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Abstract. As spatial locality leads to advantages of computation speed-
up and sequence reuse in molecular computing, molecular walkers that
exhibit localized reactions are of interest for implementing logic compu-
tations. We use molecular spiders, which are a type of molecular walkers,
to implement logic circuits. We develop an extended multi-spider model
with a dynamic environment where signal transmission is triggered lo-
cally, and use this model to implement three basic gates (AND, OR, NOT)
and a mechanism to cascade the gates. We use a kinetic Monte Carlo algo-
rithm to simulate gate computations, and we analyze circuit complexity:
our design scales linearly with formula size and has a logarithmic time
complexity.4

Keywords: molecular spiders, logic circuits, parallel evaluation, localized
signal transmission.

1 Introduction

Molecular walkers are synthetic molecular machines inspired by natural
biological motors. Previous studies [4,7,9,11,13] have shown that walk-
ers can move directionally and autonomously on a pre-programmed
track via localized reactions. Spatial locality can overcome the challenges
of computation speed-up and sequence reuse in molecular computing
where all the reactants diffuse freely in a mixed solution [2, 5]. Hence,
a walker system with inherent spatial locality has potential to perform
more complex computational tasks. We investigate the computational
power of a walker system by using it to implement scalable logic cir-
cuits.

We consider a molecular spider system, where a spider is a type of
molecular walker. Molecular spiders [1, 11, 12] with varying number of

4 Paper appears in the Proceedings of the 10th International Conference on Informa-
tion Processing in Cells and Tissues, IPCAT 2015, San Diego, CA, September 2015;
Springer LNCS Vol. 9303, pp. 13–28; corrected and reformatted.
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legs move stochastically on a surface formed by sites containing DNA
segments, and present biased behaviors due to different reactions with
fresh sites (catalytic cleavage) and visited sites (dissociation). We extend
previous models [1, 11, 12] to implement three basic logic gates (AND,
OR, NOT), and cascade the gates to construct logic circuits. We use mul-
tiple spiders in the model, and we assume spiders behave unbiasedly
with equal transition rates to all sites. Sites are divided into normal sites
that are non-alterable and functional sites that can be altered via catalytic
cleavage and/or strand displacement. We can encode signals into func-
tional sites. Signal transmission [5, 6] is triggered locally when a spi-
der interacts with a signal-carrying site, which dynamically changes the
state of the spider or of the environment. We call this extended system
an active molecular spider system.

In our design, each variable is represented by a moving spider that
has two legs and one arm. The arm has two possible states, 0 or 1, rep-
resenting the boolean value of the spider. Each gate is represented by
a layout of different sites on a 2D lattice. In a single gate, spiders with
different values will take different paths from their input locations. We
arrange different functional sites on different paths, such that only the
spider with the correct computation result will be directed to the output
location via interactions between spiders and functional sites. On reach-
ing the output location, a spider reports the computation result, and we
call this spider the reporting spider. We cascade logic gates by connect-
ing them such that only the reporting spider leaves the upstream gate
and enters the downstream gate. We design a mechanism for exit from
gates to implement gate cascades that allow parallel evaluation. As an
example, Figure 7 shows a logic circuit where input spiders X and Y are
initially placed at the input locations of two NOT gates, and the NOT
gates are connected to the same AND gate via exit mechanisms. Spiders
move within the circuit, and the spider reaching the output location re-
ports the computation result.

Molecular circuits using DNA Strand Displacement [8] in a well-mixed
solution use relatively high and low concentration of a species to repre-
sent Boolean values 1 and 0, or use two separate species in a dual-rail en-
coding. Here, we use spiders with arm state 1 or 0 to represent Boolean
values, thus we remove potential ambiguity from result reporting. Since
Boolean values are carried by spiders moving from an upstream gate to
a connected downstream gate, all gates are designed individually, thus,
modularity is ensured. Previous work on tethered circuits [2, 5] also en-
sures modularity and unambiguity, but takes a different approach where
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Boolean values are represented by the existence of a sequence. Modular-
ity is ensured by spatially isolating different gates on a surface, e.g., a
DNA origami tile such that only gates in close proximity can interact
with each other.

