wm2〉 =
1
N

(
1−αN

1−α

)
= 0.

In summary, because 〈wm1,wm2〉= 0 when m1 6=
m2 and 〈wm1,wm2〉= 1 when m1 = m2, the set of
wm for 0 ≤ m < N form an orthonormal basis
for RN (or CN) and therefore for discrete func-
tions of period, N.



The Discrete Fourier Transform (DFT)

• Question What are the coefficients of f in
the sampled harmonic signal basis?

• Answer Take inner products of f with the fi-
nite set of sampled harmonic signals, wm, for
0≤ m < N.

The result is the analysis formula for the DFT:

f̂m = 〈wm, f 〉

= 〈 1√
N

e j2πm n
N , f 〉

=
1√
N

N−1

∑
n=0

fne− j2πm n
N

where f̂ is used to denote the discrete Fourier
transform of f. The function can be reconstructed
using the synthesis formula for the DFT:

fn =
1√
N

N−1

∑
m=0

f̂me j2πm n
N .



The DFT in Matrix Form

The analysis formula for the DFT:

f̂m =
1√
N

N−1

∑
n=0

fne− j2πm n
N

can be written as a matrix equation: f̂0
...

f̂N−1

=

 W ∗
0,0 . . . W ∗

0,N−1
... . . . ...

W ∗
N−1,0 . . . W ∗

N−1,N−1

 f0
...

fN−1


where W ∗

m,n =
1√
N

e− j2πm n
N .

More concisely:

f̂ = W∗f.



The DFT in Matrix Form (contd.)

The synthesis formula for the DFT:

fn =
1√
N

N−1

∑
m=0

f̂me j2πm n
N

can also be written as a matrix equation: f0
...

fN−1

=

 W0,0 . . . WN−1,0
... . . . ...

WN−1,0 . . . WN−1,N−1

 f̂0
...

f̂N−1


where Wm,n =

1√
N

e j2πm n
N . More concisely:

f = Wf̂.

Note: Because only the product of frequency,
m, and position, n, appears in the expression
for a sampled harmonic signal, it follows that
Wm,n =Wn,m. Therefore W = WT. The only dif-
ference between the matrices used for the for-
ward and inverse DFT’s, i.e., W∗ and W, is con-
jugation.



The DFT in Matrix Form (contd.)

A matrix product, y = Ax, can be interpreted in
two different ways.

1. The i-th component of y is the inner product
of x with the i-th row of A:

 y0
...

yN−1

=



[
A0,0 . . . A0,N−1

] x0
...

xN−1


...[

AN−1,0 . . . AN−1,N−1
] x0

...
xN−1




2. The vector, y, is a linear combination of the

columns of A. The i-th column is weighted
by xi: y0

...
yN−1

= x0

 A0,0
...

AN−1,0

+· · ·+xN−1

 A0,N−1
...

AN−1,N−1





The DFT in Matrix Form (contd.)

Both ways of looking at matrix product are equally
correct. However, it is useful to think of the
analysis formula, f̂ = W∗f, the first way:

 f̂0
...

f̂N−1

=



[
W ∗

0,0 . . . W ∗
0,N−1

] f0
...

fN−1


...[

W ∗
N−1,0 . . . W ∗

N−1,N−1
] f0

...
fN−1




i.e., f̂m is the inner product of f with the m-th
row of W. Conversely, it is useful to think of
the synthesis formula, f = Wf̂, the second way: f0

...
fN−1

= f̂0

 W0,0
...

WN−1,0

+· · ·+ f̂N−1

 W0,N−1
...

WN−1,N−1


i.e., f is a linear combination of the columns of
W. The m-th column is weighted by f̂m.



Convolution of Discrete Periodic Functions

Let f and g be vectors in RN. Because f and
g represent discrete functions of period, N, we
adopt the convention that f (k±N) = f (k). The
k-th component of the convolution of f and g is
then

{f∗g}k =
N−1

∑
j=0

f j gk− j.



