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Abstract. We propose a novel molecular computing approach based on reser-
voir computing. In reservoir computing, a dynamical core, called a reservoir, is
perturbed with an external input signal while a readout layer maps the reservoir
dynamics to a target output. Computation takes place as a transformation from
the input space to a high-dimensional spatiotemporal feature space created by
the transient dynamics of the reservoir. The readout layer then combines these
features to produce the target output. We show that coupled deoxyribozyme os-
cillators can act as the reservoir. We show that despite using only three coupled
oscillators, a molecular reservoir computer could achieve 90% accuracy on a
benchmark temporal problem.

1 Introduction

A reservoir computer is a device that uses transient dynamics of a system in a critical
regime—a regime in which perturbations to the system’s trajectory in its phase space
neither spread nor die out—to transform an input signal into a desired output [1]. We
propose a novel technique for molecular computing based on the dynamics of molecular
reactions in a microfluidic setting. The dynamical core of the system that contains the
molecular reaction is called a reservoir. We design a simple in-silico reservoir computer
using a network of deoxyribozyme oscillators [2], and use it to solve temporal tasks.
The advantage of this method is that it does not require any specific structure for the
reservoir implementation except for rich dynamics. This makes the method an attractive
approach to be used with emerging computing architectures [3].

We choose deoxyribozyme oscillators due to the simplicity of the corresponding
mathematical model and the rich dynamics that it produces. In principle, the design is
generalizable to any set of reactions that show rich dynamics. We reduce the oscillator
model in [2] to a form more amenable to mathematical analysis. Using the reduced
model, we show that the oscillator dynamics can be easily tuned to our needs. The
model describes the oscillatory dynamics of three product and three substrate species in
a network of three coupled oscillators. We introduce the input to the oscillator network
by fluctuating the supply of substrate molecules and we train a readout layer to map the
oscillator dynamics onto a target output. For a complete physical reservoir computing
design, two main problems should be addressed: (1) physical implementation of the



reservoir and (2) physical implementation of the readout layer. In this paper, we focus
on a chemical design for the reservoir and assume that the oscillator dynamics can
be read using fluorescent probes and processed using software. We aim to design a
complete chemical implementation of the reservoir and the readout layer in a future
work (cf. Section 5). A similar path was taken by Smerieri et al. [4] to achieve an all-
analog reservoir computing design using an optical reservoir introduced by Paquot et
al. [5].

We use the molecular reservoir computer to solve two temporal tasks of different
levels of difficulty. For both tasks, the readout layer must compute a function of past
inputs to the reservoir. For Task A, the output is a function of two immediate past in-
puts, and for Task B, the output is a function of two past inputs, one τ seconds ago
and the other 3

2 τ seconds ago. We implement two varieties of reservoir computer, one
in which the readout layer only reads the dynamics of product concentrations and an-
other in which both product and substrate concentrations are read. We show that the
product-only version achieves about 70% accuracy on Task A and about 80% accuracy
on Task B, whereas the product-and-substrate version achieves about 80% accuracy on
Task A and 90% accuracy on Task B. The higher performance on Task B is due to the
longer time delay, which gives the reservoir enough time to process the input. Compared
with other reservoir computer implementations, the molecular reservoir computer per-
formance is surprisingly good despite the reservoir being made of only three coupled
oscillators.

2 Reservoir Computing

As reservoir computing (RC) is a relatively new paradigm, we try to convey the sense of
how it computes and explain why it is suitable for molecular computing. RC achieves
computation using the dynamics of an excitable medium, the reservoir [6]. We perturb
the intrinsic dynamics of the reservoir using a time-varying input and then read and
translate the traces of the perturbation on the system’s trajectory onto a target output.

RC was developed independently by Maass et al. [7] as a model of information pro-
cessing in cortical microcircuits, and by Jaeger [8] as an alternative approach to time-
series analysis using Recurrent Neural Networks (RNN). In the RNN architecture, the
nodes are fully interconnected and learning is achieved by updating all the connection
weights [8, 9]. However, this process is computationally very intensive. Unlike the reg-
ular structure in RNN, the reservoir in RC is built using sparsely interconnected nodes,
initialized with fixed random weights. There are input and output layers which feed the
network with inputs and obtain the output, respectively. To get the desired output, we
have to compute only the weights on the connections from the reservoir to the output
layer using examples of input-output sequence.

