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We study diffusive lattice gases with local injection of particles, namely we assume that whenever
the origin becomes empty, a new particle is immediately injected into the origin. We consider two
lattice gases: a symmetric simple exclusion process and random walkers. The interplay between
the injection events and the positions of the particles already present implies an effective collective
interaction even for the ostensibly non-interacting random walkers. We determine the average to-
tal number of particles entering into the initially empty system. We also compute the average total
number of distinct sites visited by all particles, and discuss the shape of the visited domain and the
statistics of visits.
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I. INTRODUCTION

Random walks on a lattice are a common abstrac-
tion for particle diffusion [1–3]. The symmetric exclu-
sion process (SEP) is a random walk of multiple parti-
cles subject to exclusion: two particles cannot simulta-
neously occupy the same site [4]. Many natural pro-
cesses, such as foraging [5], involve point sources of par-
ticles; the SEP with a localized source corresponds to
monomer-monomer catalysis and the voter model [6–8].
We study the SEP with an infinitely strong, unbounded
source: whenever the origin is clear, a new particle is
immediately injected. We also study the random walk
process (RW), in which multiple particles are not sub-
ject to exclusion, with analogous injection into the ori-
gin only whenever it is empty. Using a combination of
analytical results and extensive numerical simulations,
here we derive asymptotic expressions for the number
of particles in the system for all dimensions d. We derive
expressions for the number of distinct visited sites and
the total visit activity, which are of interest in models
of foraging and spreading [9–13]. In many cases these
quantities converge to their asymptotic behaviour ex-
ceedingly slowly, especially in experimentally relevant
dimensions d = 2, 3, therefore simulations should be
used to predict them in short-time applications. For
d = 2 the domain of visited sites, Figure 1, exhibits a
fractal-like boundary within an annulus surrounding a
compact disc; the relative thickness of the annulus de-
cays logarithmically.

We begin in Section II with a detailed description of
the symmetric exclusion process with a point source
(SEP), recapitulating previous results [14] (the number
of particles injected) and stating our new results (the
number of visited sites and the statistics of visits) along
with informal arguments. In Section III we introduce the
exclusion-free analogue (RW). More thorough deriva-
tions are given in Section IV for the number of visited

sites, and in Section V for the statistics of visits.

II. SYMMETRIC EXCLUSION PROCESS (SEP) WITH A
POINT SOURCE

A lattice gas of identical particles undergoing nearest-
neighbour symmetric hopping with the constraint that
each lattice site can be occupied by at most one parti-
cle at a time is a paradigmatic interacting particle sys-
tem, known as the symmetric exclusion process (SEP).
Despite its simplicity, the SEP, along with its asymmet-
ric cousin the ASEP (in which the hopping rates differ
depending on the direction), exhibits a surprisingly rich
set of dynamical behaviours. These lattice gases have
been extensively investigated [4, 15–20], particularly in
one dimension, the most tractable setting. The SEP and
ASEP have been applied to low-dimensional transport
of particles with hard-core interactions, e.g., to the mo-
tion of molecular motors along cytoskeletal fibres [21].
The spreading of very thin wetting films has been de-
scribed by a SEP-like model [22]; here the natural di-
mensionality of the substrate is d = 2 and the aver-
age injected mass has been computed for d ≤ 2 and
shown to compare favourably with experimental obser-
vations [23, 24]. We arrived at the present problem from
the question of target search [25] by a stream of catalytic
DNA walkers [26–30] released onto a substrate.

Here we analyse the SEP with a localized source on
the d-dimensional hypercubic lattice Zd. We set the to-
tal hopping rate to unity, so the hopping rate to each of
the 2d nearest-neighbour sites is equal to 1/2d. A hop-
ping event is allowed only when the chosen destina-
tion is empty. For the localized source, particles are in-
jected into the origin. The source is infinitely strong –
whenever a particle at the origin hops to a neighbour-
ing empty site, the origin is instantaneously reoccupied
by a fresh particle.

darko
Typewritten Text

darko
Text Box
reformatted from: P. L. Krapivsky and D. Stefanovic, Lattice gases with a point source. Journal of Statistical Mechanics: Theory and Experiment, P09003 (2014).



2

(a)

(b)

FIG. 1: (a) Snapshot of a single realization of the two-
dimensional SEP at time t = 105. Colour or grey scale indi-
cates first visit time, from dark blue (early) to light green (re-
cent). (b) A different view of the same SEP at time t = 106:
visited sites in black; current positions of the particles shown
as red dots. In yellow, centred at the origin, the largest in-
scribed disc (no unvisited sites inside); in blue, the smallest
circumscribed disc (no visited sites outside).

A. The SEP model

We formalize the system with the following rules. The
system is initially empty, so that at time t = 0+ only the
origin is occupied.

1. One particle, say at site x, is randomly chosen.

2. A nearest-neighbour site of x, say y, is randomly
chosen.

3. If y is empty, the particle hops from x to y; other-
wise it remains at x.

4. Time advances, t← t+ 1/N, where N is the current
number of particles in the system.

5. If the chosen particle moved from the origin, x =
0, a new particle is added at the origin: N ← N +
1.

6. Go back to step 1.

These rules, which also represent the core of our numer-
ical simulations, are illustrated in Figure 2.

B. Number of particles for the SEP

We first examine the number of injected particles. We
use the notation Nd(t) for the total number of particles
to emphasize the dependence on the spatial dimension
d. The mean 〈Nd(t)〉 grows [14] as

〈Nd(t)〉 '


√

8t/π d = 1
π t/ ln t d = 2
(2Wd)

−1 t d ≥ 3
(1)

Here Wd are the Watson integrals [31]

Wd =
∫ 2π

0
. . .
∫ 2π

0

1
Q(q)

d

∏
i=1

dqi
2π

(2)

where q = (q1, . . . , qd) and Q(q) = 2
d ∑1≤i≤d(1 −

cos qi). For the cubic lattice Z3, the Watson integral has
been expressed [32] via Euler’s gamma function W3 =√

6
64 π3 Γ

(
1
24

)
Γ
( 5

24
)

Γ
( 7

24
)

Γ
(

11
24

)
= 0.75819303 . . ..

