
A Principled Approach to HPC Event Monitoring

Alireza Goudarzi,
Dorian Arnold and
Darko Stefanovic

Dept. of Computer Science
University of New Mexico

alirezag|darnold|darko@cs.unm.edu

Kurt B. Ferreira
Scalable System Software

Sandia National Laboratories∗
kbferre@sandia.gov

Guy Feldman
Dept. of Statistics
Purdue University

gfeldman@purdue.edu

ABSTRACT
As high-performance computing (HPC) systems become larger
and more complex, fault tolerance becomes a greater con-
cern. At the same time, the data volume collected to help in
understanding and mitigating hardware and software faults
and failures also becomes prohibitively large. We argue
that the HPC community must adopt more systematic ap-
proaches to system event logging as opposed to the current,
ad hoc, strategies based on practitioner intuition and ex-
perience. Specifically, we show that event correlation and
prediction can increase our understanding of fault behavior
and can become critical components of effective fault toler-
ance strategies. While event correlation and prediction have
been used in HPC contexts, we offer new insights about
their potential capabilities. Using event logs from the com-
puter failure data repository (cfdr) (1) we use cross and par-
tial correlations to observe conditional correlations in HPC
event data; (2) we use information theory to understand
the fundamental predictive power of HPC failure data; (3)
we study neural networks for failure prediction; and (4) fi-
nally, we use principal component analysis to understand
to what extent dimensionality reduction can apply to HPC
event data. This work results in the following insights that
can inform HPC event monitoring: ad hoc correlations or
ones based on direct correlations can be deficient or even
misleading; highly accurate failure prediction may only re-
quire small windows of failure event history; and principal
component analysis can significantly reduce HPC event data
without loss of relevant information.

1. INTRODUCTION
High-performance computing (HPC) systems, including

clusters and supercomputers, have become critical infras-

∗Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
FTXS’15, June 15, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3569-0/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2751504.2751506.

tructure for computational science and engineering research
and in many commercial enterprises. As such systems be-
come larger and more complex, fault and failure manage-
ment becomes increasingly important. For tightly-coupled
and loosely-coupled resource-intensive applications, unmit-
igated failures can reduce resource availability and lead to
low application performance.

Understanding machine fault and failure behavior is key
to the development of effective fault tolerance strategies
for HPC systems. Researchers have applied statistical ap-
proaches in HPC contexts to help with this understanding.
For instance, information theory and event correlation have
been used for root cause analysis [11, 12, 10] and to inform
failure prediction [13, 3, 5]. Additionally, support vector
machines, neural networks and other probabilistic models
have been used for failure event predictions [3, 9, 13, 4].
However, none of this research is employed in state-of-the-
art system monitoring infrastructures. All aspects of cur-
rent system monitoring practices employ ad hoc strategies
based on practitioner expertise and intuition. Without triv-
ializing the value of system administration experience, we
argue that as HPC systems get larger and potential monitor
data volumes become prohibitively large, we need a system-
atic, principled approach to HPC system monitoring: we
should leverage the wide array of current and emerging sta-
tistical and data mining techniques to determine both the
space (which resources/events) and time (sampling resolu-
tion) attributes of HPC resource monitoring systems.

The fundamental challenge is that complex dependencies
amongst HPC system events make event log analysis a non-
trivial task. In this work, we explore the usefulness of well-
known data analysis techniques (that have been applied suc-
cessfully in other domains) for HPC system event analysis.
Our goal is not (yet) to discover new generalizable insights
or insights about specific systems, but to demonstrate that
such techniques can be used to obtain such insights in the
future.

Accordingly, using event logs from the computer failure
data repository (cfdr) [1] in addition to event cross-correlations,
here (1) we use partial correlations to observe statistical sig-
nificance and conditional correlations in HPC event data; (2)
motivated by our partial correlation results, we use principal
component analysis to understand how much dimensionality
reduction can apply to HPC event data; (3) we use informa-
tion theory to understand the fundamental predictive power
of failure event data; and (4) finally, we use a failure event
prediction case study to demonstrate the impact of our in-
formation theoretic analysis.

We offer the following novel contributions:

• a demonstration that for HPC systems direct corre-
lation used in isolation can suggest false interactions
between event time series;

• an approach for reducing the volume of event data that
are collected and maintained without reducing the ef-
fectiveness of that data;

• a principled approach for understanding the limits of
HPC event prediction capabilities; and

• an HPC failure event prediction case study that relies
solely on failure event history.