Previous work [3] has used a walker system to construct logic circuits
with spatial locality, but it lacks modularity and is limited to sequential
evaluation due to its design where the circuit constructed is in the form
of a Binary Decision Diagram (BDD). A walker initially placed at the root
node walks along a path unblocked by externally-added strands to reach
a leaf node representing True or False, causing a fluorophore change to
report the computation result. For practical reasons, this reporting strat-
egy needs two parallel circuits that detect fluorophore change at the True
nodes and False nodes respectively to avoid ambiguity. Our design uses
the reporting spider to avoid reporting problems [3], and we support
parallel evaluation. As a result, to evaluate an m-clause 3-CNF circuit,
we need time O(log m) while the circuit [3] needs time O(m). We use the
same linear space complexity O(m) as in the circuit [3], and it is easier to
construct large circuits using our design because of its modularity.

Using an extended active multi-spider system, while keeping the ad-
vantages related to spatial locality, our design ensures modularity, un-
ambiguity, and scalability. We will describe the model in Section 2, and
introduce how to construct the logic circuits in Section 3 with simula-
tion results and complexity analysis. A formal definition of the model is
given in Section 4. We give conclusions and discuss current challenges
and future work in Section 5.

2 Model Description

Our long-term goal is to realize the circuits we describe here with a
physical implementation based on molecular spiders [4, 7]. Therefore,
our model draws from the existing models of molecular spiders [9, 11]
and extends them to describe the richer functionalities of the walkers we
hope to build. In spite of these extensions, we will use the evocative term
“spider” throughout the paper.

A molecular spider has a body and three limbs, two legs and an
“arm”, which it can use to attach to chemical sites on a surface. There
is exclusion: at most one limb can be attached to a given site at a time.
Different types of sites are laid out on a square lattice, Z2. A set of con-
tiguous sites can form a track on which the spiders can move.
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We model a spider’s body as a single point, and the limbs as having
equal length. This leads to the following postulated “hand-over-hand”
gait [9]: at any given time, exactly two limbs are attached to the sur-
face, and they are attached to nearest-neighbor sites. We call the sites a
limb has bound to the attachment points. There are always two attachment
points for each spider, and they are adjacent to each other. A moving step
occurs when a spider detaches one of its limbs from an attachment point
p ∈ Z2, and attaches to a site p′ ∈ Z2. Figure 1 shows a transition step
of a spider where there are four reachable sites that the spider can poten-
tially transit to. However, a spider might not attach to a reachable site
because whether a reachable site is available depends on the state of the
site and of the limb, which will be discussed in Section 3 and Section 4.
When multiple spiders are moving on the track, one spider cannot attach
to a site occupied by another spider.

limb     leaves the 
attachment point

attachment point

site

reachable site l1

l2

l1

limb      is not on 
the surface.

l3

Fig. 1. A spider has limb l1 and limb l2 attached to the surface. When limb l1 detaches
from the left attachment point, four sites represented by the black dots are reachable for
limbs l1 and l3. The arrows show the transitions of a spider to other sites via hand-over-
hand movement.

Spiders move stochastically on the track, interacting with the normal
sites. If they attach to functional sites, signal transmission is triggered
locally between two adjacent sites, or between a site and the spider at-
tached to it. Changes to the sites and spiders may happen during a step,
which is crucial in the construction of a logic circuit. In the next section,
we will explain how to use different sites to construct three basic gates
(AND, OR, NOT) and cascade them to construct a logic circuit.

3 Logic Circuit Construction

Each spider represents a Boolean variable. The value of the spider is in-
dicated by its arm state, which is either 0 or 1. A logic circuit is formed by
cascades comprising the basic logic gates (AND, OR, NOT). This com-
bination of logic gates is complete for Boolean logic. A logic gate is an
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arrangement of different sites on a square lattice, including an output
location and input locations. When spiders begin moving from the in-
put locations, their interactions with the sites lead to changes to the sites
and the spider values, which ends with one spider reaching the output
location, and the value of this spider represents the computation result
of the logic circuit. In this paper we do not concern ourselves with the
issues of placement and routing of circuits in the plane, which are well
studied in electronic circuit design.