Equation (1) shows that the critical dimension is 2, as
for d > 2 the growth law of 〈Nd〉 becomes universal,
namely linear in time. In two dimensions, the difference
from the higher-dimensional behaviour is logarithmic,
i.e., rather small. We also emphasize that the average
total number of injected particles is lattice-independent
when d ≤ 2. The explanation of this behaviour is sim-
ple: in one and two dimensions, the density varies on a
scale which grows with time, so that the lattice structure
is asymptotically irrelevant. For d ≥ 3, the results are
lattice-dependent.

Comparing with simulations,[43] Figure 3, in one di-
mension there is excellent agreement both for the

√
t de-

pendence on the time and for the amplitude:

〈N1(t)〉√
t

=

{√
8/π = 1.595769 . . . prediction
≈ 1.59586 simulations

(3)

In two dimensions, a more careful analysis (B) shows
that the convergence to the leading asymptotic given in
(1) is very slow:

〈N2〉 '
π t
ln t

[
1− γ + ln[ln(16

√
3− 8)]

ln t
+ . . .

]
(4)
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Choose a particle at random, say at site x

Start with an empty system, N=0 at t=0

Choose a nearest neighbour of x at random, say site y

Is y empty?

Particle hops from x to y

Time advances, t ! t + 1/N

Is the origin 

empty?

Add new particle at the origin, N ! N+1
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FIG. 2: (a) The rules of the SEP model with the localized
source. (b) Example of state transitions in the model for d = 2.
Top left: a possible configuration of the system after N = 16
particles have been injected. Particles are numbered 1–16 in
the order of arrival; the newest particle is at the origin. Top
right: if particle 11 at x = (2, 2) and then its nearest neighbour
site y = (2, 1) are randomly chosen, particle 11 hops to (2, 1).
Bottom left: if particle 7 at x = (−1,−1) and then its near-
est neighbour site y = (−2, 1) are randomly chosen, particle
7 hops to (−2, 1). If nearest neighbour site (0,−1) is chosen
instead, the particle does not hop because that site is occupied
by particle 6. Bottom right: if particle 16 at the origin is chosen,
and then its nearest neighbour site (1, 0) is chosen, the particle
hops there, and a new particle 17 is injected at the origin. Not
shown: if the wedged particle 9 is chosen, then regardless of
the choice of nearest neighbour, the transition is back into the
same configuration. Many other transitions are also possible.
Regardless of the transition chosen, time advances by 1/16.
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FIG. 3: Number of injected particles for the SEP: comparison of
results from numerical simulations with theoretical prediction
of asymptotic behaviour. (a) One dimension, from 5697 trajec-
tories to t = 108. (b) Two dimensions, from 6777 trajectories to
t = 106 and 178 to t = 107. (c) Three dimensions, from 6594
trajectories to t = 105 and 126 to t = 106.
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FIG. 4: Numerical simulations compared with theoretical pre-
dictions of asymptotic behaviour for the SEP in two dimen-
sions, d = 2. Each curve shows the ratio of the estimate of the
mean value of a quantity, from simulations (6777 trajectories to
t = 106 and 178 to t = 107), and its theoretical prediction, as a
function of time. The quantities are, in blue, the number of par-
ticles N2(t); in green, the number of unique visited sites V2(t);
and in red, the activity A2(t) (i.e., total number of site visits).
Note the scaling of the horizontal axis as 1/ln t. As t → ∞ (to-
wards the left edge of the plot), all curves approach 1, indicat-
ing agreement between theoretical predictions and numerical
simulations, even in the difficult-to-analyse case d = 2. Fig-
ures 3, 6,and 7 show details for d = 1, 2, 3, and Figures 8–11
show analogous results for the model without the exclusion
constraint.

where γ ≈ 0.5772 is Euler’s constant. The size of our
simulations, or indeed any feasible simulations, is in-
sufficient to extract this behaviour reliably (Figure 4). In
three dimensions, from (1),

〈N3(t)〉
t

=

{
(2W3)

−1 = 0.65946 . . . prediction
≈ 0.659 . . . simulations

(5)

Thus, in the absence of logarithms simulation results al-
most perfectly agree with theoretical predictions for the
asymptotic growth of the number of particles.

C. Number of visited sites for the SEP

We now consider the domain of visited sites. In two
dimensions, the visited domains in Z2, Figure 1, are
fractal-like but remarkably circular. Denote by R1, R2
the radius of the largest inscribed and the smallest cir-
cumscribed disc, respectively. Simulations, Figure 5,
suggest that R2

R1
∼ 1 + C

ln R1
. It would be interesting to

explore the shape of the visited domain in detail, e.g.,
to explain this apparent logarithmic decay of the rela-
tive width of the annulus, but here we limit ourselves to
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FIG. 5: The domain of visited sites, d = 2: Ratio of the smallest
circumscribed disc radius to the largest inscribed disc radius,
as a function of the latter, from numerical simulations (165 tra-
jectories to t = 106 and 60 to t = 107). Data suggest that
R2
R1
∼ 1 + C

ln R1
, i.e., the relative width of the annulus within

which exploration of new territory is occurring decays loga-
rithmically.

its volume, the total number of sites each of which has
been visited at least once by at least one particle. We
will show that the average total number of distinct vis-
ited sites 〈Vd〉 grows as

〈Vd(t)〉 ∝

{
td/2(ln t)d/2 d = 1, 2, 3
t2 d ≥ 4

(6)

These growth laws indicate that dc = 4 plays the role of
the upper critical dimension.

We now provide heuristic arguments in favour of (6).
To appreciate the possible time dependence in (6), keep
in mind two laws – the growth law (1) for the average
total number of particles, and the well-known growth
law [2]

〈Vd(t)〉 ∼


√

t d = 1
t/ ln t d = 2
t d > 2

(7)

for the average total number of distinct sited visited by
a single random walker.