Figure 1 shows a sample RC architecture with sparse connectivity between the input
and the reservoir, and between the nodes inside the reservoir. The output node is con-
nected to all the reservoir nodes. The input weight matrix is an I×N matrix Win = [win

i, j],
where I is the number of input nodes, N is the number of nodes in the reservoir, and win

j,i
is the weight of the connection from input node i to reservoir node j. The connection
weights inside the reservoir are represented by an N×N matrix Wres = [wres

j,k], where
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Fig. 1: Schematic of a generic reservoir computer. The input is weighted and then fed into a
reservoir made up of a number of nodes with nonlinear transfer functions. The nodes are inter-
connected using the coupling matrix Wres = [wres

i j ], where wres
i j is the weight from node j to node

i. The weights are selected randomly from identical and independent distributions. The output is
generated using linear combination of the values of the nodes in the reservoir using output weight
vector Wout = [wout

i ].

wres
j,k is the weight from node k to node j in the reservoir. The output weight matrix is

an N×O matrix Wout = [wout
l,k ], where O is the number of output nodes and wout

l,k is the
weight of the connection from reservoir node k to output node l. All the weights are
samples of i.i.d. random variables, usually taken to be normally distributed with mean
µ = 0 and standard deviation σ . We can tune µ and σ depending on the properties of
U(t) to achieve optimal performance. We represent the time-varying input signal by an
Ith order column vector U(t) = [ui(t)], the reservoir state by an Nth order column vector
X(t) = [x j(t)], and the generated output by an Oth order column vector Y(t) = [yl(t)].
We compute the time evolution of each reservoir node in discrete time as:

x j(t +1) = f (Wres
j ·X(t)+Win ·U(t)), (1)

where f is the nonlinear transfer function of the reservoir nodes, · is the matrix dot
product, and Wres

j is the jth row of the reservoir weight matrix. The reservoir output is
then given by:

Y(t) = wb +Wout ·X(t), (2)

where wb is an inductive bias. One can use any regression method to train the output
weights to minimize the output error E = ||Y(t)− Ŷ(t)||2 given the target output Ŷ(t).
We use linear regression and calculate the weights using the Moore-Penrose pseudo-
inverse method [10]:

Wout ′ = (X′T ·X′)−1 ·X′T ·Y′. (3)

Here, Wout ′ is the output weight vector extended with a the bias wb, X’ is the matrix
of observation from the reservoir state where each row is represent the state of the
reservoir at the corresponding time t and the columns represent the state of different
nodes extended so that the last column is constant 1. Finally, Ŷ′ is the matrix of target
output were each row represents the target output at the corresponding time t. Note
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Fig. 2: Computation in a reservoir computer. The input signal U(t) is fed into every reservoir node
i with a corresponding weight win

i denoted with weight column vector Win = [win
i ]. Reservoir

nodes are themselves coupled with each other using the weight matrix Wres = [wres
i j ], where wres

i j
is the weight of the connection from node j to node i.

that this also works for multi-dimensional output, in which case Wout ′ will be a matrix
containing connection weights between each pair of reservoir nodes and output nodes.

Conceptually, the reservoir’s role in RC is to act as a spatiotemporal kernel and
project the input into a high-dimensional feature space [6]. In machine learning, this
is usually referred to as feature extraction and is done to find hidden structures in data
sets or time series. The output is then calculated by properly weighting and combining
different features of the data [11]. An ideal reservoir should be able to perform fea-
ture extraction in a way that makes the mapping from feature space to output a linear
problem. However, this is not always possible. In theory an ideal reservoir computer
should have two features: a separation property of the reservoir and an approximation
property of the readout layer. The former means the reservoir perturbations from two
distinct inputs must remain distinguishable over time and the latter refers to the ability
of the readout layer to map the reservoir state to a given target output in a sufficiently
precise way.

Another way to understand computation in a high-dimensional recurrent systems
is through analyzing their attractors. In this view, the state-space of the reservoir is
partitioned into multiple basins of attraction. A basin of attraction is a subspace of the
system’s state-space, in which the system follows a trajectory towards its attractor. Thus
computation takes place when the reservoir jumps between basins of attraction due to
perturbations by an external input [12–15]. On the other hand, one could directly ana-
lyze computation in the reservoir as the reservoir’s average instantaneous information
content to produce a desired output [16].