3.1 Normal Sites and Functional Sites

We define the set of site types as S = Snorm ∪ S f un, where the normal sites
Snorm = {sl , s1, s0} are non-alterable and the functional sites in S f un are
alterable. A normal site of type sl binds to a spider’s leg, and is used for
the “wires” of a logic circuit. Sites of type s0 and s1 bind to the spider’s
arm if it has type 0 or 1, respectively. Sites of type s0 and s1 are placed
at the beginning of two separate paths that branch out from a junction,
directing a spider with different values to different paths (Figure 2).

The junction design is used in the constructions for all gate types.
Each logic gate has a set of functional sites placed on the paths branching
out from the junction. After the spiders take their own paths at the junc-
tion according to their values, they will encounter different functional
sites. The interactions between the spiders and the functional sites cause
changes to the spider and the sites, directing one spider to the output
location, reporting the result of the gate computation.

s1

s0

. . .

. . .

spider X = 1

s1

s0

. . .

. . .

normal site sl attachment point

spider X = 1

Fig. 2. If a spider has an arm type of 1, it binds to site s1 at a junction. If a spider has an
arm type of 0, it binds to site s0 at a junction. Here a spider X = 1 follows the upper path
by attaching to site s1. It cannot follow the lower path.

Before going to the details of each gate, we first introduce some im-
portant features of functional sites. (1) A functional site has a state among
{on, off, trapped}. The spider can bind to an “on”-state site, cannot bind
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to an “off”-state site, and cannot leave a “trapped”-state site by itself. (2)
A functional site may or may not trap a spider. When it traps a spider,
the site’s state becomes “trapped”. (3) A functional site may contain a
signal of “turning on/off” or “switching to 1 or 0”. The signal held in a
functional site is sent out once it is attached by a spider. When a spider
attaches to a site holding a signal, the signal “turning on/off” is sent to
another site, setting its state “on” or “off”; the signal “switching to 1 or 0”
is sent to the spider, changing its value to 1 or 0. When a functional site
sends out its signal, it has no signal remaining. Signal transmission is al-
lowed between a site and a spider that is attached to the site, or between
two sites that are adjacent to each other. These features could be imple-
mented via DNA strand displacement. We will discuss the AND and OR
gate designs in Section 3.2 and the NOT gate design in Section 3.3.

3.2 Designs of the AND and OR Gates

We use three types of functional sites st, sp, and su in the designs of the
AND gate and OR gate. Site st can trap the spider attaching to it, so we
place a site st at the output location of the gate. The AND gate and OR
gate each has two input spiders initially located at the two input loca-
tions, which are two junctions as shown in Figure 2. Each input spider
selects one of two possible paths when computation begins, where one
path leads to the output location without any functional sites and the
other path is merged into a crossroad in the middle of the lattice. We
place an initially “off”-state site sp at the heart of the crossroad, which
blocks the central path from the crossroad to the output location. We
place a site su adjacent to site sp, which will send a ‘turning-on” signal
to unblock site sp when a spider attaches to it, and trap that spider at the
same time. The cooperation between sites su and sp guarantees that only
when both spiders meet at the crossroad can a spider take the central
path to the output location.