In addition to identifying candidate data analysis methods
with high impact potential for HPC event data collection,
analysis and prediction, we believe that these contributions
may have several broader impacts: (1) they suggest that
conditional correlations may be very apparent amongst such
data and should be accounted for; (2) dimensionality reduc-
tion may be a useful approach to consider for dramatically
reducing the impact of event data collection on computation,
communication and storage resources; (3) HPC failure pre-
diction approaches may need to consider only small windows
of failure event histories and, in fact, considering extraneous
data may have negative effects; and (4) probabilistic meth-
ods may be better suited for analysis and prediction of HPC
events. We believe this is the first work in HPC systems
research to show the potential relevance of the statistical
significance of apparent correlations and the irrelevance of
conditional event correlations as well as the first work to
suggest the theoretical predictive potential of HPC failure
event data.

The organization of the rest of this paper is as follows:
next (Section 2), we describe the data set and the data anal-
ysis methods we use in this study. Then, we describe our
methodology for applying these methods to our data set,
present the results of these applications and discuss the con-
tributions and impacts of these results (Section 3). We then
review related works in HPC event analysis (Section 4) after
which we conclude with a summary of our main findings and
the opportunities they open for future research.

2. BACKGROUND
We survey several well-known statistical techniques in-

cluding cross and partial correlations, principal component
analysis, information theory for temporal information con-
tent. The choice of these methods is informed by their sim-
plicity and the ability to apply them to large amount of raw
data with only an automated preprocessing step and min-
imum administrative effort. In Section 3, we demonstrate
the potential these techniques have for HPC resource moni-
toring.

2.1 Cross and Partial Correlations
Cross and partial correlations are used to analyze direct

and conditional correlations between multiple variables. A
pairwise cross-correlation characterizes a direct linear corre-
lation between multiple variables at different time lags. Par-
tial correlation is a complementary technique that measures
the conditional correlation between two variables controlling
for all the other variables. Using the direct and the condi-
tional correlation, one can distinguish direct and indirect
interactions between multiple variables in a system.

2.1.1 Cross-correlations
We compute the correlation between two time series X

and Y , with means µX and µY and standard deviations σX
and σY , using Pearson’s correlation coefficient:

ρ(X,Y) =
〈(X − µX)(Y − µY)〉

σXσY
, (1)

where 〈·〉 is the expectation operator. From the equation we
see that −1 ≤ ρ(X,Y) ≤ 1, where a correlation of 1 means
perfect correlation; the values of the time series change in
the same direction, with the same magnitude. A correlation
of −1 means perfect inverse correlation; values of the time
series change in opposite direction, with the same magni-
tude [6, 7].

With lag, τ , between the time series, the calculation is:

ρ(X,Y, τ) =
〈(X(t)− µX)(Y (t+ τ)− µY)〉

σXσY
, (2)

This lets us measure the correlation between two events in
time. To simplify the notation, we use ρi,j(τ) to denote
the correlation between variables Xi and Xj at lag τ . The
answer to the optimization:

τ∗i,j = arg max
τ

ρi,j(τ) (3)

gives the time lag with the strongest correlation between
variables Xi and Xj .

2.1.2 Partial Correlations
Cross-correlations observe the direct correlations between

X and Y However, this correlation may only be due to cor-
relation of X and Y with other variables. Partial corre-
lations [6, 7], measure conditional correlations, that is, the
correlation between two variables controlling for all the other
variables. Partial correlation is useful for root-cause analysis
and to filter out spurious statistical correlations.

Using the correlation matrix C(τ) = [ρi,j(τ)], we can cal-
culate partial correlations that measure conditional correla-
tions. Let C̄(τ) = [ρ̄i,j(τ)] be the inverse correlation ma-
trix. The partial correlation matrix is calculated as follows:
C̄(τ) = [ρ̄i,j(τ)], where ρ̄i,j(τ) is given by:

ρ̄i,j(τ) =
−ρi,j(τ)√
ρ̄i,i(τ)ρ̄j,j(τ)

. (4)

2.1.3 Correlation Motifs
Direct and partial correlations can help identify three dif-

ferent structural variable correlation motifs as shown in Fig-
ure 1: (a) direct correlation ; (b) partial correlation and (c)
both direct and partial correlations.

