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Abstract. DNA strand displacement gates can be used to emulate arbi-
trary chemical reactions, and a number of different schemes have been
proposed to achieve this. Here we develop modular correctness proofs for
strand displacement encodings of chemical reaction networks and show
how they may be applied to two-domain strand displacement systems.
Our notion of correctness is serializability of interleaved reaction encod-
ings, and we infer this global property from the properties of the gates that
encode the individual chemical reactions. This allows correctness to be in-
ferred for arbitrary systems constructed using these components, and we
illustrate this by applying our results to a two-domain implementation of
a well-known approximate majority voting system.

1 Introduction

The behaviour and kinetics of arbitary chemical reaction networks can be em-
ulated by collections of DNA strand displacement gates [1, 2]. A number of
schemes for encoding reactions using strand displacement gates have been pro-
posed, such as four-domain [2], three-domain [3, 4] and two-domain schemes
[5]. A common feature of these gates is that they emulate a single-step reaction
using a sequence of multiple reactions. These additional steps introduce more
opportunities for errors in the design, which may include subtle concurrency
bugs that only manifest themselves when a gate is used in a particular context.
Therefore it is desirable to develop formal proofs that a given strand displace-
ment gate design is a correct implementation of the desired chemical reactions.

Two-domain encoding schemes are attractive candidates for experimental
implementation because they use simple strands and gates without overhangs.
However, this necessitates additional intermediate steps in the emulation of the
reaction, such as garbage collection steps that convert leftover species into un-
reactive waste to prevent them slowing down certain reactions. Since a larger
number of steps are often needed to encode a given reaction, it is typically less
obvious that the design is correct. In previous work we have explored the use
of probabilistic model checking for the verification of two-domain strand dis-
placement systems [6]. However, in that work we could only verify particular



populations of species, and this was severely limited by the explosion in the
size of the state space as the sizes of the species populations increased.

Here we introduce a framework for verification of DNA strand displace-
ment emulations of chemical reaction networks. We adopt a modular approach
to proving correctness, by showing that if all components of the system sat-
isfy certain properties then the whole system may be deduced to be correct in
a well-defined sense. Our approach is inspired by the concept of serializability
from database theory [7], which requires that interleaved concurrent updates
to a database must be equivalent to some serial schedule of those updates. We
consider a composition of reaction encodings to be correct if all interleavings of
their reactions are causally equivalent to some serial schedule, in which there is
no interleaving between the various reaction encodings. We use simple rewrit-
ing rules on reaction traces to serialize them, and apply our technique to the
verification of two-domain DNA strand displacement reaction gates [5, 6]. We
propose serializability as a reasonable notion of correctness for DNA strand
displacement reaction gates because serialized executions of encodings can be
directly related to executions of the underlying reactions. Gate designs that are
not serializable may display erroneous behaviours that do not correspond to
possible behaviours of the underlying reactions, because of unwanted crosstalk
between gates. Our correctness criteria will allow us to prove that gate designs
do not have such problems.

2 Preliminaries

We now make some preliminary mathematical definitions that will be used
throughout the paper. Let N denote the set of natural numbers, including zero.
Following the notation of [8], given a set X, we write NX for the set of multisets
over X, defined as the set of all functions f : X ! N. By convention we use
upper-case boldface symbols for multisets and upper-case italics for sets. We
may write multisets explicitly using the notation {x1 = n1, . . . , xk = nk}, where
ni is the count associated with the corresponding xi. For multisets A, B 2 NX

we write A~ B to mean that (A(x))~ (B(x)) for all x 2 X, where ~ is any
binary relational operator, for example . Similarly, we define arithmetic op-
erations on multisets so that (A ± B)(x) = (A(x))± (B(x)) for all x 2 X. For
subtraction we require that B  A to avoid negative multiplicities. If x 2 X and
n 2 N, we write n · x for the multiset A 2 NX such that A(x) = n and such
that A(x0) = 0 for x0 2 X where x0 6= x. We now define some key concepts.

Definition 1 (Chemical reaction networks). A chemical reaction network (CRN)
is a pair (X, R), where X is a set of chemical species and R is a set of chemical reactions
over X. A chemical reaction has the form R A P, where R, P 2 NX represent the
reactants and products of the reaction, respectively. If r = (R A P) then we let r�1 =
(P A R) and observe that (r�1)�1 = r. Note that we do not consider reaction
rates at all in this paper. For well-formedness of reactions we will stipulate that R 6=
P, and for well-formedness of CRNs we require that all constituent reactions are well-
formed. Henceforth we assume that all CRNs are well-formed.