There has been much research to find the optimal reservoir structure and readout
strategy. Jaeger [17] suggests that in addition to the separation property, the reservoir
should have fading memory to forget past inputs after some period of time. He achieves
this by adjusting the standard deviation of the reservoir weight matrix σ so that the
spectral radius of Wres remains close to 1, but slightly less than 1. This ensures that
the reservoir can operate near critical dynamics, right at the edge between ordered and
chaotic regimes. A key feature of critical systems is that perturbations to the system’s



trajectory neither spread nor die out, independent of the system size [18], which makes
adaptive information processing robust to noise [14]. Other studies have also suggested
that the critical dynamics is essential for good performance in RC [16, 19–22].

The RC architecture does not assume any specifics about the underlying reser-
voir. The only requirement is that it provides a suitable kernel to project inputs into
a high-dimensional feature space. Reservoirs operating in the critical dynamical regime
usually satisfy this requirement. Since RC makes no assumptions about the structure
of the underlying reservoir, it is very suitable for use with unconventional computing
paradigms [3–5]. Here, we propose and simulate a simple design for a reservoir com-
puter based on a network of deoxyribozyme oscillators.

3 Reservoir Computing using Deoxyribozyme Oscillators

To make a DNA reservoir computer, we first need a reservoir of DNA species with
rich transient dynamics. To this end, we use a microfluidic reaction chamber in which
different DNA species can interact. This must be an open reactor because we need to
continually give input to the system and read its outputs. The reservoir state consists of
the time-varying concentration of various species inside the chamber, and we compute
using the reaction dynamics of the species inside the reactor. To perturb the reservoir we
encode the time-varying input as fluctuations in the influx of species to the reactor. In [2,
23], a network of three deoxyribozyme NOT gates showed stable oscillatory dynamics
in an open microfluidic reactor. We extend this work by designing a reservoir computer
using deoxyribozyme-based oscillators and investigating their information-processing
capabilities.

The oscillator dynamics in [2] suffices as an excitable reservoir. Ideally, the readout
layer should also be implemented in a similar microfluidic setting and integrated with
the reservoir. However, as a proof of concept we assume that we can read the reservoir
state using fluorescent probes and calculate the output weights using software.

The oscillator network in [2] is described using a system of nine ordinary differ-
ential equations (ODEs), which simulate the details of a laboratory experiment of the
proposed design. However, this model is mathematically unwieldy. We first reduce the
oscillator ODEs in [2] to a form more amenable to mathematical analysis:

d[P1]
dt = hβ [S1]([G1]− [P3])− e

V [P1],
d[S1]

dt =
Sm

1
V −hβ [S1]([G1]− [P3])− e

V [S1],

d[P2]
dt = hβ [S2]([G2]− [P1])− e

V [P2],
d[S2]

dt =
Sm

2
V −hβ [S2]([G2]− [P1])− e

V [S2],

d[P3]
dt = hβ [S3]([G3]− [P2])− e

V [P3],
d[S3]

dt =
Sm

3
V −hβ [S3]([G3]− [P2])− e

V [S3].

(4)

In this model, [Pi], [Si], and [Gi] are concentrations of three species of product
molecules, three species of substrate molecules, and three species of gate molecules
inside the reactor, and Sm

i is the influx rate of [Si]. The brackets [ · ] indicate chemical
concentration and should not be confused with the matrix notation introduced above.
When explicitly talking about the concentrations at time t, we use Pi(t) and Si(t). V is
the volume of the reactor, h the fraction of the reactor chamber that is well-mixed, e is



the efflux rate, and β is the reaction rate constant for the gate-substrate reaction, which
is assumed to be identical for all gates and substrates, for simplicity.

To use this system as a reservoir we must ensure that it has transient or sustained os-
cillation. This can be easily analyzed by forming the Jacobian of the system. Observing
that all substrate concentrations reach an identical and constant value relative to their
magnitude, we can focus on the dynamics of the product concentrations and write an
approximation to the Jacobian of the system as follows:

J =




d[P1]
d[P1]

d[P1]
d[P2]

d[P1]
d[P3]

d[P2]
d[P1]

d[P2]
d[P2]

d[P2]
d[P3]

d[P3]
d[P1]

d[P3]
d[P2]

d[P3]
d[P3]



=




− e
V −hβ [S1] 0

0 − e
V −hβ [S2]

−hβ [S1] 0 − e
V


 (5)