There are two obvious lower bounds, 〈Vd〉 > 〈Vd〉 and
〈Vd〉 > 〈Nd〉, which are essentially identical. There is
also a simple upper bound 〈Vd〉 < 〈Vd〉〈Nd〉 (because
not all particles are introduced at time zero and more-
over the same site can be visited by different particles).
Using these bounds and ignoring numerical factors we
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get
√

t < 〈V1(t)〉 < t

t(ln t)−1 < 〈V2(t)〉 < t2(ln t)−2

t < 〈Vd(t)〉 < t2, d > 2

(8)

To obtain stronger heuristic predictions we note that
during the time interval (0, t) almost all particles in the
system never go more than

√
t away from the origin.

This lends support to 〈Vd(t)〉 ∼ td/2. This growth law
can hold only up to d = 4, as manifested by the upper
bound 〈Vd(t)〉 < t2. These arguments suggest that the
algebraic dependence on time is

〈Vd(t)〉 ∝

{
td/2 d = 1, 2, 3
t2 d ≥ 4

(9)

as in (6), leaving the possibility of logarithmic correc-
tions. Theoretical analyses in dimensions d = 1, 2, 3
(Section IV) lead to the following specific forms (sup-
ported by extensive simulations, Figure 6):

〈Vd(t)〉 '



2
√

t
∫ ∞

0
dη√

2η

{
1− exp

[
−
√

8t/π
η eη

]}
d = 1

πt ln t
[
1− 4 ln(ln t)

ln t + γ
ln t

]
d = 2

4π
9
√

3
(t ln T)3/2

(
1− 4 ln

[ 1
2 ln T

]
−2γ

ln T

)3/2

,

where T = t
[

ln(2W3)
2W3(2W3−1)

]2 ( 3
2π

)3 d = 3
(10)

D. Number of visits for the SEP

Finally, we consider the total number of arrivals at sites.
If the same particle leaves a site and then returns, a re-
turn is counted as a new arrival. Denote by Sm(t) the
total number of sites which have been visited exactly m
times during the time interval (0, t). The zeroth moment
of the distribution Sm(t)

∑
m≥1

Sm(t) = V(t) (11)

is merely the total number of visited sites. The first mo-
ment of the distribution Sm(t) is also interesting: it char-
acterizes the integrated “activity” of the process, i.e., the
total number of arrivals:

∑
m≥1

mSm(t) = A(t) (12)

A detailed derivation (Section V) shows that

〈Ad〉 '


4(2−

√
2)

3
√

π
t3/2 d = 1

π
2 ln t t2 d = 2
(4Wd)

−1 t2 d ≥ 3

(13)

as confirmed numerically, Figure 7.
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FIG. 6: Number of visited sites for the SEP: comparison of re-
sults from numerical simulations with theoretical prediction of
asymptotic behaviour. (a) One dimension, from 5697 trajecto-
ries to t = 108. (b) Two dimensions, from 6777 trajectories to
t = 106 and 178 to t = 107. (c) Three dimensions, from 6594
trajectories to t = 105 and 126 to t = 106.



6

0 0.05 0.1
1
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

〈A
S

E
P

1
(t

)〉
t3
/

2

4(2−
√

2)
3
√

π
= 0.440659475057 · · ·

0.44068 at t = 108

∞103 102 101
t

(a)

0.0 0.1 0.2 0.3 0.4
1

ln t

0

0.5

1.0

1.5

2.0

〈A
S

E
P

2
(t

)〉
t2 ln

t

π
2

∞ 107 104 102 101
t

(b)

0.0 0.1 0.2 0.3 0.4
1

ln t

0

0.1

0.2

0.3

0.4

0.5

〈A
S

E
P

3
(t

)〉
t2

1
4W3

∞ 106 104 102 101
t

(c)

FIG. 7: Activity (i.e., total number of site visits) for the SEP:
comparison of results from numerical simulations with theo-
retical prediction of asymptotic behaviour. (a) One dimension,
from 1649 trajectories to t = 108. (b) Two dimensions, from
6777 trajectories to t = 106 and 178 to t = 107. (c) Three di-
mensions, from 6594 trajectories to t = 105 and 126 to t = 106.

III. RANDOM WALKERS (RW) WITH A POINT
SOURCE

In analysing the SEP, we found it convenient to study
in parallel another model, RW, which is obtained by
eliminating the constraint of mutual exclusion of par-
ticles, i.e., a model of quasi-independent random walk-
ers with a dependence arising only from the localized
source. That model recalls N independent walkers re-
leased at once at the origin [9–13], but it is simpler, be-
ing free of the parameter N. The detailed mathematical
development for the asymptotic behaviour of the quan-
tities N(t), V(t), and A(t) given in the following is in
some instances (N(t), V(t)) easier to carry out first for
the SEP, in others (A(t)) for the RW. Our mathematical
analysis was supported throughout by numerical simu-
lations.

A. The RW model

The RW model consists of particles undergoing
nearest-neighbour symmetric random walks. Similarly
to the case of the SEP we assume that a new random
walker is immediately deposited at the origin once it be-
comes empty. Multiple occupancy, however, is allowed.
Despite the lack of direct interaction between RWs, there
is an implicit collective interaction implied by the input
rule: a new RW can be added only when the origin be-
comes empty, and this depends on all RWs which were
present before the deposition event. This makes the pro-
cess involving RWs non-trivial, and certain features are
simpler to compute for the SEP than for the RWs. This
can be appreciated by considering the density at the ori-
gin. In the case of the SEP, n0 ≡ 1 since there is always
one particle at the origin. For RWs, the number of parti-
cles at the origin is a random variable, so its full descrip-
tion is provided by a probability distribution

Pk(t) := Prob[n0(t) = k] (14)

For d = 1 and d = 2, the probability distribution (14)
continues to evolve and, e.g., the average occupancy of
the origin, 〈n0(t)〉 = ∑k≥1 kPk(t), grows indefinitely, al-
beit anomalously slowly, see Eq. (17). In higher dimen-
sions, d ≥ 3, the probability distribution (14) becomes
stationary in the large time limit.