Figure 3 shows the layout of the AND gate and OR gate. We explain
how the AND gate works under four possible input assignments, and
the OR gate follows a similar design. In the AND gate, the two input spi-
ders X and Y are initially placed at two junctions as their input locations.
When spiders X and Y are both 0, they both take the path starting with
site s0, which leads to the output location without any functional sites.
In this case, whichever spider reaching the output location has value 0,
reporting the result of 0 ∧ 0 is 0. When spider X = 0 and spider Y = 1,
spider Y takes the path starting with site s1, and gets stuck at the cross-
road because site sp is “off”. Spider X takes the path starting with site
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s0, and will eventually reach the output location, reporting the result of
0 ∧ 1 is 0. When spider X = 1 and spider Y = 0, spider X gets to the
crossroad via the path starting with site s1, and gets trapped at the cross-
road due to the sites st and su placed on that path. Spider Y is the only
spider that can reach the output location in this case, reporting the result
of 1 ∧ 0 is 0. When both spiders are 1, they meet at the crossroad. Site
sp is turned on by the signal sent from site su, so spider Y can take the
central path leading to the output location. Since spider X is trapped at
the crossroad, only spider Y can reach the output location, reporting the
result of 1∧ 1 is 1.

Following a similar design, the layout of the OR gate is shown in Fig-
ure 3. When both spiders are 0, they meet at the crossroad. Spider X is
trapped on sites st and su, and spider Y takes the unblocked central path
to the output location, reporting the result of 0 ∨ 0 is 0. Under other in-
put assignments, the 0-valued spider takes the path to the crossroad and
gets stuck there, only the 1-valued spider can reach the output location,
reporting that the result of 1∨ 0, 0∨ 1, and 1∨ 1 is 1.

The movement of the spiders can be modeled as a continuous-time
Markov process. We used a kinetic Monte Carlo algorithm to simulate
gate computations. For each gate, under different assignments, we inves-
tigate the computation time using 10, 000 iterations in each simulation.
We assume the transition rate (the rate that a spider limb transits from
one site to another) of each spiders is 1. Simulation results for the AND
gate and OR gate are shown in Figure 4. In the AND gate or OR gate,
under a certain input assignment, the computation time follows a long-
tailed distribution because spiders move stochastically. The computation
time is the time spent on traversing the path taken by the reporting spi-
der that reaches the output location; it is influenced by factors such as
the transition rate or the length of the path. These factors have been dis-
cussed in previous work [10, 11], so we do not focus on them in this
paper.

3.3 Design of the NOT gate

We use five types of functional sites in the NOT gate design. As is shown
in the layout of the NOT gate in Figure 5, site st which can trap a spi-
der that attaches to it is placed on the output location. Sites s1→0, sI

r , sI I
r

and sites s0→1, sI
r , sI I

r form two different switch mechanisms SW1→0 and
SW0→1 that are laid on two separate paths. The NOT gate has one in-
put spider which is initially placed at a junction as the input location.
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Fig. 3. The layout of the AND gate and OR gate. Three functional sites st, sp, and su used
in the designs of these two gates are listed in the middle column. Normal site s1 can
only bind to an 1-valued spider and normal site s0 can only bind to a 0-valued spider.
In the AND gate, when both spiders are 1, they meet at the crossroad in the middle.
Spider X gets trapped at sites st and su, site su sends a “turning-on” signal to unblock
site sp, allowing spider Y = 1 to take the unblocked central path from site sp to the
output location . Under other input assignments, the 1-valued spider gets stuck at the
crossroad, so only the 0-valued spider can reach the output location. Therefore, the AND
gate yields 1 when both spiders are assigned 1, and yields 0 in all other cases. Similarly,
in the OR gate, when both spiders are 0, they meet at the crossroad in the middle and
only spider Y = 0 can reach the output location. Under other input assignments, the
0-valued spider gets stuck at the crossroad, so only the 1-valued spider can reach the
output location. Therefore, the OR gate yields 0 when both spiders are assigned 0, and
yields 1 in all other cases.

Two separate paths branch out from the junction: one is taken by the 1-
valued spider and contains mechanism SW1→0 that can change the spi-
der value to 0, the other is taken by the 0-valued spider and contains
mechanism SW0→1 that can change the spider value to 1. When a spider
moves through a switch mechanism, its value is switched and its back-
ward route is cut off. We explain how mechanism SW1→0 works with a
1-valued spider as an example; mechanism SW0→1 works analogously.