Assuming that volume of the reactor V and the reaction rate constant β are given, the
Jacobian is a function of only the efflux rate e and the substrate concentrations [Si]. The
eigenvalues of the Jacobian are given by:

λ1 = −hβ ([S1][S2][S3])
1
3 − e

V
λ2 = 1

2 hβ ([S1][S2][S3])
1
3 − e

V +
√

3
2 hβ ([S1][S2][S3])

1
3 i

λ3 = 1
2 hβ ([S1][S2][S3])

1
3 − e

V −
√

3
2 hβ ([S1][S2][S3])

1
3 i

(6)

The existence of complex eigenvalues tells us that the system has oscillatory behavior
near its critical points. The period of this oscillation is given by T = 2π

√
3

2 hβ ([S1][S2][S3])
− 1

3

and can be adjusted by setting appropriate base values for Sm
i . For sustained oscillation,

the real part of the eigenvalues should be zero, which can be obtained by a combination
of efflux rate and substrate influx rates such that 1

2 hβ ([S1][S2][S3])
1
3 − e

V = 0.
This model works as follows. The substrate molecules enter the reaction chamber

and are bound to and cleaved by active gate molecules that are immobilized inside
the reaction chamber, e.g., on beads. This reaction turns substrate molecules into the
corresponding product molecule. However, the presence of each product molecule con-
centration suppresses the reaction of other substrates and gates. These three coupled
reaction and inhibition cycles give rise to the oscillatory behavior of the products’ con-
centrations (Figure 4). Input is given to the system as fluctuation to one or more of the
substrate influx rates. In Figure 3a we see that the concentration of S1 varies rapidly as
a response to the random fluctuations in Sm

1 . This will result in antisymmetric concen-
trations of the substrate species inside the chamber and thus irregular oscillation of the
concentration of product molecules. This irregular oscillation embeds features of the
input fluctuation within it (Figure 3a). To keep the volume fixed, there is a continuous
efflux of the chamber content. The Equation 4 assumes ([Gi]− [Pj])> 0, which should
be taken into account while choosing initial concentrations and constants to simulate
the system.

To perturb the intrinsic dynamics inside the reactor, an input signal can modulate
one or more substrate influx rates. In our system, we achieve this by fluctuating Sm

1 . In
order to let the oscillators react to different values of Sm

i , we keep each new value of Sm
i

constant for τ seconds. In a basic setup, the initial concentrations of all the substrates
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Fig. 3: The random fluctuation in substrate influx rate Sm
1 leaves traces on the oscillator dynamics

that can be read off a readout layer. We observe the traces of the substate influx rate fluctuation
both in the dynamics of the substrate concentrations (a) and the product concentrations (b). Both
substrate and product concentrations potentially carry information about the input. Substrate con-
centration S1 is directly affected by Sm

1 and therefore shows very rapid fluctuations.

inside the reactor are zero. Two of the product concentrations P2(0) and P3(0) are also
set to zero, but to break the symmetry in the system and let the oscillation begin we set
P1(0) = 1000 nM. The gate concentrations are set uniformly to [Gi] = 2500 nM. This
ensures that ([Gi]− [Pj]) > 0 in our setup. The base values for substrate-influx rates
are set to 5.45× 10−6 nmol s−1. Figure 3 shows the traces of computer simulation of
this model, where τ = 30 s. We use the reaction rate constant from [2], β = 5× 10−7

nM s−1. Although the kinetics of immobilized deoxyribozyme may be different, for
simplicity we use the reaction rate constant of free deoxyribozymes and we assume that
we can find deoxyribozymes with appropriate kinetics when immobilized. The values
for the remaining constants are e = 8.8750×10−2 nL s−1 and h = 0.7849, i.e., the av-
erage fraction of well-mixed solution calculated in [2]. We assume the same microscale
continuous stirred-tank reactor (µCSTR) as [2,23,24], which has volume V = 7.54 nL.
The small volume of the reactor lets us achieve high concentration of oligonucleotides
with small amounts of material; a suitable experimental setup is described in [25].

P1

P2

P3

influx efflux

Fig. 4: Three products form an inhibitory cycle that leads to oscillatory behavior in the reser-
voir. Each product Pi inhibits the production of Pi+1 by the corresponding deoxyribozyme (cf.
Equation 4).



