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Abstract For research insights and development poten-
tial, we should explore computer architectures designed
to scale indefinitely. Given physical limits, we argue an
indefinitely scalable computer should or must (1) reveal
to programmers its component spatial relationships, (2)
forego unique addresses, and (3) operate asynchronously.
Further, such a machine and its programming must be in-
herently robust against local failures and outages, and be
operable during its own construction.

We propose the indefinitely scalable Movable Feast
Machine, which defers many architectural decisions to
an execution model that associates processing, memory,
and communications functions with movable bit patterns
rather than fixed locations. We illustrate basic and novel
computational elements such as self-healing wire, sim-
ple cell membranes for modularity, and robust stochastic
sorting by movable self-replicating programs.

1 Indefinite scalability and robustness
Although computation has scaled largely by increasing
data widths and switching speeds, progress has stalled
at present; multicores are currently ascendant, but cache
coherence scales poorly. Achieving indefinite scalabil-
ity—i.e., supporting open-ended computational growth
without substantial re-engineering—will involve new
distributed system architectures, and impact hardware,
OS design, programming, and end-user value proposi-
tions. So although strategies such as multicore still have
room to run, we view indefinite scalability as a useful
beacon now, casting light into some still largely wild
computational spaces beyond the serial machine.

A design for an indefinitely scalable machine amounts
to a spatial tiling of hardware elements, with additional
requirements as needed to preserve open-ended physical
realizability. Three particularly consequential ones are:

1. Pledge allegiance to the light cone: Because hard-
ware occupies space and light speed is finite, no
fixed-cost global communications or arbitrary long
range links are possible, ruling out hierarchical and

other log time interconnects, at least above some
granularity—and also implying asynchronous or
dynamically-synchronizing operation.

2. with computational relativity: There must be only
one or a few basic hardware functional types, in-
terchangeable by kind, and without presumption of
any globally unique identifying attributes1. There-
fore, inter-element addressing depends, at least ini-
tially, upon relative spatial position.

3. and robustness for all: The system should provide
non-stop operation, tolerating or repairing (or even
exploiting) errors and disruptions, such as transients
and misconfigurations, hot-swapping and new con-
struction, etc. This applies beyond hardware to the
entire computational stack—consistency and cor-
rectness cannot simply be assumed, lest a local er-
ror, however unlikely, derail the entire system.

Existing tiled hardware such as [9, 13] generally empha-
sizes finite (e.g., intra-chip) scalability, but may be useful
components for indefinitely scalable designs; in any case
software looms as a major challenge. Indeed, to imag-
ine programming without perfect reliability and synchro-
nization may seem simply crippling, but we have found
it can also feel liberating and full of natural potential—
more like how things actually get done in the world, even
though stuff breaks, or people deliver late, or never, or
deliver white and call it wheat. Society often uses sys-
tems that tolerate many such failures and perform use-
ful work nonetheless, preferring minor inefficiencies to
major catastrophes. From the vantage point of striv-
ing to add value despite the inevitable errors, it is tra-
ditional computing’s demand for absolute perfection in
input and processing—or else “It’s not my fault!”—that
seems petty and bureaucratic, like that bad apple with
whom nobody wants to work. To keep on growing, from
bottom to top, what computation needs is team spirit.

1A potentially contentious issue is whether each hardware element
can be expected to offer an independent (pseudo) random stream.
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1.1 Prefer expressiveness to parsimony. Implemen-
tations of cellular automata (CA) [3, 11]—one of the
earliest extensively studied computational models—can
satisfy many of our architectural criteria, so long as their
physical form (as chips or wafers or boards, etc.) is in-
definitely tileable. CA are obviously spatialized, com-
municate only locally, and processing nodes are com-
pletely fungible and relative-addressed. Although many
CA models are globally synchronized, there are also
numerous varieties of asynchronous cellular automata
(ACA) [5, 8] that are indefinitely scalable as we use the
term, and our model has much in common with them.
Some grid rewriting systems such as [2] are also related.

CA research has often emphasized theoretical goals
such as seeking minimal mechanisms for various com-
putational primitives and properties such as universality;
the CAM-6 and CAM-8 machines [11, 10], as custom
hardware for cellular automata, are notable exceptions.
Although the latter machine especially was extensively
configurable, its fundamental update step still amounted
to a globally synchronized 216 entry table lookup; in that
sense these machines implemented fairly conventional
synchronous cellular automata with a semantic model
roughly at the level of boolean algebra.