A different version of the model where a large but
fixed number of RWs is simultaneously released at a sin-
gle point has been studied in Refs. [9, 11, 12]. This
model has been further analysed and generalized in
subsequent studies, see e.g., Refs. [33–36] and references
therein. In our setting, the number of RWs grows with
time, but one can still adopt the methods of Refs. [9, 11,
12] to investigate, e.g., the average total number of dis-
tinct sites visited by RWs.

The RW model is formalized as follows:



7

1. One RW, say at site x, is randomly chosen, and it
hops to a randomly chosen neighbouring site of x.

2. Time advances, t← t+ 1/N, where N is the current
number of RWs in the system.

3. If the chosen RW was at the origin and it was the
only particle at the origin, a new RW is added at
the origin: N ← N + 1.

4. Go back to step 1.

B. Number of particles for the RW model

Our analytical approach is non-rigorous, but emerg-
ing results appear to be asymptotically exact. We em-
phasize that, in our set-up, the addition of the new RW
at the origin is ultimately related to the previous his-
tory of the process, so there is an effective interaction.
The analysis is more difficult than in the case of the
SEP where the number of particles at the origin is fixed,
n0 ≡ 1.

If the average density 〈n0〉 at the origin were known,
then

〈NRW
d 〉 ' 〈n0〉〈Nd〉 (15)

with 〈Nd〉 corresponding to the SEP, where 〈n0〉 ≡ 1,
and hence given by (1). Let us assume that 〈n0〉 is a
slowly varying function of time; we will confirm this as-
sumption a posteriori. Thus the distribution (14) is es-
sentially an equilibrium distribution with average den-
sity 〈n0〉. It proves convenient to consider the case of
finite flux, even small flux F � 1, when the additions
of new particles are rare and the distribution (14) is the
Poisson distribution. In that case we have P(0, t) =

e−〈n0〉, and hence the average total number of particles
increases according to the rate equation

d
dt
〈NRW

d 〉 = Fe−〈n0〉 (16)

Using (15) and (1) we get d
dt 〈N

RW
1 〉 ' 〈n0〉/

√
πt/2 in

one dimension. Substituting this into (16) we obtain
〈n0〉 ' 1

2 ln t. The leading asymptotic does not depend
on the flux, and hence we anticipate that the prediction
for 〈n0〉 remains correct for large flux, and in the most
interesting case of the infinite flux (into the empty ori-
gin). A more accurate derivation for the case of the infi-
nite flux (Section III C) confirms the 〈n0〉 ' 1

2 ln t asymp-
totic.

In two dimensions we similarly find

d
dt
〈NRW

2 〉 ' 〈n0〉
π

ln t
∼ e−〈n0〉

from which 〈n0〉 ' ln(ln t).
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FIG. 8: Origin occupancy for RWs: comparison of results from
numerical simulations with theoretical prediction of asymp-
totic behaviour. (a) One dimension, from 3315 trajectories to
t = 108. (b) Two dimensions, from 9008 trajectories to t = 106

and 74 to t = 107. (c) Three dimensions, from 6689 trajectories
to t = 105 and 261 to t = 106.
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When d ≥ 3, the average density at the origin ap-
proaches 2Wd[2Wd − 1]−1 ln(2Wd), as we show in Sec-
tion III C. Thus the average density at the origin reads

〈n0〉 '


1
2 ln t d = 1
ln(ln t) d = 2
2Wd[2Wd − 1]−1 ln(2Wd) d ≥ 3

(17)

For the cubic lattice, 〈n0〉 = 1.222567616 . . .; see Figure 8.
The average total number of particles grows as

〈Nd〉 '


√

2t/π ln t d = 1
πt ln ln t

ln t d = 2
[2Wd − 1]−1 ln(2Wd) t d ≥ 3

(18)

Hereinafter we write 〈Nd〉 instead of 〈NRW
d 〉 when there

is no danger of misinterpretation.
In one and two dimensions, the sub-leading terms are

only formally negligible; in practice they are almost as
large as the leading terms. Indeed, repeating the above
analysis and trying to keep sub-leading terms, one gets

〈n0〉 = 1
2 ln t + C2 ln ln t + . . . (19)

in one dimension. The amplitude C2 is very difficult
to compute, and even if we were able to compute it,
the following sub-sub-leading term which is not dis-
played in (19) will involve an even nastier repeated loga-
rithm: ln ln ln t. Ignoring these difficult-to-compute cor-
rections, we get surprisingly good agreement:

〈N1〉√
t ln t

=

{√
2/π = 0.79788 . . . prediction
≈ 0.77 simulations

(20)

Similarly in two dimensions

〈n0〉 = ln ln t + C3 ln ln ln t + . . . (21)

with unknown amplitude C3. The appearance of re-
peated logarithms makes it doubtful that one can con-
firm heuristic predictions for the leading terms.

In three dimensions, the linear growth with time is in
excellent agreement with simulation results. As for the
amplitude, the theoretical prediction is

〈N3〉
t

=
ln(2W3)

2W3 − 1
= 0.806237705 . . . (22)

Numerically the amplitude is approximately 0.81; see
Figure 9.

C. Density distribution at the origin

The probability distribution (14) describing RWs at
the origin satisfies

dPk
dt

= (k + 1)Pk+1 − (k + µ)Pk + µPk−1 (23)
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FIG. 9: Number of injected particles for RWs: comparison of
results from numerical simulations with theoretical prediction
of asymptotic behaviour. (a) One dimension, from 3315 trajec-
tories to t = 108. (b) Two dimensions, from 9008 trajectories
to t = 106 and 74 to t = 107. (c) Three dimensions, from 6689
trajectories to t = 105 and 261 to t = 106.
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for k ≥ 2 and

dP1

dt
= 2P2 − µP1 (24)

Here µ is the average density on the sites neighbour-
ing the origin. In the long time limit we can neglect
the terms on the left-hand side of Eqs. (23)–(24). This
is obvious when d ≥ 3, since in this case the probability
distribution reaches a stationary state. When d = 1 or
d = 2, the left-hand sides can be ignored in the realm
of a quasi-stationary approximation; one can make such
an assumption, find a solution, and justify the quasi-
stationary approximation a posteriori.