Definition 2 (CRN states and reduction). A state S of a CRN C = (X, R) is just
a multiset drawn from NX. A reaction r = (R A P) 2 R is enabled in state S if
R  S, written S `C r. Furthermore, if S

0 = S � R + P then we write S

r�! S

0 to
indicate that applying the reaction r to S results in S

0.

Definition 3 (CRN traces). Given a CRN C = (X, R), a trace t is an ordered list
[r1, . . . , ri, . . . ] of elements of R. Traces may be finite or infinite, and we write length(t)
for the length of the finite trace t. We write Traces(C) for the set of all traces that
may be generated using reactions from R. We write t1 :t2 for the trace obtained by
concatenating t1 and t2, and e to denote the empty trace (i.e., length(e) = 0).

Definition 4 (Valid reductions). A pair (S, t) is a valid reduction of a CRN C,
written S `C t, if t 2 Traces(C) and either (i) t = e or (ii) t = [r]:t0 and S

r�! S

0

such that S

0 `C t0 also holds. If t is finite, we write finalC(S, t) for the final state of
the trace, and say that S

t�! S

0 if S

0 = finalC(S, t).

Definition 5 (Reachable states). A state S

0 is reachable from a state S under a
CRN C = (X, R) if S

t�! S

0 holds for some t 2 Traces(C). Furthermore, we say that
a state S

0 is universally reachable from S under C if S

0 is reachable from every state
that is reachable from S.

Definition 6 (Terminal states and traces). A state S is terminal under a CRN
C = (X, R) if no reaction r 2 R is enabled in S. A terminal trace from a state S is
any finite trace t 2 Traces(C) such that finalC(S, t) is a terminal state under C.

Definition 7 (Reversible and irreversible reactions). Given a CRN C = (X, R),
a reaction r 2 R is reversible if the inverse reaction r�1 also appears in R, and it is
irreversible if S

r�! S

0 implies that S is not reachable from S

0 under C. Note that it
is not the case that every reaction is necessarily either reversible or irreversible in the
above sense: for example, consider the CRN with reactions a A b, b A c and c A a.
None of these reactions are reversible, but none of the reactions are irreversible either,
because there is always a route back to the previous state via the other two reactions.

3 Two-domain DNA strand displacement gates

We cannot develop a modular verification framework without a common lan-
guage in which to formalize the system components: this allows us to check
for unwanted crosstalk between modules in a uniform way. We will use the
DSD language for formalizing DNA strand displacement systems [4, 9]. Here
we present a subset of the syntax and reactions needed for the two-domain
gates in this paper: see [4] for full definitions.

The syntax and graphical notation for two-domain DSD systems is pre-
sented in Table 1. We write t^, u^, etc., for toehold domains, which are short
enough to hybridize reversibly (shown in colour), and a, b, x, y, etc., for recogni-
tion domains, which are long enough to hybridize irreversibly (shown in grey).



Species category DSD syntax Graphical notation
Strands, S

Signal strand <t^ x>

 

Cosignal strand <x u^>

 

Extended signal strand <t^ x y>

  

Extended cosignal strand <x y u^>

 

Inert waste strand <x>



Gates, G
Exposed toehold gate segment {t^*} 

Double-stranded signal gate segment [t^ x] 
 



Double-stranded cosignal gate segment [x u^] 
 



Collector gate segment [x] 


Segment concatenation G1:G2 Lower strands joined

Table 1. DSD syntax and graphical representation of two-domain DNA species. Here,
G1 and G2 stand for arbitrary, non-empty gate structures.

We use the asterisk to denote the Watson-Crick complement of a particular do-
main, and assume that the domains are non-interfering, i.e., x will only hy-
bridize with x*. Single strands S may be signals <t^ x> or cosignals <x u^>.
Following [6] and [5], we extend the basic two-domain syntax with extended
strands to enable irreversible product release, by including extended strands of
the form <t^ x y> and <x y u^>. Finally, certain reactions can produce waste
strands of the form <x>, which are unreactive as they have no toehold to interact
with other species.