X1 X2

(a)

X1 X2

X3

(b)

X1 X2

X3

(c)

Figure 1: Correlations: (a) X1 is directly correlated to X2.
(b) X1 and X2 are only partially correlated via X3, (c) X1

and X2 are partially correlated via X3 and also directly cor-
related.

2.2 Principal Component Analysis
Principal component analysis (PCA) is used to analyze

variations in multivariate datasets [2]. PCA transforms a
dataset by describing each data point by its variations along
its different dimensions. The transformed data are an un-
correlated multivariate datasets; that is, different dimen-
sions are uncorrelated. PCA can be used to sort the data
dimensions by total variation and, thus, is used commonly
in machine learning for dimensionality reduction in large
datasets.

PCA is carried out by calculating the covariance matrix
of the data D, its eigenvectors V = [v1| . . . |vn] and its
eigenvalues λ = [λ1, . . . , λn]T. The transformed data can
be calculated using X′ = V · XT, where X is the original
dataset whose columns are different dimensions of the data.
The magnitudes of eigenvalues correspond to how much of
the total variance is explained by the corresponding column
in X′. We calculate the percentage of variation explained
by the ith principal component as follows: 100 λi∑n

j=1 λj
.

2.3 Extracting Temporal Information Content
Information theory provides a framework for measuring

information transfer, noise, and loss between an information
source and destination. Using information theory, we can
identify the predictive information between the past and the
future of a time series. In Shannon’s information theory [16],
entropy is the basic quantity. For an information source S
that takes a state {si|1 ≤ i ≤ n} with probability p(si), the
entropy,HS , or amount of information in S is defined as:

HS = −
n∑
i=1

p(si) log2 p(si). (5)

Joining the entropy of information source and destination:

HSD = −
n∑
i=1

m∑
j=1

p(si, dj) log2 p(si, dj). (6)

we can measure how much information is transferred be-
tween a source and destination. The mutual information
I(S : D) between a source S and a destination D with
states dj is:

I(S : D) = HS +HD −HSD. (7)

We can use mutual information to measure the predic-
tive information in the history of a time series. In this
case, the source will be a finite interval in the past of the
time series and the destination will be the future value of
the time series. Let y(t) be a time-varying signal and let
Yt, Yt−1, . . . , Yt−(n−1) be the random variables that corre-
spond to the values of y during the last n time steps, i.e.,
y(t), y(t − 1), . . . , y(t − (n − 1)). The source S will have
the joint probability distribution p(Yt, Yt−1, . . . , Yt−(n−1)),
and the destination D will have the probability distribution
p(Yt+1).

Information content dictates our (un)certainty about the
future of the time series, Yt+1. We can calculate uncertainty
U , a measure of our ignorance about the future of a time
series, based on our knowledge of its last n values as follows:

U =
HD − I(St : D)

HD
. (8)

From this definition we observe that 0 ≤ U ≤ 1, where
U = 0 means a complete knowledge of the next step and
U = 1 indicates a complete ignorance of it.

3. EXPERIMENTS AND RESULTS
In this work, we argue for a principled, systematic ap-

proach HPC resource monitoring and event analyses. We
used event and failure data collected from 22 HPC clus-
ters at Los Alamos National Laboratory (LANL) from De-
cember 1996 through November 2005 [1]. These systems
were large clusters consisting of either non-uniform-memory-
access (NUMA) nodes, or 2-way and 4-way symmetric mul-
tiprocessing (SMP) nodes. The systems comprised a total
of 4750 nodes and 24101 processors. Each failure record in-
cluded the cluster number and node number for the failed
nodes, the failure timestamp, the timestamp at which the
node was returned to operational state, and the determined
cause of failure. The logs also contained the events from a
variety of hardware and system software components. Each
event record contained the event timestamp, the node at
which the event occurred, the component that produced the
event, and the event type. From this repository wee used
the more comprehensive “System 20” logs.