Solving the stationary version of (24) and then the fol-
lowing equations (23) we find Pk = P1 µk−1/k! and fix
P1 through the normalization ∑k≥1 Pk = 1 to yield

Pk =
µk

k!
1

eµ − 1
(25)

For d ≥ 3, we have

d
dt
〈Nd〉 = P1 =

µ

eµ − 1
(26)

Using (25) we find that the average density at the origin

〈n0〉 = ∑
k≥1

kPk = µ
eµ

eµ − 1
(27)

Recall that n0/µ = 2Wd/(2Wd − 1) in the case of the
SEP, see Ref. [6]. The ratio is the same in the case of RWs
(as the governing equations for the average densities are
identical). Therefore (27) gives

2Wd
2Wd − 1

=
eµ

eµ − 1
(28)

from which µ = ln(2Wd). Substituting this into (27) we
establish the announced result (17).

For d = 1 and d = 2, the average density at the ori-
gin 〈n0〉 and the average density µ on the sites neigh-
bouring the origin both diverge in the long time limit,
and asymptotically 〈n0〉 ' µ due to (27). Hence (26)
becomes

d
dt
〈Nd〉 = 〈n0〉 e−〈n0〉 (29)

in the leading order. This is a more precise equation than
(16), yet it yields the same leading asymptotic.

IV. THE VOLUME OF THE DOMAIN OF VISITED SITES

For RWs, we shall present theoretical evidence in
favour of the growth laws (6) and show that in the phys-
ically relevant dimensions the amplitudes read

C1 = 2, C2 = π, C3 =
4π

9
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3
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FIG. 10: Number of visited sites for RWs: comparison of re-
sults from numerical simulations with theoretical prediction
of asymptotic behaviour. (a) One dimension, from 3315 trajec-
tories to t = 108. (b) Two dimensions, from 9008 trajectories
to t = 106 and 74 to t = 107. (c) Three dimensions, from 6689
trajectories to t = 105 and 261 to t = 106.
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Our simulations, Figures 6 and 10, indicate that the
growth laws (6) apply both to the SEP and RWs. The am-
plitudes Cd observed in simulations are larger for RWs
than for the SEP. We believe that the amplitudes are the
same in the physically relevant dimensions and the dis-
crepancy is caused by large sub-leading corrections. In
Section IV A we show that C1 = 2 for both the SEP and
RWs; we also estimate the ratio of effective amplitudes
and show that it exhibits an anomalously slow conver-
gence to unity:

CRW
1

CSEP
1
− 1 '

ln
( 1

2 ln t
)

ln t
(31)

In two dimensions, we shall argue [cf. (59) and (60)] that

CRW
2

CSEP
2
− 1 ' ln(ln(ln t))

ln t

We have not computed the amplitudes in higher than
three dimensions. Intuitively, one anticipates that for
d ≥ 4 the amplitudes Cd remain larger for RWs than
for the SEP even in the t→ ∞ limit.

A. The volume of the domain of visited sites: one
dimension

In one dimension, it suffices to study the one-sided
problem. We wish to compute the probability Π(L, t)
that the particles never went beyond distance L during
the time interval (0, t). To this end we put an artificial
boundary at x = L. Mathematically, we must solve the
diffusion equation

∂ρ

∂t
=

1
2

∂2ρ

∂x2 (32)

on the interval 0 ≤ x ≤ L. The initial condition is

ρ(x, t = 0) = 0 (33)

and the absorbing boundary condition

ρ(x = L, t) = 0 (34)

For the SEP, there is another boundary condition

ρ(x = 0, t) = 1 (35)

modelling the source. The probability Π(L, t) is then

Π(L, t) = exp
[∫ t

0
dT

∂ρ(L, T)
∂x

]
(36)

The probability that the distance is exactly L is given by
∂Π
∂L , and the average distance

〈L〉 =
∫ ∞

0
dL L

∂Π
∂L

=
∫ ∞

0
dL [1−Π(L, t)] (37)

The main contribution is gathered in the region

L�
√

t (38)

We assume this to hold and justify a posteriori. Using
(38) we can simplify the problem, namely we can con-
sider (32) on the real line −∞ < x < ∞ subject to the
initial condition

ρ(x, t = 0) =


2 x < 0
0 0 < x < 2L
−2 x > 2L

(39)

Then the absorbing boundary condition (34) is obeyed
due to symmetry, while the boundary condition (35) is
valid thanks to (38). Solving (32) subject to (39) yields

ρ(x, T) =

√
2

πT

[∫ ∞

0
dy e−

(x+y)2
2T −

∫ ∞

2L
dy e−

(y−x)2
2T

]
from which

∂ρ(x = L, T)
∂x

= −
√

8
πT

exp
(
− L2

2T

)
(40)

and therefore

Π(L, t) = exp

[
−
∫ t

0
dT

√
8

πT
exp

(
− L2

2T

)]
(41)

Writing

T = tτ, L =
√

2tη (42)

we recast (41) into

Π(L, t) = exp

[
−
√

8t
π

∫ 1

0

dτ√
τ

e−η/τ

]

= exp

[
−
√

8t
π

e−η

η

]
(43)

where the second line is the leading asymptotic which
applies when η � 1. Substituting (42)–(43) into (37) we
compute 〈L〉 and determine 〈V1〉 = 2〈L〉+ 1

〈V1〉 = 2
√

t
∫ ∞

0

dη√
2η

{
1− exp

[
−
√

8t/π

η eη

]}
(44)

In the large time limit, the integral in (44) approaches√
2ζ, where ζ is a root of

ζ eζ =
√

8t/π (45)

Thus

〈V1〉 ' 2
√

2ζt (46)
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A root of Eq. (45) is known as the Lambert W function:
ζ = W(

√
8t/π). Asymptotically ζ ' 1

2 ln t, and there-
fore the average total number of visited sites grows as

〈V1〉 ' 2
√

t ln t (47)

in agreement with (6). [Equation (47) also gives the an-
nounced result (30) for the amplitude in one dimension.]
The asymptotic growth (47) is faster than

√
t. This jus-

tifies the assumption (38) which was used in the above
analysis.