Figure 1 presents the set of possible reactions between two-domain DNA
strands and gates presented in Table 1, according to the Infinite DSD seman-
tics [4]. In reaction (i), a signal strand is consumed by a gate via an exposed
complementary toehold, producing a new gate with a different exposed toe-
hold and a free cosignal strand. Note that this reaction is reversible, since the
cosignal can react with the product gate to release the original signal into so-
lution. Reactions (ii) and (iii) show irreversible consumption of a cosignal and
a signal respectively, by gates containing the appropriate combination of a col-
lector segment and an exposed complementary toehold, sealing off the toehold
and releasing an inert waste strand into solution. Finally, reactions (iv) and (v)
show irreversible consumption of an extended signal and an extended cosignal
respectively. These reactions seal off a toehold and release an inert waste strand
and an output strand, which is either a signal or a cosignal. (It is also possible
to irreversibly consume an extended strand using two neighbouring collector
segments without releasing a signal or cosignal, but we do not consider this
because gate designs typically do not require it.) The reactions from Figure 1
are all either reversible or irreversible in the sense of Definition 7, and they are




 






 

 


 






 

 


 



 

 






 

 












 






 




 


 






 




 


 



  

 









  

  


 











 













Fig. 1. Two-domain DNA strand displacement reactions employed in this paper. Here,
G1 and G2 stand for arbitrary, possibly-empty gate structures.

all bimolecular reactions that involve one gate and one strand as reactants. We
ignore unproductive reactions [4] in which a toehold binds but cannot initiate
a subsequent branch migration reaction.

4 Modular chemical reaction encodings

The goal of this paper is to verify that a CRN involving DNA strand displace-
ment reactions correctly encodes a particular CRN of interest. We specify CRN
encodings in a modular way, by defining subsystems which each encode a par-
ticular chemical reaction, and composing these to form a single CRN. We refer
to the species and reactions of the CRN being encoded as formal species and
reactions, and let a range over formal reactions and F over formal CRNs. We
will encode formal species using the family of DSD species defined in Table 1,
which interact via reactions derived from the rules in Figure 1.

Definition 8 (Species encodings). For a set X of formal species, we define a bijective
species map M which maps every x 2 X to a DSD species from Table 1. (As is
standard, we assume that encoded formal species never interact directly.) In the case
of two-domain systems, we fix a global toehold domain t^ and choose our species map
such that M(x) = <t^ x> for all x 2 X, i.e., each formal species is encoded by a
different domain. Writing x0 and S

0 for encoded species and states respectively, we lift
M (and the inverse mapping M�1) to operate on states by simply ignoring the species
that are not present in their domain of definition, as follows.

(M(S))(x0) =

(
S(M�1(x0)) if x0 2 image(M)

0 otherwise.

(M�1(S0))(x) =

(
S

0(M(x)) if x 2 dom(M)

0 otherwise.

We will develop encodings of a formal CRN by constructing a reaction en-
coding JaK for each constituent formal reaction a, as follows.



Definition 9 (Reaction encodings). An encoding JaK of a formal reaction a =
(Ra A Pa) is a multiset Fa of fuel species from Table 1 such that, if we let S

init
a =

M(Ra) + Fa, then there exists a terminal state S

final
a that is universally reachable from

S

init
a using the DSD reaction rules, and where M�1(Sinit

a ) = Ra and M�1(Sfinal
a ) =

Pa. We also require that no F < Fa has the above properties, meaning that Fa is the
minimal amount of fuel needed to completely execute a single copy of the encoding.
Finally, if S

init
a

t�! S

final
a we say that the trace t is an execution of JaK.

Intuitively, a reaction encoding JaK comprises the minimal amount of fuel
Fa which, when placed with the encoded reactants M(Ra), can execute the
encoding of a single instance of the formal reaction a. The definition also requires
that the encoding always finishes in the same terminal state S

final
a , in which the

only encoded formal species are the products of a. Furthermore, the encoding
can never get stuck in a state from which S

final
a is not reachable.

We assume that the minimal fuel multiset is unique, as is the case in all exist-
ing published reaction encodings. The fuel minimality condition could only be
violated if there were two redundant reaction pathways in the encoding, each
requiring different fuel species. Note that we refer to the species from Fa from
Definition 9 as fuels, a term we use to mean any species that must be present ini-
tially in order for the chemical reactions in the encoding to run to completion.
This encompasses not only the auxiliary single strands typically referred to as
“fuels” in the literature, but also the gate complexes that must be present ini-
tially. Note that the requirement of a terminal state that is universally reachable
implies that there can only be a single terminal state: if there were a second ter-
minal state, then by definition the first would not be reachable from the second
and hence would not be universally reachable.