Mechanism SW1→0 is formed by three neighboring functional sites
along the horizontal direction: s1→0, sI

r , sI I
r . We use a staging transition

diagram in Figure 5 to describe how mechanism SW1→0 changes a 1-
valued spider to be 0, and cuts off the backward route of the spider. A
stage transition shows the change of the spider’s location, value or the
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Fig. 4. The computation time distributions for the AND gate and the OR gate under four
possible input assignments. Each curve in one gate represents a time distribution under
one assignment. The vertical line indicates the mean value of computation time under
one assignment in the simulation. The standard deviation for each curve is shown in the
legend.

site states. At stage (1), all sites are “on” initially. Site s1→0 can trap a
spider, and contains a “switching to 0” signal that will be sent to its left
site when a spider attaches to it. Therefore, when a 1-valued spider at-
taches to s1→0, it is trapped and receives the signal changing its value to
0, causing a transition to stage (2). At stage (2), since the limb trapped
at site s1→0 cannot move back, the spider could only move forward by
attaching to site sI

r that traps the spider and sends out a “turning off”
signal to its left site. When site s1→0 receives that signal and turns itself
“off”, we get to stage (3). At stage (3), the limb trapped on sI

r cannot
move back, the spider could only move forward by attaching to site sI I

r
that sends a “turning off” signal to its left site. When sI

r receives that sig-
nal and turns itself “off”, we get to stage (4). At stage (4), the limb on sI

r
can transit to a normal site on the right of sI I

r , while the limb on sI I
r cannot

move back to s1→0 which is “off”. The spider could only move forward
to get to stage (5). At stage (5), sites sI

r and sI I
r are “off”, the spider can-

not walk back. When a spider goes through these 5 stages, its value is
switched and its backward route is cut off. The mechanism SW0→1 com-
prising s0→1, sI

r , sI I
r follows similar staging transitions, the only difference

being that a 0-valued spider becomes 1 in the stage transition (1) to (2).
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Fig. 5. The layout of gate NOT is shown in the figure. The function of mechanism SW1→0
is to switch a spider’s value from 1 to 0 and cuts off its backward route. We show how
mechanism SW1→0 works in a staging transition diagram, where the spider value is
expressed as X and the state of each functional site is shown above it.

Figure 6 shows the computation time distributions for the NOT gate.
The distribution curves for the two input assignments are long-tailed
and alike, which is due to the symmetric path design for the 1-valued
spider and the 0-valued spider.

3.4 Gate Cascades

To construct a large logic circuit, we need to cascade logic gates of the
three kinds defined in Section 3.2 and Section 3.3. A wire w connecting
an upstream gate and a downstream gate is composed of continuous
normal sites sl . To ensure that the spider that reaches the output location
exits the upstream gate and never goes back to it, we place two addi-
tional sites sI

r and sI I
r after site st on the output location, forming an exit

mechanism which cuts off the backward route of a spider that moves
through it.

The mechanism exit follows similar staging transitions to mechanism
SW1→0 shown in Figure 5. It consists of three neighboring functional sites
along the horizontal direction: st, sI

r , sI I
r . We explained the functionality

of site sI
r and sI I

r at the end of Section 3.3. Site st is designed to trap the
spider. Therefore, a staging transition diagram for mechanism exit is sim-
ilar to the one shown in Figure 5, with the only difference that the spider
value is unchanged throughout the five stages. For a downstream gate
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Fig. 6. The computation time distributions for the NOT gate under two possible input
assignments.

with two inputs, its two input spiders may arrive at different moments.
Computation of the downstream gate begins when either input spider
enters the gate, and the asynchronous arrival of input spiders will not
influence the computation accuracy of the gate.

Figure 7 illustrates a simple logic circuit implemented by cascading
two NOT gates as the inputs to an AND gate. The output location of each
NOT gate is connected to an input location of the AND gate via the exit
mechanism. Spider X and spider Y start to move in the two NOT gates
concurrently. When the two spiders move out of the NOT gate, their
backward routes are cut off due to the exit mechanisms, and they have
their values changed to ¬X and ¬Y. When either spider enters the AND
gate, gate computation begins, yielding the result ¬X ∧ ¬Y eventually.
The computation time of this logic circuit is shown in Figure 8. In all
simulation runs, the output spider produced the correct output value.