It is difficult to confirm the amplitude C1 = 2 nu-
merically. The solution to Eq. (45) actually reads ζ '
1
2 ln t − ln(ln t) + . . ., so the approach to the leading
asymptotic growth is very slow. One can take (44) as
the theoretical prediction, compute the integral numer-
ically as a function of time, and compare the outcome
with simulations, Figure 3a.

For RWs, the density is obtained by multiplying the
density ρ(x, T) corresponding to the SEP problem by the
average density 1

2 ln T of RWs at the origin. Thus instead
of (41) we obtain

Π(L, t) = exp

[
−
∫ t

0
dT

√
2

πT
ln T exp

(
− L2

2T

)]
and instead of (43) we get

Π(L, t) = exp

[
− ln t

√
2t
π

e−η

η

]
from which

〈V1〉 = 2
√

t
∫ ∞

0

dη√
2η

{
1− exp

[
−
√

2t/π ln t
η eη

]}
(48)

The average number of visited sites is given by the
same formula (46) as before, where ζ is now a root of

ζ eζ =

√
2t
π

ln t (49)

which can be written through the Lambert W function:
ζ = W(

√
2t/π ln t). The leading asymptotic is the same

as in the case of the SEP, ζ ' 1
2 ln t, and therefore the

asymptotic growth is given by the same formula (47). A
better approximation is probably provided by (48); see
Figure 9a.

Let us try to estimate the discrepancy between the
growth of the average total number of visited sites in
the case of the SEP and RWs. We have

〈VRW
1 〉
〈V1〉

'

√
ζRW

ζ
' 1 +

ζRW − ζ

2ζ

where ζRW is the solution of (49). Dividing (49) by (45)
we obtain ζRW − ζ ' ln

( 1
2 ln t

)
, and therefore

〈VRW
1 〉
〈V1〉

− 1 '
ln
( 1

2 ln t
)

ln t
(50)

leading to the announced result (31) for the ratio of ef-
fective amplitudes.

B. The volume of the domain of visited sites: higher
dimensions

Consider first a single RW released at the origin at
time t = 0. The probability that it will visit site x during
the time interval (0, t) is

P(x, t) =
1

2Wd

∫ t

0

dτ

(4πDτ)d/2 exp
[
− x2

4Dτ

]
(51)

where x2 = |x|2 and D = (2d)−1 with our choice
of the hopping rates. Equation (51) is (asymptoti-
cally) exact in the long-time limit, t � 1, when we
can ignore the lattice structure and use the prediction
(4πDτ)−d/2e−x2/4Dτ from the continuous approach for
the probability to visit site x the last time at time τ before
t. We then multiply this probability by the persistence
probability that the RW does not return to x during the
time interval (τ, t) and take into account that this persis-
tence probability saturates at (2Wd)

−1 when d > 2.
When d > 2, the renormalized flux is finite, so for

computing the average number of visits it suffices to
assume that RWs are added at a constant rate Φd; ac-
cording to (18) the flux is Φd = [2Wd − 1]−1 ln(2Wd),
although the actual value will play a minor role. Thus
we release particles at times 0 = t1 < t2 < · · · <
tN = t with N = Φdt. The probability that none of
them will visit site x is given by ∏1≤j≤N(1 − Pj), so
the probability that at least one RW will visit site x is
1−∏1≤j≤N(1− Pj), and the average number of visited
sites is

〈Vd〉 =
∫

dx

[
1−

N

∏
j=1

(1− Pj)

]
(52)

Using (51) we get

PN−j =
1

2Wd

∫ tj/N

0

dτ

(4πDτ)d/2 exp
[
− x2

4Dτ

]
(53)

We will see that the dominant contribution to the inte-
gral in (52) is gathered in the region where ξ = x2

4Dt � 1.
In this region (53) simplifies to

PN−j =
(tj/N)2−d/2

2Wd(4πD)d/2 t−1ξ−1 exp
[
−ξ

N
j

]
(54)

We now write

ln
N

∏
j=1

(1− Pj) =
N

∑
j=1

ln(1− Pj) ' −
∫ N

1
dj Pj

Combining this with (54) and computing the asymptotic
behaviour of the integral we arrive at

〈Vd〉 =
Ωd(4Dt)δ

2

∫ ∞

0

dξ

ξ1−δ

(
1− exp

[
−Ψdt2−δ

ξ2eξ

])
(55)
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where Ωd = 2πδ/Γ(δ) is the volume of the (d − 1)-
dimensional unit sphere, Ψd = (2Wd)

−1Φd(δ/π)δ, and
we use the shorthand notation δ = d/2. The expres-
sion in the brackets in the integral in (55) is very close
to 1 when ξ < ξ∗ and it quickly vanishes when ξ > ξ∗,
where ξ∗ is determined from

ξ2
∗ eξ∗ = Ψd t2−δ (56)

The integral is
∫ ξ∗

0 dξ ξδ−1 = δ−1ξδ
∗ in the leading order.

From (56) we see that ξ∗ ' (2 − δ) ln t, so it diverges
when δ < 2, i.e. d < 4. The above analysis assumes that
the major contribution to the integrals is gathered when
ξ is large, and hence it is justified when d < 4. Since we
also assumed that d > 2, the results essentially apply
only to d = 3. Specializing to d = 3 we arrive at

〈V3〉 =
4π

9
√

3
(t ln T)d/2

(
1−

4 ln
[ 1

2 ln T
]
− 2γ

ln T

)3/2

(57)
Here instead of ξ∗ ' 1

2 ln t we used a more precise solu-
tion of (56) in three dimensions:

ξ∗ ' 1
2 ln T − 2 ln

[ 1
2 ln T

]
and a more precise expression, viz. 2

3 ξ3/2
∗ + γ

√
ξ∗ where

γ ≈ 0.5772 is the Euler constant, of the integral in (55).
We also inserted the constant Ψ2

3 into the time variable,
namely inside the logarithms the time variable is

T = t
[

ln(2W3)

2W3(2W3 − 1)

]2 ( 3
2π

)3

When d = 4, there is no sharp crossover, and 〈V4〉 ∼ t2

without logarithmic corrections. When d > 4, we have
〈Vd〉 ∼ t2 as we already explained above, namely be-
cause both the lower and upper bounds scale as t2.