Definition 10 (CRN encodings). Suppose that F is a formal CRN that contains
formal reactions a1, . . . , an with corresponding encodings Ja1K, . . . , JanK. We use the
individual reaction encodings to derive a CRN E = (XE , RE ) that encodes F , by

– forming the set of initial species, which comprises all fuel species from the multisets
Fa1 , . . . , Fan and all encoded formal species M(x), where x is mentioned in one of
the formal reactions a1, . . . , an, and then

– recursively computing the set XE of all reachable species the set RE of all possible
reactions, using the reaction rules from Figure 1.

We refer the reader to previous work which formally defined the reaction
enumeration algorithm from the DSD compiler [4, 10], which can be used to
automate the process described in Definition 10.

The most basic correctness property of reaction encodings is that they are
capable of emulating any valid trace of formal reactions. For a formal trace
t 2 Traces(F ), we say that a trace t0 2 Traces(E) in the encoded CRN is a serial
execution of t = [r1, . . . , rn] if t0 can be decomposed into subtraces t1:· · ·:tn such
that the ith subtrace ti is an execution of ri. Since reaction encodings require fuel
species to be present, any such statement must be predicated on the amount of



fuel available in the system. Thus it is important to identify the minimal amount
of fuel needed to emulate a given trace of formal reactions.

Lemma 1 (Fuel required for emulation). Let t = [a1, . . . , an] 2 Traces(F ) be a
finite trace of formal reactions, let S be a formal state such that S `F t, and let tser 2
Traces(E) be a serial execution of t. Then, (M(S) + F) `E tser iff F � reqfuel(t),
where the required fuel, reqfuel(t), is defined as the sum of the fuel required by the
encoding of each reaction in the formal trace, i.e., reqfuel(t) , Fa1 + · · ·+ Fan . ut

It follows from Lemma 1 that we can emulate any finite formal trace by cre-
ating an initial state with sufficient encoded species M(S) and fuels F so that
the corresponding serial execution can be run, and there is an obvious connec-
tion between the serial execution and the formal trace.

Theorem 1 (Completeness). Let t 2 Traces(F ) be a finite formal trace and let S

be a formal state. If S `F t and F � reqfuel(t) then (M(S) + F) `E tser for some
tser 2 Traces(E) which is a serial execution of t. ut

5 Soundness of CRN encodings

The completeness result above only concerns one possible reduction trace of
the encoding. In this section we prove a more involved soundness result, which
shows that all possible reduction traces of the encoding are equivalent to a serial
execution of some valid formal trace. This is a reasonable notion of correctness
because this implies that every possible trace of the encodings can be causally
related to some valid formal trace. To make this connection, we define a no-
tion of rewriting on valid reaction traces, which allows reactions to be moved
around and deleted from the trace if doing so preserves the causal relationships
between reactions in the trace.

Definition 11 (Trace rewriting). The trace rewriting relation is indexed by a CRN
C and the starting state S. We write S `C t  t0 to mean that S `C t and that a
derivation exists using the following inference rules.

(REFL)
S `C t  t

(TRANS)
S `C t  t0

S `C t0  t00

S `C t  t00

(CANCEL)
S

t1�! S

0 t2�! S

0

S `C t1:t2:t3  t1:t3
(SWAP)

S `C t1:t3:t2

S `C t1:t2:t3:t4  t1:t3:t2:t4

The (CANCEL) rule allows the subtrace t2 to be removed if its net effect is no
change, and the (SWAP) rule allows two neighbouring subtraces t2 and t3 to be
swapped if they may occur in either order. In the latter case, since executing a
reaction trace is essentially a series of addition and subtraction operations on
the species populations, which are commutative, it follows that t1 :t2 :t3 and



t1 :t3 :t2 both produce the same final state. It is not hard to show that trace
rewriting preserves validity and the final states of reductions, as stated below.?

Lemma 2. If S `C t  t0 then S `C t0 and finalC(S, t) = finalC(S, t0).

Note that it is not the case that any two valid traces from a given starting
state must be trace-equivalent—indeed, this is the crux of our analysis. Proving
soundness is challenging because we must show that all possible interleavings
of the various reaction encodings can be rewritten to produce a serial execution
of a valid formal trace. To obtain this result, we must place additional con-
straints on the reaction encodings which we will consider.