Our idea is to expose indefinitely scalable compu-
tational power to programmers using reinvented and
restricted—but still recognizable—concepts of sequen-
tial code, integer arithmetic, pointers, and user-defined
classes and objects. Within the space of indefinitely scal-
able designs, consequently, we prioritize programmabil-
ity and software engineering concerns well ahead of ei-
ther theoretical parsimony or maximally efficient or flex-
ible tile hardware design.

Our strategy is to entice smart people to play with pro-
gramming robust, indefinitely scalable computations by
lowering barriers to entry, and as idioms, motifs, and best
practices emerge from such explorations, we believe op-
portunities for wise optimization will arise.

1.2 Embrace biological parallelism. Natural biolog-
ical systems have inspired many computational ideas,
such as evolution for optimization [4] and using diver-
sity for robustness [1]. One inherently biological strategy
is opportunistic reproduction for parallelism and robust-
ness: If resources are available, a bigger school of fish
not only eats faster, but is also harder to wipe out. Unfor-
tunately, to date this idea has entered computation most
prominently via computer viruses and other malware—
perhaps because if a person owns a serial processor and
a single pipe, a program can gain cycles and bandwidth
only if it reproduces onto somebody else’s hardware.

We seek to rehabilitate and benefit from opportunis-
tic reproduction, embodying it in systems with large po-
tential parallelism, perhaps involving FPGA-ish devices
or a FAWN-style [12] microcontroller array. Connected

sets of lookup tables or other processing elements might
cooperate, or compete, to copy their configurations into
nearby available real estate. The vision is of populations
of programs in a robust ecology that equilibrates under
stable resources and workloads, but also both rides out
local resource shortages and exploits new availabilities.
Note that alongside opportunistic reproduction, movabil-
ity is important for effective parallelism—e.g., it’s easier
to route I/O to an offspring that’s moved away from its
parent. Section 3.4 offers a demonstration.

2 The Movable Feast Machine
Figure 1 provides an architectural overview of a Movable
Feast Machine (MFM), the indefinitely scalable compu-
tational model we are exploring. The MFM generalizes
readily in several directions; here for concreteness we
include parameter values of our current system in small
font and set off by ’{}’s, but note the demonstrations in
Section 3 ran on a simulator; our first indefinitely scal-
able implementation, based on Illuminato X Machina [6]
boards, is in progress.

Starting with hardware in the lower left of Figure 1,
we envision an open-ended {2D} grid of tiles, each of
which contains {1, 72MHz} processor(s), {32KB} volatile
and{512KB}non-volatile memories, and{1Mbps}point-to-
point links to each of its {4}nearest neighbor tiles. Each
tile maintains an array of {48x48} sites in volatile mem-
ory; each site can hold one fixed-width {64 bit}atom. An
atom, in turn, contains a {16 bit}header that specifies the
interpretation of the other bits, as element type number,
inter-atomic bond coordinates, and/or instance data.

In object-oriented terms, an atom is akin to a small,
fixed-size object instance, linked by its type number to
a class-like element definition (pseudocode only in Fig-
ure 1) containing an update method that defines the
behavior of atoms of that element. A bond is a distance-
limited and symmetric form of pointer, implemented by
self-is-origin relative coordinate addressing, and offered
in two{`1, ‘city block’}distance-limited forms—long bonds
{`1(long) ≤ 4} and short bonds {`1(short) ≤ 2}—to trade
atomic bit costs against addressing range. Finally, a set of
element definitions and initial conditions—a physics or
‘periodic table’—is compiled into non-volatile tile mem-
ory, and propagated tile to tile via out of band signals
with respect to the atomic processing level.

2.1 Serve small bowls of serial. Computation in the
MFM is based on event windows, each of which consists
of a center site and its {`1(radius) = 4} nearest neigh-
bors, exclusively held for the event duration (Figure 2).
Center sites are selected in a hardware-dependent but
starvation-free manner, and an indefinite number of non-
overlapping windows may occur in parallel. In an event,
the appropriate element update method is invoked on
the active atom in the center site. If the center site is
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mfa 1;
import Dockable;
element Sample(bond prv, 
               bond nxt,
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  = 0x123
{ 
 /* Behavior goes here
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  to read and write only
  inside the event window
 */
}
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Figure 1: Architectural overview. See text for details.
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Figure 2: Event window generation. See text for details.

non-empty after the update, by default its atom is then
diffused, which potentially moves it to a random{von Neu-
mann, `1 = 1}neighborhood site, if that is possible without
violating any constraints such as overextending a bond.