Example of Discrete Periodic Convolution

Calculate {f∗g}k when

g =
[

2 1 0 . . . 0 1
]T

Since f∗g = g∗ f and since

{g∗ f}k =
N−1

∑
j=0

g j fk− j

it follows that

{f∗g}k = g0 fk +g1 fk−1+ · · ·+gN−1 fk−(N−1)

= 2 fk +1 fk−1+1 fk−(N−1)

= fk−1+2 fk +1 fk+1

This operation performs a local weighted aver-
aging of f.



Circulant Matrices

The convolution formula for discrete periodic
functions

{f∗g}k =
N−1

∑
j=0

f jgk− j

can be written as a matrix equation:

f∗g = Cf

where Ck, j = gk− j.

C =


g0 gN−1 gN−2 . . . g1

g1 g0 gN−1 . . . g2

g2 g1 g0 . . . g3
... ... ... . . . ...

gN−1 gN−2 gN−3 . . . g0


Matrices like C are termed circulant.



Matrix Diagonalization

A vector, x, is a right eigenvector when Ax
points in the same direction as x but is (pos-
sibly) of different length:

λx = Ax

A vector, y, is a left eigenvector when yTA points
in the same direction as yT but is (possibly) of
different length:

λyT = yTA

A diagonalizable matrix of rank, N, has N lin-
early independent right eigenvectors

x0, ...,xN−1

and N linearly independent left eigenvectors

y0, ...,yN−1

which share the N eigenvalues

λ0, ...,λN−1.



Matrix Diagonalization (contd.)

Such a matrix can be factored as follows:

A = XΛYT

where the i-th column of X is xi and the i-th row
of YT is yi and Λ is diagonal with Λi,i = λi:

Λ =


λ0 0 . . . 0
0 λ1 . . . 0
... ... . . . ...
0 0 . . . λN−1


We also observe that

XYT = I

i.e., X and YT are inverses. We say that A has
been diagonalized. Stated differently, in the ba-
sis formed by its right eigenvectors, the linear
operator, A, is represented by the diagonal ma-
trix, Λ.



Diagonalization of Circulant Matrices

When C is circulant the left and right eigenvec-
tors are sampled harmonic signals and conju-
gate harmonic signals. Consequently, X = W
and YT =W∗, and C can be factored as follows:

C = WΛW∗

where Wm,n =
1√
N

e j2πm n
N and

Λ =


ĝ0 0 . . . 0
0 ĝ1 . . . 0
... ... . . . ...
0 0 . . . ĝN−1


where Λm,m = λm = ĝm, the m-th coefficient of
the DFT of g, the first column of C.



Convolution Theorem

It follows that we can use the DFT to compute
f∗g:

f̂ Λ−→ Λf̂
↑W∗ ↓W

f C−→ f∗g
In plain English, multiplication with a circulant
matrix, C, in the time domain is equivalent to
multiplication with a diagonal matrix, Λ, in the
frequency domain:

Cf = WΛW∗f.



Polynomial Multiplication

p(x) = p0x0+ p1x1+ p2x2+ · · ·+ pmxm

q(x) = q0x0+q1x1+q2x2+ · · ·+qnxn

p(x)q(x) = p0q0x0+

(p0q1+ p1q0)x1+

(p0q2+ p1q1+ p2q0)x2+

(p0q3+ p1q2+ p2q1+ p3q0)x3+

(p0q4+ p1q3+ p2q2+ p3q1+ p4q0)x4+
...

(p0qn+m+ p1qn+m−1+· · ·+ pn+m−1q1+ pn+mq0)xn+m



Polynomial Multiplication (contd.)

r(x) = p(x)q(x)
= r0x0+ r1x1+ r2x2+ · · ·+ rm+nxm+n

where

ri = p0qi+ p1qi−1+ · · ·+ pi−1q1+ piq0

=
i

∑
j=0

p jqi− j

=
∞

∑
j=−∞

p jqi− j

= {p∗q}i