Definition 12 (Stratified chemical reaction networks). If a state S

0 is reachable
from S under C, we write L(S, S

0) for the length of the shortest trace t 2 Traces(C)
such that S

t�! S

0. Then, we say that the CRN C is stratified if, for any starting state
S0 and any states S and S

0 which are reachable from S0 under C, it is the case that
S

r�! S

0 implies L(S0, S

0) = L(S0, S)± 1.

We observe that reactions derived from Figure 1 always give rise to stratified
CRNs, since the reversible reactions can only be reversed by executing the cor-
responding inverse reaction and the irreversible reactions all produce an inert
species which prevents the system from returning to the previous state. Intu-
itively, this allows us to subdivide the transitions in our reaction encodings into
forward steps that move away from the initial state S0 (i.e., transitions S

r�! S

0

where L(S0, S

0) = L(S0, S) + 1) and backward steps that move back towards
the initial state S0 (i.e., transitions S

r�! S

0 where L(S0, S

0) = L(S0, S)� 1). We
must also categorize the species involved in each reaction encoding according
to their role: we require that the set of all species involved in the encoding JaK,
denoted species(JaK), can be partitioned into:

– formals(JaK) (those species in the image of M);
– waste(JaK) (those species which are unreactive);
– fuels(JaK) (those species which appear in Fa); and
– intermediates(JaK) (the remaining species).

We now abuse the terminology of [11] to define a notion of copy tolerance,
and use this to state our restrictions on individual reaction encodings.

Definition 13 (Copy tolerance). A reaction encoding JaK is copy tolerant of a
species x if {t | S

init
a `E t} = {t | (Sinit

a + n · x) `E t} for all n 2 N, where E
is the CRN derived from JaK (extended to include x if necessary) and S

init
a is the initial

state of JaK.

? A proof sketch for Lemma 2 is included in the appendices, which can be downloaded
from the first author’s webpage.



Definition 14 (Transactional reaction encodings). Consider a formal reaction a =
(Ra A Pa), encoded as JaK via the fuel multiset Fa. Let S0 = S

init
a = M(Ra) + Fa

denote the initial state consisting of just the required reactants and fuels, and let t =
[r1, . . . , rn] 2 Traces(E) be a terminal trace of the encoding starting from S0, where
ri = (Ri A Pi) for i 2 {1, . . . , n}. Labelling the corresponding sequence of states as
S0

r1�! S1
r2�! · · · rn�1���! Sn�1

rn�! Sn, we say that rj is a commit reaction if the
following criteria are all satisfied:

1. rj is the first irreversible reaction in t;
2. if x 2 formals(JaK) occurs in r1, . . . , rj�1 or Rj then x 2 M(Ra), and these

occurrences are all either reactants of forward steps or products of backward steps;
3. if x 2 formals(JaK) occurs in Pj or rj+1, . . . , rn then x 2 M(Pa), and these

occurrences are all either products of forward steps or reactants of backward steps;
4. M�1(Sj�1 � Rj) = ?.

We say that JaK is transactional if every terminal trace from S0 has a commit reaction
satisfying the above criteria and if every terminal trace visits the same set of states prior
to the commit reaction. We also require that JaK is copy tolerant of all formal and fuel
species involved in the encoding, and that the terminal state has the form M(Pa) + La,
where JaK is copy tolerant of every species in the multiset La of leftover species.

In Definition 14, criterion 1 requires that the trace can be partitioned into
two disjoint subtraces by the first irreversible reaction. Given the reaction rules
from Figure 1, this implies that all reactions before that point must be reversible.
Criteria 2 and 3 require that only input formal species can engage in reactions
before the commit reaction, and only output formal species can engage in re-
actions after, and furthermore that the consumption of input formal species
before the commit reaction and the production of output formal species after
the commit reaction always drive the system forwards. Criterion 4 ensures that
all necessary reactants are in fact consumed by the time the commit reaction is
reached (this is needed in case the reactants and products have some species
in common). The restrictions on copy tolerance ensure that the behaviour of
the encoding is identical in the presence of additional copies of fuels or formal
species: note that any encoding is copy tolerant of waste species, but that the
encoding may not be copy tolerant to certain intermediate species. The restric-
tions on leftover species in the terminal state delimit those species which may
be safely left behind by a reaction encoding that does not fully garbage collect
its intermediate species.