The dynamics of the substrates (Figure 3a) and products (Figure 3a) are instructive
as to what we can use as our reservoir state. Our focus will be the product concen-
trations. However, the substrate concentrations also show interesting irregular behavior
that can potentially carry information about the input signals. This is not surprising
since all of the substrate and product concentrations are connected in our oscillator net-
work. However, the one substrate that is directly affected by the influx (S1 in this case)
shows the most intense fluctuations that are directly correlated with the input. In some
cases providing this extra information to the readout layer can help to find the right
mapping between the reservoir state and the target output.

In the next section, we build two different reservoir computers using the dynamics
of the concentrations in the reactor and use them to solve sample temporal tasks. Despite
the simplicity of our system, it can retain the memory of past inputs inside the reservoir
and use it to produce output.

4 Task Solving Using a Deoxyribozyme Reservoir Computer

We saw in the preceding section that we can use substrate influx fluctuation as input
to our molecular reservoir. We now show that we can train a readout layer to map the
dynamics of the oscillator network to a target output. Recall that τ is the input hold time
during which we keep Sm

1 constant so that the oscillators can react to different values of
Sm

1 . In other words, at the beginning of each τ interval a new random value for substrate
influx is chosen and held fixed for τ seconds. Here, we set the input hold time τ = 100 s.
In addition, before computing with the reservoir we must make sure that it has settled in
its natural dynamics, otherwise the output layer will see dynamical behavior that is due
to the initial conditions of the oscillators and not the input provided to the system. In
the model, the oscillators reach their stable oscillation pattern within 500 s. Therefore,
we start our reservoir by using a fixed Sm

1 as described in Section 3 and run it for 500 s
before introducing fluctuations in Sm

1 .
To study the performance of our DNA reservoir computer we use two different

tasks, Task A and Task B, as toy problems. Both have recursive time dependence and
therefore require the reservoir to remember past inputs for some period of time, and
both are simplified versions of a popular RC benchmark, NARMA [8]. We define the
input as Sm

1 (t) = Sm∗
1 R, where Sm∗

1 is the influx rate used for the normal working of the
oscillators (5.45×10−6 nmol s−1 in our experiment) and R is a random value between
0 and 1 sampled from a uniform distribution. We define the target output Ŷ(t) of Task
A as follows:

Ŷ(t) = Sm
1 (t−1)+2Sm

1 (t−2). (7)

For Task B, we increase the length of the time dependence and make it a function
of input hold time τ . We define the target output as follows:

Ŷ(t) = Sm
1 (t− τ)+

1
2

Sm
1 (t−

3
2

τ). (8)

Note that the vectors Ŷ(t) and Y(t) have only one row in this example. Figure 5
shows an example of the reservoir output Y(t) and the target output Ŷ(t) calculated
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Fig. 5: Target output and the output of the molecular reservoir computer on Task A (Equation 7)
before and after training. After 500 s the input starts to fluctuate randomly every τ seconds. In this
example, the output of the system before training is 10 orders of magnitude larger than the target
output. We rescaled the output before training to be able to show it in this plot. After training, the
output is in the range of the target output and it tracks the fluctuations in the target output more
closely.

using Equation 7 before and after training. In this example, the reservoir output before
training is 10 orders of magnitude off the target.

Our goal is to find a set of output weights so that Y(t) tracks the target output as
closely as possible. We calculate the error using normalized root-mean-square error
(NRMSE) as follows:

NRMSE =
1

Ymax−Ymin

√
∑

tn
t=t1(Ŷ(t)−Y(t))2

n
, (9)

where Ymax and Ymin are the maximum and the minimum of the Y(t) during the time
interval t1 < t < tn. The denominator Ymax−Ymin is to ensure that 0 ≤ NRMSE ≤ 1,
where NRMSE = 0 means Y(t) matches Ŷ(t) perfectly.

Now we propose two different ways of calculating the output from the reservoir: (1)
using only the dynamics of the product concentrations and (2) using both the product
and substrate concentrations. To formalize this using the block matrix notation, for the
product-only version the reservoir state is given by X(t) = P(t) = [P1(t) P2(t) P3(t)]T .
For the product-and-substrate version the reservoir state is given by vertically appending
S(t) = [S1(t) S2(t) S3(t)]T to P(t), i.e., X(t) = [P(t) S(t)]T , where P(t) is the column
vector of the product concentrations as before and S(t) is the column vector of the
substrate concentrations. We use 2000 s of the reservoir dynamics X(t) to calculate the
output weight matrix Wout using linear regression. We then test the generalization, i.e.,
how well the output Y(t) tracks the target Ŷ(t) during another 2000 s period that we
did not use to calculate the weights.