The two-dimensional case is more subtle. We can
still use (51), but the persistence probability now van-
ishes: P2 ' 1/ ln t. It vanishes so slowly that we can
still use the same quantity 1/ ln t independently of the
time when the RW was released. We can also ignore the
fact that the flux slowly varies with time and merely use
N = πt ln ln t

ln t , see (18). Repeating the above analysis we
get

〈V2〉 = πt
∫ ∞

0
dξ

(
1− exp

[
− ln ln t
(ln t)2

t
ξ2 eξ

])
(58)

The crossover occurs around ξ∗ which is implicitly de-
termined by

ξ2
∗ eξ∗ = t

ln ln t
(ln t)2

from which ξ∗ ' ln t− 4 ln(ln t) + ln(ln(ln t)). The in-
tegral in (58) is ξ∗ in the leading order. A more precise
estimate of the integral is given by∫ ∞

0
dξ

(
1− exp

[
− ξ2
∗ eξ∗

ξ2 eξ

])
= ξ∗ + γ

The constant is Euler’s constant due to the identity

∫ ∞

0
dy
(
1− e−e−y − e−ey)

= γ

Therefore

〈V2〉 ' πt ln t
[

1− 4
ln(ln t)

ln t
+

ln(ln(ln t)) + γ

ln t

]
(59)

The growth laws (57) and (59) hint why it is so diffi-
cult to extract the true asymptotic behaviours from nu-
merics; see Figure 6.

In physically relevant dimensions, the main contribu-
tion to the total number of distinct visited sites is gath-
ered in the region ξ = x2

4Dt � 1 where the density is
small and the difference between RWs and the SEP is
negligible. Therefore the leading asymptotic behaviour
of 〈Vd〉 is expected to be the same when d = 1, 2, 3.
Above, this was analysed in more detail for the d = 1
case. In two dimensions, one anticipates that

〈VSEP
2 〉 = πt

∫ ∞

0
dξ

(
1− exp

[
− 1
(ln t)2

t
ξ2 eξ

])
leading to

〈VSEP
2 〉 ' πt ln t

[
1− 4

ln(ln t)
ln t

+
γ

ln t

]
(60)

In addition to the average number of visited sites,
one would like to compute the full probability distri-
bution. This is a much more challenging problem, es-
pecially when d > 1. Even in one dimension when
the visited domain is an interval, the problem is rather
challenging and it has been studied only in the situation
[9, 36] when the total number of random walks is fixed
and they were all simultaneously released. Even in this
situation, conditioning the trajectories of the RWs to a
given number of visited sites introduces effective cor-
relations between the walkers [36]. In our setting, when
the RWs are released throughout the evolution, there are
additional correlations which are built to allow injection
events, there are fluctuations in the total number of in-
jected RWs, etc. Let us make a bold assumption that
these additional effects do not change the behaviour in
the leading order. Specializing the results of Ref. [36] to
our setting yields the probability distribution

P(V1, t) =
√

ln t
t D(s), s =

√
ln t

t [V1 − 〈V1〉] (61)

with the scaled probability distribution given by

D(s) = 2e−sK0(2e−s/2)

where K0 is the modified Bessel function.
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V. STATISTICS OF VISITS TO SITES

Recall that the total number of visited sites V(t) ex-
hibits essentially the same behaviour for the SEP and for
RWs. In contrast, the activity is different for these two
models. Since RWs hop independently, the average ac-
tivity is easily expressed through the average total num-
ber of RWs:

〈Ad(t)〉 =
∫ t

0
dt′ 〈Nd(t′)〉 (62)

Combining this result with (18) we obtain (Figure 11)

〈Ad〉 '


√

8
9π t3/2 ln t d = 1

π
2

ln ln t
ln t t2 d = 2

ln(2Wd)
2(2Wd−1) t2 d ≥ 3

(63)

For the SEP, the average activity is

〈Ad(t)〉 =
∫ t

0
dt′
∫

dx [1− ρ(x, t′)]ρ(x, t′) (64)

where ρ(x, t) = 〈nx(t)〉 is the average density at site
x. Indeed, the activity increases by one whenever a
particle hops into site x. This happens with rate [1 −
ρ(x, t)]ρ(x, t) if the average density varies on scales large
in comparison with the lattice spacing, which is valid
in the large time limit when d = 1 and d = 2. Writ-
ing the local activity as [1− ρ(x, t)]ρ(x, t) also tacitly as-
sumes the validity of the mean-field approximation. In
one dimension, for instance, the exact result for the rate
is 〈[1− nx(t)][nx−1(t) + nx+1(t)]/2〉, so even if we can
write ρ(x, t) ' 〈nx+1(t)〉 ' 〈nx−1(t)〉 we do make the
mean-field assumption: 〈nxnx+1(t)〉 ' 〈nxnx−1(t)〉 '
ρ2(x, t).