3.5 Complexity Analysis

In a single gate, the computation time tgate is the traversal time of the spi-
der that reaches the output location. Since the spider moves on the track
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Fig. 7. A logic circuit: (¬X ∧ ¬Y). The input locations of each gate are highlighted in
grey. Spiders X and Y exit the NOT gate, becoming spider ¬X and ¬Y after passing
through the exit mechanisms. The AND gate computation begins whenever a spider
enters the AND gate. The spider reaching the output location of the AND gate represents
the computation result ¬X ∧ ¬Y.

stochastically, the computation time tgate is a random variable following
a long-tailed distribution, as shown in Figure 4 and Figure 6.

When a spider leaves a gate or enters a gate, its backward route is
cut off due to the functionality of the exit mechanism, so we can use the
computation time of a single gate tgate to estimate the computation time
t of a circuit. For any n-variable boolean function, we can transform it
into 3-CNF, which is a conjunction of m clauses, each a disjunction of
at most three literals. Since our design allows parallel evaluation, for a
clause mi = (li

1 ∨ li
2 ∨ li

3), the computation time of mi is

tmi ≤ 2× (tOR + tNOT) = O(1).

Since each clause needs time tmi , to evaluate m clauses in parallel, we
conduct log m AND gate computations that cost tAND × log m, and in
total use time

t = tAND × log m + tmi = O(log m).

For any boolean function in 3-CNF with m clauses, we use at most 3m
spiders to represent the literals. For each clause, we need at most three
NOT gates and two OR gates if all the literals are the negation of a vari-
able, which is a constant number. For m clauses, we need m − 1 AND
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14 Mo et al.

gates. Therefore, the total space complexity is O(m). Hence, our circuit
designs are scalable because circuit size in our design scales linearly with
formula size, and evaluation time is logarithmic in the formula size.

4 Formal Definition of the Model

The active molecular spider system is modeled as a continuous-time
Markov process where the state transitions depend on the interactions
between the molecular spiders and the sites on the track. We first de-
fine the site types and transition rules of alterable sites, and then give a
formal definition of the model.

4.1 Site Types and Transition Rules

Sites are categorized into normal sites and functional sites. A normal site
s ∈ Snorm = {sl , s0, s1} has no state. Site sl binds to the spider’s leg. Sites
s0 and s1 bind to the spider’s arm if it has type 0 or 1, respectively.

A functional site s ∈ S f un has a state of “on”, “off”, or “trapped”. The
site state transition diagram is:

on

��
trapped // off

cc

A spider limb can only attach to an “on”-state site. An “off”-state site is
non-alterable. The limb trapped on a “trapped”-state site cannot leave
the site by itself. Whether a site can trap a spider is indicated by TR ∈
{0, 1}: a site with TR = 1 will trap a spider when a limb attaches to it.
A functional site may change the spider’s value, or the state of another
site, by sending out a signal to the spider or another site. We define

signal = (val, d) or null, where d ∈ Z2 and val ∈ {on, off, trapped, 1, 0}.
(1)

Suppose a functional site is located at (x, y). If it holds a signal = (val, d =
(dx, dy)) then it sends the signal to the location (x + dx, y + dy), setting
the state of the site located there, or the spider’s value, to val. When
d = (0, 0), the val field of the signal is either 1 or 0, which is sent to the
spider, setting the spider’s value to 1 or 0.

Therefore, we can define a functional site s ∈ S f un as

s = (state, TR, signal). (2)
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Table 1. Definition of different functional sites used in the circuit construction and the
transition rules applied to them. Suppose the location of the site is (x, y), define (x′, y′) =
(x + dx, y + dy).