Figure 6 shows the mean and standard deviation of NRMSE of the reservoir com-
puter using two different readout layer solving Task A and Task B. The product-and-
substrate reservoir achieves a mean NRMSE of 0.23 and 0.11 on Task A and Task
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Fig. 6: Generalization NRMSE of the product-only and the product-and-substrate molecular
reservoir computer on Task A (Equation 7) and Task B (Equation 8) averaged over 100 trials.
The bars and error bars show the mean and the standard deviation of NRMSE respectively.

B with standard deviations 0.05 and 0.02 respectively, and the product-only reservoir
achieves a mean NRMSE of 0.30 and 0.19 on Task A and Task B with standard de-
viations 0.04 and 0.03 respectively. As expected, the product-and-substrate reservoir
computer achieves about 10% improvement over the product-only version owing to
its higher phase space dimensionality. Furthermore, both reservoirs achieve a 10% im-
provement on Task B over Task A. This is surprising at first because Task B requires the
reservoir to remember the input over a time interval of 3

2 τ , but Task A only requires the
last two time steps. However, to extract the features in the input signal, the input needs
to percolate in the reservoir, which takes more than just two time steps. Task B requires
more memory of the input, but also gives the reservoir enough time to process the input
signal, which results in higher performance. Similar effects have been observed in [16].
Therefore, despite the very simple reservoir structure (three coupled oscillators), we can
compute simple temporal tasks with 90% accuracy. Increasing the number of oscillators
and using the history of the oscillators dynamics similar to [26] could potentially lead
to even higher performance.

5 Discussion and Related Work

DNA chemistry is inherently programmable and highly versatile, and a number of dif-
ferent techniques have been developed, such as building digital and analog circuits using
strand displacement cascades [27, 28], developing game-playing molecular automata
using deoxyribozymes [29], and directing self-assembly of nanostructures [30–32].
All of these approaches require precise design of DNA sequences to form the required
structures and perform the desired computation. In this paper, we proposed a reservoir-
computing approach to molecular computing. In nature, evidence for reservoir comput-
ing has been found in systems as simple as a bucket of water [33], simple organisms
such as E. Coli [34], and in systems as complex as the brain [35]. This approach does
not require any specific behavior from the reactions, except that the reaction dynamics
must result in a suitable transient behavior that we can use to compute [6]. This could



give us a new perspective in long-term sensing, and potentially controlling, gene ex-
pression patterns over time in a cell. This would require appropriate sensors to detect
cell state, for example the pH-sensitive DNA nanomachine recently reported by Modi et
al. [36]. This may result in new methods for smart diagnosis and treatment using DNA
signal translators [37–39].

In RC, computation takes place as a transformation from the input space to a high-
dimensional spatiotemporal feature space created by the transient dynamics of the reser-
voir. Mathematical analysis suggests that all dynamical systems show the same infor-
mation processing capacity [40]. However, in practice, the performance of a reservoir is
significantly affected by its dynamical regime. Many studies have shown that to achieve
a suitable reservoir in general, the underlying dynamical system must operate in the
critical dynamical regime [8, 16, 20, 21].

We used the dynamics of the concentrations of different molecular species to extract
features of an input signal and map them to a desired output. As a proof of concept,
we proposed a reservoir computer using deoxyribozyme oscillator network and showed
how to provide it with input and read its outputs. However, in our setup, we assumed that
we read the reservoir state using fluorescent probes and process them using software. In
principle, the mapping from the reservoir state to target output can be carried out as an
integrated part of the chemistry using an approach similar to the one reported in [28],
which implements a neural network using strand displacement. In [41], we proposed a
chemical reaction network inspired by deoxyribozyme chemistry that can learn a linear
function and repeatedly use it to classify input signals. In principle, these methods could
be used to implement the regression algorithm and therefore the readout layer as an
integrated part of the molecular reservoir computer. A microfluidic reactor has been
demonstrated in [25] that would be suitable for implementing our system. Therefore,
the molecular reservoir computer that we proposed here is physically plausible and can
be implemented in the laboratory using microfuidics.