In one dimension the average density is

ρ(x, t) = erfc
(
|x|√

2t

)
(65)

where erfc(u) ≡ 2√
π

∫ ∞
u dv e−v2

= 1− erf(u) is an error
function. Substituting (65) into

〈A1(t)〉 = 2
∫ t

0
dt′
∫ ∞

0
dx [1− ρ(x, t)]ρ(x, t)

we obtain

〈A1(t)〉 = a1t3/2, a1 =
4
√

2
3

∫ ∞

0
dX erf(X) erfc(X)

Computing the integral yields (
√

2− 1)/
√

π leading to

a1 =
4(2−

√
2)

3
√

π
= 0.440659475 . . . (66)

which is in excellent agreement with simulations.
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FIG. 11: Activity (i.e., total number of site visits) for RWs: com-
parison of results from numerical simulations with theoretical
prediction of asymptotic behaviour. (a) One dimension, from
1043 trajectories to t = 108. (b) Two dimensions, from 9008
trajectories to t = 106 and 74 to t = 107. (c) Three dimensions,
from 6689 trajectories to t = 105 and 261 to t = 106.
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In two dimensions, the average density reads [6]

ρx(t) = (ln t)−1 E1
( r2

t
)

(67)

where r2 ≡ x2
1 + x2

2 and E1(z) =
∫ ∞

1
du
u e−zu is an expo-

nential integral. Inserting (67) into (64) and integrating
we get 〈A2〉 = πt2/(2 ln t). In three and higher dimen-
sions, we can still use (64) since the main contribution to
the spatial integral is gathered on large distances, r � 1,
where the average density varies on the scales large
in comparison with the lattice spacing. The density is
small in this region, so we may simplify the spatial inte-
gral:

∫
dx [1− ρ(x, t′)]ρ(x, t′) '

∫
dx ρ(x, t′) = 〈Nd(t′)〉

and thereby use the same Eq. (62) as in the case of RWs.
Recalling that 〈Nd(t′)〉 = (2Wd)

−1 t′ for the SEP, see (1),
we get 〈Ad〉 ' adt2 with ad = (4Wd)

−1. Collecting these
results we arrive at Eq. (13), repeated here (Figure 7):

〈Ad〉 '


a1 t3/2 d = 1

π
2 ln t t2 d = 2
(4Wd)

−1 t2 d ≥ 3
(68)

Integrated activity (equivalently the total number of
changes of configurations) has been studied for the SEP
on a ring with a fixed number of particles [37], where
higher moments and the large deviation function have
also been derived. In our setting, with a source, we have
only computed the average. Another interesting chal-
lenge will be to determine the scaling function F(M).

VI. SUMMARY AND OUTLOOK

In summary, we have characterized the asymptotic
growth of the average number of particles injected, the
average number of lattice sites they visit, and the aver-
age total number of visit events, for lattice gases with
an infinitely strong point source, in all dimensions. Ad-
ditionally, the fluctuations of these quantities are of in-
terest. Nothing is known apart from the variance of the
total number of injected particles in the case of the SEP
in one dimension [14, 38]. For applications to foraging
in two dimensions, further work will be needed to de-
scribe the development of the shape of the visited do-
main. Lastly, while for us the model here was motivated
by DNA walkers, it does not account for the memory ef-
fect that arises with catalytic DNA walkers, which mod-
ify lattice sites as they walk, causing hopping rates to
change. We hope to return to these matters in future
studies.
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Appendix A: The shape of the domain of visited sites

One would like to explain the apparent relationship
R2
R1
∼ 1 + C

ln R1
. A fractal structure of the hull (the

external perimeter) of the visited region is also inter-
esting. For a single RW moving on a 2D substrate,
the hull has fractal dimension 4/3 (this was conjectured
by Mandelbrot [39] and proved by Lawler, Schramm,
and Werner [40]). There is convincing numerical ev-
idence [34] that the same remains valid for the hull
formed by a fixed number of RWs, and we believe that
in our situation the fractal dimension is also 4/3. One can
ask topological questions, e.g., how the number of holes
scales with time (in 2D), what is the genus of the sur-
face of the visited domain (in 3D), etc. These questions
are very challenging and even for a single RW little is
known [41, 42].

Appendix B: Sub-leading terms

The convergence to the leading asymptotic be-
haviours is often slow, so one needs an estimate of sub-
leading terms, as in Eqs. (57) and (59), to match theoret-
ical predictions with numerical results. Here we discuss
some other sub-leading corrections, in particular, we de-
rive (4).

Let us look at the average total number of particles.
For the SEP in one dimension, a neat exact expression
[6] for 〈N1〉 in terms of the modified Bessel functions

〈N1〉 = e−t [I0(t) + 2tI0(t) + 2tI1(t)] (B1)

allows one to extract the leading and sub-leading
asymptotic behaviours:

〈N1〉√
8t/π

= 1 +
1
8t

+O(t−2) (B2)

Thus the convergence is fast, and plotting t−1/2〈N1〉 ver-
sus t−1 one can confirm the amplitude of the leading
asymptotic with very high precision (Figure 3a).

In three dimensions, one similarly finds

〈N3〉
t

= (2W3)
−1 +

1
W2

3

(
3

2π

)3/2
t−1/2 + . . . (B3)

As in one dimension, the sub-leading term plays a small
role since the convergence is still fast. Plotting t−1〈N3〉
versus t−1/2 one can confirm the amplitude (2W3)

−1 of
the leading asymptotic with very high precision (Fig-
ure 3c).

Only in two dimensions is it indeed important to ex-
tract the sub-leading term, yet such a computation is
particularly difficult in two dimensions. Adapting the
results from Ref. [6] we find that the Laplace transform
of the average total number of particles is given by∫ ∞

0
dt e−st〈N2(t)〉 =

1
s

[
1

sI(s)
− 1
]

(B4)
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where

I(s) =
∫ 2π

0

dq1

2π

∫ 2π

0

dq2

2π

2
2s + 2− cos q1 − cos q2

(B5)

The integral I(s) can be expressed via elliptic integrals

π I(s) = 2
1+s

[
K
(

1
1+s

)
− F

(√
1+s

3+2s , 1
1+s

)]
+ 2

2+s

[
K
( √

1+s
1+s/2

)
− F

(
(1+s/2)

√
1+2s

(1+s)3/2 ,
√

1+s
1+s/2

)]
The long-time behaviour of 〈N2〉 can be deduced from
the small s behaviour of its Laplace transform. In the
s→ +0 limit, one gets

π I(s) = ln(C/s) +O(s ln(1/s)), C = 16
√

3− 8

Therefore

∫ ∞

0
dt e−st〈N2(t)〉 =

π

s2 ln(C/s)
+ . . . (B6)

in the s→ +0 limit, from which

〈N2(t)〉 =
πt

ln(tCeγ)
(B7)

proving the result announced in (4).
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