Transition Rules
functional site updated site other changes
st = (on, 1, null) s′t = (trapped, 1, null)
s1→0 = (on, 1, (0, (0, 0))) s′1→0 = (trapped, 1, null) A = 0
s0→1 = (on, 1, (1, (0, 0))) s′0→1 = (trapped, 1, null) A = 1
sI

r = (on, 1, (off, d)) sI ′
r = (trapped, 1, null) site at (x′, y′) becomes off

sI I
r = (on, 0, (off, d)) sI I ′

r = (on, 0, null) = sl site at (x′, y′) becomes off
su = (on, 0, (on, d)) s′u = (on, 0, null) = sl site at (x′, y′) becomes on
sp = (off, 0, null) s′p = (on, 0, null) = sl

when a “turning-on” signal is received

The signal held in a site is sent out once a spider limb attaches to the
site. When a signal is sent out, the site has no signal remaining, which
we express as s = (state, TR, null). A functional site s = (on, null) is
equivalent to a normal site, which is non-alterable. Once a signal is re-
ceived by a site or a spider, the site state or the spider’s value is changed
according to the signal.

In the logic circuit construction, we use two functional sites su and
sp in the AND gate and OR gate, and we design a set of functional sites
that form different mechanisms in the NOT gate and the gate cascades.
Table 1 gives the definitions of these functional sites and the transition
rules applied to them. A functional site s transits to site s′ in the second
column, either by receiving a signal or being attached by a spider limb. If
s holds a signal, it causes other changes in the last column. In table 1, the
updated site s′ in the second column is either a normal site or a trapped
site. According to the site state transition diagram, a trapped site can
only transit to a “off”-state site that is non-alterable by itself. Since no
signals are designed to turn on these “off”-state sites transited from the
trapped sites, these “off”-state sites are non-alterable finally. Therefore,
all the functional sites in Table 1 are alterable initially and become non-
alterable finally. The functional sites used in our design are

{st, s1→0, s0→1, sI
r , sI I

r , su, sp},
where each site s among them includes its site transitions under the tran-
sition rules described in Table 1. The set of site types is S = Snorm ∪ S f un.

A mechanism is a set of neighboring mechanism sites along the same
direction. We design three different mechanisms used in the logic circuit
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construction. The switch mechanism SW1→0 (SW0 → 1) contains sites
s1→0(s0→1), sI

r , sI I
r , where site sI

r , sI I
r contains the signal of (off, (−1, 0))

which can block its left site. When a spider moves over the switch mech-
anism, its value is flipped, and its backward route is cut off. The exit
mechanism contains sites st, sI

r , sI I
r . When a spider moves over this mech-

anism, its backward route is cut off.
When a spider limb leaves a site, this limb can reach 4 sites geomet-

rically (shown in figure 1). Since sites have different types, wether a site
is available for a limb of a spider depends on the spider value and the
site types. Given a spider with value A and a site, algorithm check sum-
marizes how to tell if the site is available.

Algorithm 1 Algorithm check tells if a given site is available.
• if the site is occupied by another spider, it is not available.
• else:

1. if the site is a normal site:
(a) if the site is sl , it is available;
(b) if the site is s1 and A = 1, it is available;
(c) if the site is s0 and A = 0, it is available;

2. else if the site is a functional site:
(a) if the site is s1→0 and A = 1, it is available;
(b) if the site is s0→1 and A = 0, it is available;
(c) if the site is “on”-state, it is available;

3. else, the site is not available.

Using Algorithm 1, we examine every site among the 4 sites shown
in figure 1, putting those available into a set AV .

4.2 Model Definition

The active multi-spider system with normal sites and alterable sites can
be modeled as a continuous-time Markov process. We define the state of
the model as

X = (S1, S2, . . . , Sn, E), (3)

where Si = (Pi, Ai) (1 ≤ i ≤ n) describes the state of the i-th spi-
der. Set Pi = (pi

a, pi
b) contains attachment points for the i-th spider, and

Ai ∈ {0, 1} represents the Boolean value of the spider. The lattice config-
uration E : Z2 → S shows the layout of different sites, where S is the set
of site types. Normal sites can be regarded as having state “on”, TR = 0
and no signal, so we can redefine the lattice configuration as
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E : Z2 → {on, off, trapped} × {1, 0} × S,

where S represents the set of signals.
Given a model state X = (S1, S2, . . . , Sn, E) at time t, if a limb leaves

an attachment point p ∈ Pi ∈ Si, we use the algorithm check to obtain
a set of available sites AV . At time t + δ, this limb transits to p′ ∈ AV ,
changing the set of attachment points to P′i = Pi − {p} ∪ {p′}. We use
the transition rules to update Ai, so we have S′i = (P′i , A′i). The transition
rules also updates E, thus the new state is

X′ = (S1, S2, . . . , Si−1, S′i , Si+1, . . . , Sn, E′).