3.1 Data Preparation
As described above, our event logs contained information

about the node on which the event occurred as well as the
component that produced the event, the event category, and
the timestamp at which the event was recorded. We were
interested to see how events statistics change with respect to
one another, which is calculated through cross-correlation.
We needed to preprocess the event data to convert them into
a single multivariate time series in which all events can be
analyzed simultaneously. This allowed us potentially to ob-
serve the interactions amongst events across different com-
ponents and different nodes. In the raw event logs, each
line denotes a type of event with its corresponding times-
tamp. Commonly, event correlations are analyzed by cal-
culating either time-between-events (TBEs) or by binning
events into sliding time windows along the time series, and
generally, TBE calculation and related statistics for a single
event is trivial. However, we could not use this approach
for two reasons: (1) event frequencies varied greatly among
the events and (2) the calculated TBE from the raw data
is not synchronized. This is necessary for cross-correlation
and partial correlation analysis. Therefore, we synchronized
the different time series via a sample-and-hold schema (used
in signal processing for synchronization). That is, for each
time series, we set the value of the time series at each time
step equal to the calculated TBE at the last occurrence of
that event. The detailed procedure is as follows:

1. Calculate TBEs for all event logs.

2. Find a global start and end time by taking the smallest
and largest timestamps across all event logs.

3. In all the logs if there is no TBE corresponding to a
time step between the global start and end insert a 0.

4. For all logs, scan each log and set the values at each
time step equal to the last non-zero value.

With this schema, we can tell at each point in time what is
the last known TBE for each event and we can easily cal-

culate how the TBEs correlate with cross-correlation. Al-
though this transformation changes the absolute values of
the statistics of TBEs, their relative statistics remain un-
changed, at least in our dataset. Furthermore, extrapolated
time series will not miss any fluctuation in TBE after down-
sampling. We performed this transformation on all the data
and sampled the result at every 7200 seconds (two hours).
This improved our analysis efficiency: processing the un-
sampled data consumed a lot of memory. The result of this
preprocessing is shown in Figure 2.

3.2 Finding Event Correlations
We now present the results of the cross and partial correla-

tion methods from Section 2.1. Our HPC cluster event logs
contain event data from 2,831 total devices including 512
computer nodes. Analyzing TBEs for all the events logged
by all the nodes is a very memory-intensive task. However,
since a majority of the nodes logged only a few events with
many months in between, for our event correlation study,
we focused on 31 nodes-event pairs that produced the most
logged events. We consider both node names and event sub-
categories to identify each TBE uniquely.

These experiments test correlations amongst events with
no time lag. Further, we only consider event pairs with a
correlations greater than 0.7 with a p-value < 0.05. (This
means that there is only a 5% chance that correlation of the
same magnitude can be observed due to random effects.)
We highlight our key observations from these experiments:

1. 131 node-event pairs show direct correlation;

2. 13 node-event pairs show partial correlation; and

3. four node-event pairs show both direct and partial cor-
relations.

From the direct correlations in observation 1 alone, one
would conclude that there exists a large number of corre-
lated events. However, observation 2 and 3 show that the
large majority of these correlations only show up because
of the complex interactions amongst a set of event variables
and are therefore superfluous. In other words, there may be
a significant difference between the real interactions between
event time series and those suggested by direct correlations.

3.3 Dimensionality Reduction
In Section 3.2 we showed that many correlations are spu-

rious. While these spurious correlations hinder the process
of root cause analyses, they suggest that event inter-arrival
time series can be compressed significantly and later recon-
structed with high fidelity. We now show the results of ap-
plying the PCA method for dimensionality reduction (de-
scribed in Section 2.2) to our data set. Figure 3 show the
results of applying PCA to the TBE time series of Node 1
from the data set. Node 1 recorded nine different events in
its event logs (Figure 3a). We calculate the principal com-
ponents of these TBEs and use the five most informative of
those to reconstruct the original data (Figure 3b). These
five components cover 98.8% of the total variation in the
data. This reconstruction is not exact, but it is very close
to the original data. In fact, if we normalize the original
and reconstructed data between 0 and 1, the average mean-
squared-error (MSE) of the nine reconstructed events and
the original event is 3.1× 10−4.