Example 1 (Effect of a non-transactional reaction encoding). As a concrete example
[12] of what might go wrong when using a non-transactional reaction encod-
ing, consider the following set of formal reactions: {x A y, y + a A y + b}, and
suppose that our encoding of x A y is not transactional because the output y
can be released before the first irreversible step in the execution of the encod-
ing. Then, from an initial state corresponding to the formal state {x = 1, a = 1}
the following sequence of operations is possible:



1. Run the encoding of x A y until y is produced, but without executing any ir-
reversible steps. This produces a new state corresponding to {y = 1, a = 1}.

2. Completely execute the encoding of y + a A y + b, which results in a state
corresponding to {y = 1, b = 1}.

3. Unwind the partial execution of x A y, which is possible because no irre-
versible steps have been executed in this encoding. The final state corre-
sponds to the formal state {x = 1, b = 1}.

Note that the formal state {x = 1, b = 1} is not reachable from the initial state
{x = 1, a = 1} using the above set of formal reactions: our encoding of this CRN
is unsound. The specific problem here is that the y produced by the x A y
reaction is accessible before the encoding has executed an irreversible step to
commit to its production. Until there is no way for this product to be reclaimed
by the gate that produced it, it is unsound for other reactions to consume it.

We now define compatible reaction encodings, in which direct sharing of
species between the encodings is only permitted in certain situations.

Definition 15 (Compatible reaction encodings). We say that two reaction encod-
ings, JaK and JbK, are compatible if every shared species in species(JaK)\ species(JbK)
appears in the same category (formal, waste, fuel or intermediate) in both encodings,
and if both encodings are copy tolerant of every shared species. Furthermore, we require
that a species from JaK can only interact with a species from JbK if at least one of those
species occurs in species(JaK) \ species(JbK).

Hence, different reaction encodings may share formal species, waste species
and fuel strands. They may also share intermediate strands provided that the
presence of additional copies of those species do not enable additional reaction
pathways in either reaction encoding. In all cases, shared species must appear
in the same category in both reaction encodings, and no species may interact
with any species from a reaction encoding in which it is not present as a species.
We can use the DSD semantics and compiler to check for unwanted interference
between reaction encodings. We now state some preliminary lemmas needed to
prove our main result.??

Lemma 3 (Trace rewriting and reversible reactions). If t 2 Traces(C) consists
entirely of reversible reactions and S `C t then there exists t0 2 Traces(C) such that
S `C t :t0  e.

Lemma 4 (Serializability). Assume that all reaction encodings are transactional and
pairwise compatible, and suppose that S `E t, where

t = t1:[ra
1 ]:· · ·:tk�1:[ra

k�1]:tk :[ra
com]:tk+1:[ra

k+1]:· · ·:tn :[ra
n]:trest,

where ra
com is the first commit reaction in t, where ta = [ra

1 , . . . , ra
k�1, ra

com, ra
k+1, . . . , ra

n]
is an execution of JaK and where S `C ra

1 . Then, there exists t0
rest such that S `E t  

ta :t0
rest. ut

?? Proof sketches for Lemma 4 and Theorem 2 are included in the appendices, which can
be downloaded from the first author’s webpage.



We can now state and prove our main soundness theorem, which is valid for
systems composed of reaction encodings that satisfy the criteria in Definition 14
and Definition 15. Since the set of all traces includes incomplete executions of
reaction encodings, we require that any trace can be extended to produce a seri-
alizable execution. In doing so we write pt(X, F) for the set of non-empty formal
traces that are valid from the formal state X and that can be emulated using the
fuel F, i.e., pt(X, F) = {t 2 Traces(F ) | X `F t ^ reqfuel(t)  F ^ t 6= e}.

Theorem 2 (Soundness). For a formal CRN F with reactions a1, . . . , an, assume
that the corresponding reaction encodings are all transactional and pairwise compat-
ible. Let X range over multisets of formal species, and let F range over multisets of
fuels such that F = Fak1

+ · · · + Fakj
, for k1, . . . , kj 2 {1, . . . , n} (i.e., there are no

incomplete reaction encodings). Then, for all t 2 Traces(E) and all X and F such that
(M(X) + F) `E t, either:

– pt(X, F) = ? and there exists t0 such that (M(X) + F) `E t :t0  e; or
– pt(X, F) 6= ? and there exists t0 such that (M(X) + F) `E t :t0  tser, where

tser is a serial execution of some tformal 2 pt(X, F). ut

6 Verification example

In this section we present an example application of our modular verification
strategy to a two-domain strand displacement network [5]. We focus on the
two-domain catalyst gate introduced in [6], which implements a reaction of the
form x + y A x + z. The DSD code for this gate design is as follows.