Although programming MFM element update rules is
rather less obvious than classical serial programming, it
is also much more intuitive than composing typical CA
rule tables, primarily because execution is serial and ef-
fectively single-threaded within an update method in-
vocation, during which the event window acts like pas-
sive memory. The corresponding challenges are that an
update invocation cannot access any persistent state
outside the event window or assume anything about event
window contents between invocations.
2.2 Hardware performance. MFM hardware fills
space-time with as many events as it can, handling inter-
tile communications for locking and caching sites to
avoid overlapping event windows and maintain sequen-
tial site consistency, so all effects of a prior event are
seen by involved sites before relocking. Perhaps the most
obvious performance metric for an MFM implementa-
tion is ‘events per site per second’, or equivalently events

per site-second (EPSS). Peak EPSS would typically oc-
cur when all sites are empty, and would likely be just as
misleading but ubiquitous as peak MIPS; better would be
average EPSS with respect to some benchmark compu-
tation. EPSS is intended to measure not absolute power,
but computational density, as the number of sites grows
without bound. So, strictly speaking, any MFM imple-
mentation that is limited to a bounded number of sites—
such as a serial simulator, for example—fails to have an
EPSS. For present purposes, to draw a line in the sand,
we will be happy if our first hardware implementation
can achieve an average EPSS of 1 on DReg physics (Sec-
tion 3.1, below).

3 Prototypes and results
Here we have space for a few tastes of the mechanisms
and techniques we are exploring; the interested reader
is invited to the MFM website [7] to find more depth,
videos, and other examples ranging from a movable
NAND gate to a simple stack machine interpreter.
3.1 Robust homeostasis. Long-lived systems that
adapt or are maintained risk losing their robustness over
time, either accidentally or for short-term efficiency
gains, during those periods when failures don’t happen.
To fight that, a system can be structured to challenge it-
self with ‘artifical failures’ that exercise its robustness
features. We have explored this approach using a sim-
ple ‘Dynamic Regulator’ (DReg) element, which usually
just diffuses, but probabilistically may delete an atom in
a nearby site, or create a new ‘resource’ atom (element
Res), or another DReg, in an nearby empty site. Given
time, a single DReg fills MFM space with a churning
mixture of DReg, Res, and empty sites in roughly fixed
proportions depending on the probabilities.
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Structures sharing space with DReg must thus recover
from arbitrary atom deletions, by repair and/or repro-
duction and death. Although uncontrolled reproduction
would amount to cancer, if components are designed to
reproduce only by transmuting existing Res atoms, then
this DReg homeostatic mechanism will regulate their
density as well. Section 3.4 illustrates this technique.
3.2 Self-healing wire. In the MFM, direct communi-
cation is possible only between atoms separated by no
more than one event window radius. While two atoms
can remain close using a bond, locality is a precious
resource, and compositionality is facilitated by mecha-
nisms for longer range interactions.

Figure 3 illustrates Self-Healing Wire (SHW), a con-
struct based on four elements—Wire, Transmitter,
Receiver, and Message—that provides an extended-
range, bidirectional communication channel with redun-
dancy and repair for improved robustness. If a Wire
bond or atom fails, adjacent atoms attempt to reconstruct
it from the information encoded by the remaining bonds.

Figure 3: Logical bond structure of self-healing wire:
Wire atoms (unlabeled) linked by a short bond back-
bone, with redundant long bonds for data transport (ar-
rows indicate data flows; all bonds are symmetric), trans-
mit (T) and receive (R) terminals. See also Figure 5.

Each Message atom holds an arbitrary 32 bit pay-
load. To send a Message, it is long-bonded to a
Transmitter atom’s ‘docking’ bond. Then, when dif-
fusion brings the Message within long bond range of
the next forward Wire atom, and that has an empty dock,
the Message rebonds to it, and continues in that man-
ner until it arrives at a Receiver which handles it in a
problem-dependent way (see Figure 5 and videos at [7]).

Figure 4 illustrates the robustness gain provided by the
SHW design, compared to a single-linked chain, and to a
doubly-linked chain that does not heal.
3.3 Cell membranes. In biology, the cell wall—a ‘se-
lectively permeable spatial divider’—is crucial for mod-
ularity. Making a movable ‘cell membrane’ in the MFM
is a bit of a challenge because, in general, the same empty
sites that give membrane atoms enough room to move at
all can be used by other atoms to move through the mem-
brane. We are handling this via a notion of bond exclu-
sion, flagged by a ‘BX’ bit in the atomic header. While
update methods may do what they wish, the diffusion
step in Figure 2 restricts the destination sites (in a regret-
tably complex way) when BX atoms are encountered.