0

100

200

300

400

500

600

700

T
B

E
 (

d
a

y
s
)

Ju
l 3

0,
 2

00
3

Ja
n

26
, 2

00
4

Ju
l 2

4,
 2

00
4

Ja
n

20
, 2

00
5

Ju
l 1

9,
 2

00
5

Ja
n

15
, 2

00
6

net.niff.down

error

temphigh
state

c
hange.available

net.niff.up
state

c
hange.unavailable

temperature

start

status

(a)

0

100

200

300

400

500

600

700

T
B

E
 (

d
a

y
s
)

Ju
l 3

0,
 2

00
3

Ja
n

26
, 2

00
4

Ju
l 2

4,
 2

00
4

Ja
n

20
, 2

00
5

Ju
l 1

9,
 2

00
5

Ja
n

15
, 2

00
6

net.niff.down

error

temphigh
state

c
hange.available

net.niff.up
state

c
hange.unavailable

temperature

start

status

(b)

Figure 3: The time-between-events (TBE) of nine events
logged by Node 1. (a) The original data transformed into
continuous multivariate time series as explained in Sec-
tion 3.1. (b) Reconstruction of the TBE using only 5 most
informative components captures a majority of significant
events.

Figure 4a shows the average MSE in reconstructing the
TBE data as a function of the principal components used.
The components are sorted according to the percentage of
the variations they explain in descending order. The inset
plot shows the MSE as a function of cumulative variation
that the principal components explain. The higher the di-
mensionality of the original data, the fewer components we
will need to reconstruct them. To illustrate this we pick the
100 nodes from the data set that record the most events and
reconstruct them from principal components. These nodes
recorded 574 total events. Figure 4b shows the percent cu-
mulative explained variation as a function of the percentage
of the principal components. Only 5% of the components ex-
plain 99.4% of the variation. These results further validate
our conclusions from the correlation studies that event log
data can contain a lot of extraneous and unnecessary data.

3.4 Temporal Information Content
Generally, event prediction often consists of time-between-

event (TBE) prediction. While previous work in event pre-
diction focused on exploiting spatiotemporal correlations among
other events, we show that sufficient predictive information
about an event’s time series is contained within the time
series itself. However, mappings between the past and the
future TBE values can be highly nonlinear and difficult to
discover. We show this using cross-correlations that can de-
termine linear correlations and then use mutual information
to find more complex event relationships.

0

200

400

600

800

 T
B

E
 (

d
a

y
s
)

Ju
l 3

0,
 2

00
3

Ja
n

26
, 2

00
4

Ju
l 2

4,
 2

00
4

Ja
n

20
, 2

00
5

Ju
l 1

9,
 2

00
5

Ja
n

15
, 2

00
6

net.niff.down

error

temphigh
state

c
hange.available

net.niff.up

(a)

0

200

400

600

800

 T
B

E
 (

d
a

y
s
)

Ju
l 3

0,
 2

00
3

Ja
n

26
, 2

00
4

Ju
l 2

4,
 2

00
4

Ja
n

20
, 2

00
5

Ju
l 1

9,
 2

00
5

Ja
n

15
, 2

00
6

net.niff.down

error

temphigh
state

c
hange.available

net.niff.up

(b)

Figure 2: The time-between-events (TBE) time series before (a) and after (b) extrapolation and synchronization.

1 2 3 4 5 6 7 8 9
0

0.005

0.01

0.015

0.02

principle components used in reconstruction

a
v
e
ra

g
e
 M

S
E

60 70 80 90 100
0

0.0025

0.005

0.0075

0.01

0.0125

0.015

% cumulative variation used

a
v
e
ra

g
e
 M

S
E

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

percentage of total events

p
e
rc

e
n
ta

g
e
 e

x
p
la

in
e
d
 v

a
ri
a
ti
o
n

(b)

Figure 4: (a) Average mean-squared-error (MSE) of TBE re-
construction as a function of the number of principal compo-
nents used. The inset shows the average MSE as a function
of percent cumulative variation that the used components
explain. (b) Percentage explained variation as a function
of the percentage of the most informative principle compo-
nents. The first 5% of the components explain 94.4% of the
variation.

Fu and Xu conducted a comprehensive study of failure
correlation and prediction using the moving average of TBE
extracted from the same data set that we use [3]. A moving
average of a time series can help to reduce measurement
errors. We call this the mean k-TBE to indicate that the
window length is k steps. Here, we extend this analysis to
the information content of the mean k-TBF (time-between-
failures) time series and show that, in principle, the history
of this time series can be predictive of its future.

First, we construct the mean 8-TBF time series from the
data set. We calculate the cross-correlation of the mean 8-
TBF and its corresponding p-values. Figure 5 shows the
correlations with p-value < 0.05. We observe significant
correlations with high values, especially in the first 50 future
values of the TBF. However, cross-correlation only signifies
the linear correlation between the current and future values
of a time series.