6 Conclusion and Future Work

We have proposed and simulated a novel approach to DNA computing based on the
reservoir computing paradigm. Using a network of oscillators built from deoxyribozymes
we can extract hidden features in a given input signal and compute any desired out-
put. We tested the performance of this approach on two simple temporal tasks. This
approach is generalizable to different molecular species so long as they possess rich
reaction dynamics. Given the available technology today this approach is plausible and
can lead to many innovations in biological signal processing, which has important ap-
plications in smart diagnosis and treatment techniques. In future work, we shall study
the use of other sets of reactions for the reservoir. Moreover, for any real-world applica-
tion of this technique, we have to address the chemical implementation of the readout
layer. An important open question is the complexity of molecular reactions necessary to
achieve critical dynamics in the reservoir. For practical applications, the effect of sparse
input and sparse readout needs thorough investigation, i.e., how should one distribute
the input to the reservoir and how much of the reservoir dynamics is needed for the
readout layer to reconstruct the target output accurately? It is also possible to use the



history of the reservoir dynamics to compute the output, which would require addition
of a feedback channel to the reactor. The molecular readout layer could be set up to read
the species concentration along the feedback channel. Another possibility is to connect
many reactors to create a modular molecular reservoir computer, which could be used
strategically to scale up to more complex problems.
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21. Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir
computing with binary and analog neurons. Neural Computation 22(5) (2010) 1272–1311

22. Boedecker, J., Obst, O., Mayer, N.M., Asada, M.: Initialization and self-organized optimiza-
tion of recurrent neural network connectivity. HFSP Journal 3(5) (2009) 340–349

23. Morgan, C., Stefanovic, D., Moore, C., Stojanovic, M.N.: Building the components for
a biomolecular computer. In Ferretti, C., Mauri, G., Zandron, C., eds.: DNA Computing.
Volume 3384 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2005)
247–257

24. Chou, H.P., Unger, M., Quake, S.: A microfabricated rotary pump. Biomedical Microdevices
3(4) (2001) 323–330

25. Galas, J.C., Haghiri-Gosnet, A.M., Estevez-Torres, A.: A nanoliter-scale open chemical
reactor. Lab Chip 13 (2013) 415–423

26. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J.,
Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynami-
cal node as complex system. Nature Communications 2 (2011)

27. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement
cascades. Science 332(6034) (2011) 1196–1201

28. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement
cascades. Nature 475(7356) (2011) 368–372

29. Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular
automaton to play a game. Nature Nanotechnology 5(11) (2010) 773–777

30. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly
pathways. Nature 451(7176) (2008) 318–322

31. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles.
Nature 485(7400) (2012) 623–626

32. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from
DNA bricks. Science 338(6111) (2012) 1177–1183

33. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In Banzhaf, W., Ziegler, J.,
Christaller, T., Dittrich, P., Kim, J., eds.: Advances in Artificial Life. Volume 2801 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2003) 588–597

34. Jones, B., Stekel, D., Rowe, J., Fernando, C.: Is there a liquid state machine in the bacterium
Escherichia coli? In: Artificial Life, 2007. ALIFE ’07. IEEE Symposium on. (2007) 187–191

35. Yamazaki, T., Tanaka, S.: The cerebellum as a liquid state machine. Neural Networks 20(3)
(2007) 290–297

36. Modi, S., Nizak, C., Surana, S., Halder, S., Krishnan, Y.: Two DNA nanomachines map pH
changes along intersecting endocytic pathways inside the same cell. Nat Nano 8(6) (2013)
459–467

37. Beyer, S., Dittmer, W., Simmel, F.: Design variations for an aptamer-based DNA nanodevice.
Journal of Biomedical Nanotechnology 1(1) (2005) 96–101

38. Beyer, S., Simmel, F.C.: A modular DNA signal translator for the controlled release of a
protein by an aptamer. Nucleic Acids Research 34(5) (2006) 1581–1587

39. Shapiro, E., Gil, B.: RNA computing in a living cell. Science 322(5900) (2008) 387–388



40. Dambre, J., Verstraeten, D., Schrauwen, B., Massar, S.: Information processing capacity of
dynamical systems. Scientific Reports 2 (2012)

41. Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Towards a biomolecular learning ma-
chine. In Durand-Lose, J., Jonoska, N., eds.: Unconventional Computation and Natural Com-
putation 2012. Volume 7445 of Lecture Notes in Computer Science., Springer-Verlag (2012)
152–163