With a bonded ring of appropriate BX-enabled atoms,
we create a membrane that is impermeable to diffusion
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Figure 4: Robustness of SHW compared to singly-linked
and doubly-linked, but non-healing, wire. (SHW ex-
ceeded testing time limits at lower failure rates.)

Figure 5: Two cells exchanging messages via SHW.

and can function as a container for a computation. In
Figure 5, additional physics on the membrane atoms and
on SHW Receiver allow cell membranes to bond to
SHW ends for tasks like point-to-point communications,
multistage computations, cell routers, and so forth.
3.4 Robust sorting via programmed replication. A
final example, which we call demon horde sort, demon-
strates multiple robustness mechanisms—including op-
portunistic reproduction (Section 1.2) and dynamic reg-
ulation (Section 3.1)—while sorting an endless stream of
Datum atoms, each carrying a 32 bit number. A bounded
region of 128x64 sites is used, with a self-regenerating
column of Input atoms on the right edge, which emit
random-valued Datums, and an analogous column of
Outputs that consume them, on the left. A ‘horde’ of
Sorter atoms fills the region, each moving Datums
right-to-left into empty sites—and also up or down based
on the comparison of each Datum’s value to the value of
the previous Datum moved by that Sorter.
DReg is also loose on the grid, making Res and de-

stroying atoms (even sometimes a Datum, costing a data
point), so the horde must replenish itself. To do that in
a somewhat general way, we developed a movable pro-
gram + interpreter mechanism. We pack a sequence of
four-bit opcodes into ‘base chain’ (BC) atoms linked to-
gether into an oriented strand. Each BC atom carries
four opcodes, and sports an extra ‘docking’ bond usable
by a simple processing element we call ‘base chain in-
terpreter’ (BCI). When a BCI encounters an open BC
molecule head end, it docks on and begins working its
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way down (and up) the BC chain executing its opcodes,
side-effecting registers stored in BCI instance data, as
well as atoms in the event window. Finally, we made
a general-purpose chain-copying element that we call
‘base chain polymerase’ (BCP), which also uses the BC
docking bond to build a duplicate of any BC chain, atom
by atom from its head, given sufficient Res and time.

Overall, the machine’s initial configuration contains
some DReg and BCI and seed atoms for the I/O
columns, but no actual Sorters. Included instead are
several preconstructed five-atom BC molecules each en-
coding the program 0x20ab5522bc52bc150, which
instructs a BCI to transmute Res to make two Sorters,
a BCP, and a BCI; and then detach. BCI executions of
this program, on top of the DReg physics, creates and
maintains the demon horde. Several in-progress copies
of this program are visible in Figure 6, which has been
‘unfolded’ by hand to help illustrate some of the richness
of the resulting dynamics; [7] offers video.

Once the machine warms up, the demon horde sorts
very well, albeit imperfectly, and it is remarkably re-
silient, recovering from insults like flipping bits in many
atoms at once, or flat-out resetting two-thirds of the grid
sites. We tried to stress it with increased Datum flow, but
it surprised us by working better—like a ‘sorting mus-
cle’, the horde is sloppy in idleness but improves with
increasing work, until finally it can’t clear sites around
the Inputs fast enough, so data losses start to climb.

2:Eldest BCP
copy of root

1:Root BC molecule

3:Younger BCP
copy of root4:Youngest BCP

copy of root

5:BCI interpreting
in-progress copy 6:Additional BCP 

copies-of-copies

Figure 6: Annotated closeup showing multiple reproduc-
tion threads—rearranged for clarity in a cleared patch—
space-sharing with Sorters and other elements.

4 Critique and call to action
Two obvious criticisms of our approach are: (1) We’ve
thrown the baby out with the bathwater, and (2) our
hardware costs will be too high and our event rate too
low to compute cost-effectively. Granted, the MFM is a
long journey from computation as usual, but we have a
landmark—biological and ecological approaches to ro-
bustness and scale—in sight to guide us, and after all,
with small steps the only way off a hilltop is down.

And yes also, this does seem like a profligate use of
hardware—for example we allow great latitude in what
an update does, suggesting essentially a full-fledged
MCU might be needed to do it. The event window size
and locking are also costly. But we believe performance
concerns are premature, and that the first goal is to find
an interesting ‘periodic table of elements’ from which
to compose useful molecules, cells, and larger systems.
If we can do that, there’s every reason to expect smart
hardware folk will be able to crush costs and explode the
event rate, and indefinite scalability will have our backs.

And finally, to challenges on expressiveness—arguing
the MFM will be too painful to program because our
atom or event window is too small, or bonds too few,
or lengths too short, or system dimensionality too low,
we say: You might well be right. Let’s find out.
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