0 200 400 600 800
−0.5

0

0.5

1

failure index

c
ro

s
s
 c

o
rr

e
la

ti
o

n

correlation

p−values

significant correlation

Figure 5: Cross-correlation of the mean 8-TBF. The hori-
zontal axis are TBF index in chronological order. The solid
line (red) shows the significant correlation between the TBF
and its future. We observe the cross-correlation shows large
values within the first 50 indices.

We used mutual information (described in Section 2.3) to
study how much information about future time series values
is present in the past values of the time series. We first fit
an exponential distribution to the original data and use its
cumulative distribution function to convert the samples from
a uniform distribution. We then discretize the equalized
TBF values into 3 bins to avoid overfitting. We calculate
the mutual information between a window of length t of the
past values of the discretized TBF and its future values. In
this case our source was a window of t previous values of
TBF St and destination will be the next TBF value D.

Recall that our uncertainty measure is a representation
that normalizes mutual information from zero to one: as un-
certainty approaches zero, the information about the future
contained in the previous values of a time series approaches
100%. Figure 6 shows the uncertainty about the next TBF

value as a function of the size of the window of past values.
As the window size increases, uncertainty rapidly declines,
and above window sizes of 15, U ≈ 0.1. This suggests that
small event histories can contain most of the information
about a time series’ next step.

1 5 10 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6

past window size t

u
n
c
e
rt

a
in

ty

Figure 6: Uncertainty U about the next TBF values based
on our knowledge of the past t values of the TBF. With
growing window size t, the uncertainty rapidly declines and
approaches 0.1 above t = 15, which indicates the predictive
information in the TBF’s history.

Most of the literature on TBF prediction focuses on pre-
dicting the next TBF value. In practical settings, this may
not allow sufficient time for remediation strategies to prepare
for the failure events or take preventative actions. Therefore,
it is most desirable to predict TBFs multiple steps ahead of
time. That is, we wish to predict the next several TBF val-
ues. For our data set, we calculated the uncertainty for the
ith future TBF value knowing the past t values. Figure 7
summarizes the result of this calculation. Once again, we
find that the previous 15 steps of the TBF contain most of
the information about the next 10 future values of the TBF.
In principle, this means that small event histories can con-
tain the information about a time series’ next several steps
into the future.

1 5 10 15 20
1

2

3

4

5

6

7

8

9

10

past window size t

 i
 f
u
tu

re
 T

B
F

 v
a
lu

e
s

0

0.2

0.4

0.6

0.8

Figure 7: Uncertainty U about the TBF value i steps into
the future based on our knowledge of the past t values of
the TBF. WIth growing the windows size t, the uncertainty
rapidly declines and approaches zero above t = 15 which
shows that all predictive information about the future of
the TBF can be found in its past, in principle.

3.5 Failure Prediction
The results from Section 3.4 suggested to us two things:

(1) there is a lot of predictive potential in time series his-
tory and (2) the event correlation data might be unneces-
sary for this purpose. We test these theories by performing
a comparison study to that of Fu and Xu [3]. Fu and Xu
used a time-delayed neural network (TDNN) approach to
predict next time series values. Their training set included
450 failure events from September 1, 2003 through August
31, 2004, along with the spatiotemporal correlation between
other events in the clusters. They calculated the moving
average of the TBF over a window of size k = 8 as follows:

m̂(t) =
1

k

k∑
j=0

m(t− j + 1), (9)

where m̂(t) and m(t) represent the average TBF and the
TBF at time t. We call this 8-TBF. They used a TDNN
with 8 step tapped-delay line and 3 hidden layers with 4
nodes in each layer and tested it on the 8-TBF time series
of the 307 failure events between September 1, 2004 through
August 31, 2005. For a sample of length n and prediction
values of m̄(t), the prediction error is given by:

error =
1

n

n∑
t=1

|m̂(t)− m̄(t)|
m̂(t)

. (10)

Before we feed the data to NN, we normalize the data to
values between 0 and 1. The error between the predicted
8-TBF and the actual value is then calculated using the
data scaled back to minutes. Figure 8a shows the results
when we use a NN with 10 tapped-delay line and a single
hidden layer with 12 nodes. Our best observed testing error
of 15% is comparable to the 16% reported by Fu and Xu.
First, the fact that we are able to perform as well as they
did without using the correlation data confirms our finding
that information in the TBF time series alone is sufficient
to predict its future. We must point out that the there
is no spatial information in the neural network input and
therefore the prediction does not have any spatial resolution.
However, this is just a demonstration that the failure time
series can be predicted without the use of other event log
data.