5 Conclusions and Discussions

Using an active multi-spider model with spider cooperation and local-
ized signal transmission, we have implemented the basic logic gates
(AND, OR, NOT). We have shown how to implement gate cascades, in
which each upstream gate Gu is connected to a downstream gate Gd us-
ing the exit mechanism. We use O(1) types of spiders and sites. To eval-
uate an n-variable Boolean function that is in 3-CNF with m clauses, the
evaluation time is O(log m) and the size of the circuit is O(m). There-
fore, our design supports scalable computation and ensures spatial lo-
cality. Molecular circuits with spatial locality overcome the challenges of
computation speed-up and sequence reuse in molecular computing in a
well-mixed environment, but there are still other issues. Compared with
previous work [2, 3, 5], our design better addresses the following issues:

Geometrical layout. Molecular circuits with spatial locality arrange
different computing components on a 2D plane where the distance be-
tween different components should be set carefully to avoid interference
across components. Reducing the number of gates used in a circuit can
ease the geometrical layout problem. Our design implements a NOT
gate to avoid dual-rail logic conversion used in previous work [2, 5],
which simplifies the circuit and its layout. Compared with the circuit [3]
in a form of BDD where the layout of different branching paths requires
appropriate angles and lengths, our design only considers connections
between gates because each gate has a fixed layout.

Data encoding. In previous work, variable representation is encoded
into the circuit [2, 3, 5], so each variable corresponds to a distinct se-
quence. This complicates sequence design if the circuit has a large num-
ber of variables. Our design separates variable representation from cir-
cuit design, only using two types of spiders placed at different input
locations to represent all variables.
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Circuit reusability. Tethered circuits [2,5] use irreversible local signal
transmission to implement logic computation and value propagation, so
the circuit is not reusable. The circuit [3] adds external strands to unblock
a path for an evaluating walker. This procedure irreversibly changes the
circuit configuration, thus the circuit is not reusable. In our design, irre-
versible local signal transmission is used to control the spiders’ behavior
at a few locations in the circuit, which only occupy a small portion of
computation. Since non-alterable sites form the majority of the circuit,
most parts of the circuit are reusable.

We lack an experimental implementation of our designs, thus here
we use a simulator that simulates the circuit at the site level, assuming
spiders have equal transition rates to all sites. We are working on an im-
plementation where normal sites are short DNA strands so that molec-
ular spiders can attach to or detach from the normal sites freely, and
functional sites transmit signals to neighboring sites via strand displace-
ment. For example, we can encode a signal in the loop (inactive part) of
a hairpin structure. Once a spider attaches to the hairpin structure, the
loop is opened so that the exposed domain can react with other neigh-
boring sites, transmitting the signal encoded in the opened loop to other
neighboring sites. In the future, we will complete a plausible implemen-
tation and focus on a simulator that can better reflect how different sites
react with spiders according to that implementation.

Since spiders move bidirectionally on the track, we can use this fea-
ture to solve some interesting problems. For example, it may be possible
to construct a feedback loop that can be used to solve a SAT problem
automatically where the spider that does not satisfy the formula can go
back to switch its value. In the current model, molecular spiders can
probe, walk, and change their own states and the state of the environ-
ment. These behaviors of the molecular spiders can be extended for com-
plex intracellular tasks, e.g., we can use the molecular spiders to replace
natural motors. In the future, we will explore applications of our design,
as well as the possibility of implementing it in the laboratory.
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