We can put this result into better perspective. For our
predictions, we calculate that the average duration between
a failure prediction and its occurrence is 1,697 minutes. Us-
ing a result like this, for example as we discuss in the conclu-
sion, failure mitigation strategies can have on average almost
three hours to prepare for a component failure. A special
concern in TBF prediction is when we predict a larger TBF
than the actual value. This is called overestimation and
can cause a failure to occur without the proper mitigation
in place. The effect of such cases can be easily calculated.
For example in our best run, the average overestimation is
175 minutes, which still leaves a lot of time to prepare for
the failure. It is known that HPC TBF time series are not
very well characterized statistically. We think the reason for
reasonably good prediction recall in our experiments is that
TDNN uses a short-term memory that includes only very
limited history, but can perform highly non-linear computa-
tion on the limited memory to make a good prediction. In
the case of TDNN this non-linearity is due to the multi-layer
structure of the network.

0 300 800 1300 1800
0.125

0.165

0.205

0.245

0.285

u
n
c
e
rt

a
in

ty

time

(a) Evolution of uncertainty U over time

0.125 0.165 0.205 0.245 0.285
0

0.005

0.01

0.015

0.02

uncertainty

p
ro

b
a

b
ili

ty

(b) Probability distribution of U

Figure 9: Evolution of the uncertainty U over time and its corresponding distribution. The centered distribution indicates
that the function is well behaved and justifies the prediction based historical values.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

failure index

8
−

T
B

F
 (

m
in

u
te

s
)

prediction

target

(a)

Figure 8: (a) Prediction of the 8-TBF time series for LANL
System 20 using neural network. Best observed testing error
is 0.15.

A legitimate concern with the use of predictive methods
in HPC systems based on historical data is that the system’s
behavior is not stationary, that is, the statistical properties
of the system change over time. This is usually reflected in
the changing average and variance of the signals extracted
from the system. In Section 3.4 we showed that uncertainty
U about the future of the TBF is a function of a small win-
dow of its previous values. These results are calculated over
the entire TBF time series that contain 2,478 values. How-
ever, we can calculate U over a limited time interval and slide
this interval over the entire time series to see how U changes.
To study this, we calculate U over a sliding interval of 500
consecutive 8-TBF time series. Figure 9a shows the evolu-
tion of U over time characterized by periods of stability and
minor fluctuations around a well-defined value interleaved
by rapid jumps to another stable regime. Figure 9b shows
the distribution of uncertainty value over the entire failure
time series. This distribution is well-behaved and centered
around a well-defined value. This suggest that although the
local behavior of the system may show rapid fluctuations,
the global behavior is more or less well behaved. This jus-
tifies that predictive approaches based on historical value
may be useful. However, a second implication is that near
the rapid jumps the prediction performance may suffer.

4. RELATED WORK
Several studies have shown important spatial and tem-

poral correlations amongst failure events. Schroeder and
Gibson studied failure event logs from many high perfor-
mance clusters and showed important temporal correlations
between failure events [15]. The day-of-week and hour-of-
day correlation patterns in this work are useful for sched-
uled tasks on HPC systems, but is not suitable in informing
adaptive and predictive approaches of fault management.
Based on failure data from BlueGene/L at the IBM Thomas
J. Watson Research Center, researchers used log filtering
techniques to calculate the alert inter-arrival time. They
showed significant correlations between failure events, both
in space and time [14, 8]. Finally, Oliner, Kulkarni, and
Aiken discovered a structure of causal influence between the
components of HPC systems [12], by calculating time-lagged
cross-correlation and analyzing how the signals from differ-
ent system components deviate from their normal behavior.

While event cross-correlations have been used in HPC sys-
tem studies, partial correlations have not been well studied.
Using both cross-correlation and partial correlation can pro-
vide additional insight into the complex interactions between
multiple components that are hard if not impossible to ob-
tain using cross-correlation alone. This includes the statis-
tical significance of correlations as well as deciding whether
events are directly or only indirectly related.

5. CONCLUSIONS
In this study, we demonstrated the discrepancy between

the real interactions between event time series and those
suggested by direct correlations. Furthermore, we show that
principal component analysis can be used effectively for di-
mensionality reduction of HPC data. Moreover, we demon-
strated a principled approach for understanding the limits
of HPC event predictability and showed that accurate fail-
ure event prediction can rely solely on failure history, and
no further event information.

We believe this work can and should influence resource
monitoring practice for current and future HPC systems.
Event correlation techniques, such as partial correlation,
that filter out noisy conditional correlations can lead to more
accurate and more efficient failure diagnoses, failure depen-
dence analyses and root cause analyses. Methods such as
partial correlation and PCA can reduce event data volumes

without loss of information or predictive effectiveness. This
allows us to consider optimizations to HPC event data col-
lection and management. For example, we can reduce data
volume via event filtering or dimensionality reduction. Or
we can take more drastic measures, such as only monitoring
and collecting events we know to be directly relevant for
other events that we care about. Finally, understanding the
theoretical limits of the predictive power of data sets lets us
know how close our prediction tools are to their peak capa-
bilities, so that we know when we have approached the point
of diminishing returns. Also, knowing what data is relevant
for effective predictions and monitoring and collecting only
that minimal set renders simpler, more efficient predictors
(such as neural networks) that improve prediction time and,
as our results have shown, prediction accuracy.

6. REFERENCES
[1] The computer failure data repository (CFDR).

“https://www.usenix.org/cfdr”, Online; accessed
August 3, 2013.

[2] Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[3] Song Fu and Cheng-Zhong Xu. Exploring event
correlation for failure prediction in coalitions of
clusters. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, SC ’07, pages
41:1–41:12, New York, NY, USA, 2007. ACM.

[4] Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack.
Predicting computer system failures using support
vector machines. In Proceedings of the First USENIX
conference on Analysis of system logs, WASL’08, pages
5–5, Berkeley, CA, USA, 2008. USENIX Association.

[5] Ana Gainaru, Franck Cappello, Marc Snir, and
William Kramer. Fault prediction under the
microscope: A closer look into hpc systems. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 77:1–77:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[6] J.D. Gibbons. Nonparametric Statistical Inference.
Marcel Dekker Inc, 2nd edition, 1985.

[7] M.G. Kendall. Rank Correlation Methods. Griffin,
1970.

[8] Y. Liang, Y. Zhang, Anand Sivasubramaniam, R.K.
Sahoo, J. Moreira, and M. Gupta. Filtering failure
logs for a bluegene/l prototype. In Dependable
Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference on, pages 476–485, 2005.

[9] Yinglung Liang, Yanyong Zhang, Anand
Sivasubramaniam, Morris Jette, and Ramendra Sahoo.
Bluegene/l failure analysis and prediction models. In
Proceedings of the International Conference on
Dependable Systems and Networks, DSN ’06, pages
425–434, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] A. Oliner and J. Stearley. What supercomputers say:
A study of five system logs. In Dependable Systems
and Networks, 2007. DSN ’07. 37th Annual
IEEE/IFIP International Conference on, pages
575–584, 2007.

[11] A.J. Oliner, A. Aiken, and J. Stearley. Alert detection
in system logs. In Data Mining, 2008. ICDM ’08.
Eighth IEEE International Conference on, pages
959–964, 2008.

[12] A.J. Oliner, A.V. Kulkarni, and A. Aiken. Using
correlated surprise to infer shared influence. In
Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages
191–200, 2010.

[13] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E.
Moreira, S. Ma, R. Vilalta, and A. Sivasubramaniam.
Critical event prediction for proactive management in
large-scale computer clusters. In In Proceedings of the
9th ACM SIGKDD, International Conference on
Knowledge Discovery and Data Mining, pages
426–435. ACM Press, 2003.

[14] R.K. Sahoo, M.S. Squillante, A. Sivasubramaniam,
and Y. Zhang. Failure data analysis of a large-scale
heterogeneous server environment. In Dependable
Systems and Networks, 2004 International Conference
on, pages 772–781, 2004.

[15] B. Schroeder and G.A. Gibson. A large-scale study of
failures in high-performance computing systems. In
Dependable Systems and Networks, 2006. DSN 2006.
International Conference on, pages 249–258, 2006.

[16] C. E. Shannon. A mathematical theory of
communication. Bell Sys. Tech. J., 27:379–423, 1948.