(* DSD code for two-domain catalyst gate. *)

(* Use with Infinite DSD semantics. *)

(* Define a global toehold *)

new t

(* Catalyst gate module, x + y -> x + z *)

def C(N,x,y,z) = new a new c

( N * {t^*}[x t^]:[y t^]:[c]:[a t^]:[a]

| N * [x]:[t^ z]:[c]:[t^ y]:[t^ a]{t^*}

| N * <t^ c a>

| N * <z c t^> )

(* Example initial state *)

( C(1,x,y,z) | <t^ x> | <t^ y> )

The corresponding initial and terminal states of one such reaction gate imple-
menting the reaction x + y A x + z are shown in Figure 2. In previous work
[6], we used these gates to implement the approximate majority voting circuit



 

 

 



 


  

 

     
        


      

     








    

     
 

        

  
  

 
 
 

 

      







Fig. 2. Initial (left) and terminal (right) states for the catalyst gate which encodes the
reaction x + y A y + z.

of [13], by instantiating the module to implement the four chemical reactions
from the approximate majority circuit: (i) x + y A y + b, (ii) x + y A x + b, (iii)
x + b A x + x, (iv) y + b A y + y. Thus the catalyst gate module must function
correctly both when the two products are different species (for reactions (i) and
(ii)) and when they are the same (for reactions (iii) and (iv)). It is not difficult to
show that each of the resulting reaction encodings satisfies the correctness cri-
teria from Definition 14, and that they are pairwise compatible (Definition 15).
The private domains declared within the scope of the gate definition ensure
that each reaction encoding involves unique gate species and fuel strands, and
the DSD reaction rules from Figure 1 can be used to verify that there are no
interactions between the species of the different reaction encodings.? ? ? There-
fore, by Theorem 1 and Theorem 2 every trace produced by these reactions can
be rewritten to produce a serial execution of the four formal reactions above, so
we view these gates as a correct encoding of the approximate majority system.

7 Discussion

We have shown that any strand displacement system composed of reaction en-
codings that meet the criteria from Definition 14 and Definition 15 is correct
in the sense that all traces can be rewritten using the rules from Definition 11
into a serialized trace in which each execution of a reaction encoding runs to
completion before the next one starts. This notion of correctness is reasonable
because reaction gates are intended to encode a single rewriting step in the for-
mal reactions, and if a trace cannot be rewritten in this way there must be a
concurrency bug in the reaction encodings that allows them to produce a trace
unrelated to any trace of the underlying formal reactions. Although we used

? ? ? Further details are included in the appendices, which can be downloaded from the
first author’s webpage.



two-domain strand displacement reactions to define our encodings, in principle
similar results could be derived for other implementations of chemical reaction
networks. It is interesting that the correctness criteria from Definition 14 share
much in common with other notions from existing concurrency theory, such as
two-phase locking [7], in which each transaction has an initial phase of lock acqui-
sition where exclusive access is obtained to the necessary resources, followed
by a phase of lock release where those access rights are gradually relinquished.
In our case, the first phase consumes the inputs and the second phase produces
the outputs.

To our knowledge, this paper is the first modular analysis of chemical reac-
tion network encodings. In Definition 14 and Definition 15 we aimed to allow
the maximum possible sharing of species between different reaction encodings
without invalidating the soundness result in Theorem 2. However, it is worth
noting that certain previously published designs for two-domain strand dis-
placement gates fall foul of our restrictions on the structure of reaction encod-
ings and on the sharing of species between encodings. The gate designs from
[5] without irreversible product release do not involve a commit reaction as de-
fined in Definition 14, and therefore the soundness theorem does not hold for
these gates. Furthermore, certain combinations of these gates may violate our
requirement that shared species must fall into the same category in all reac-
tion encodings. In some gates from [5] it is possible for certain global cosignals
to serve as an intermediate in one reaction encoding and as a fuel in another,
which could adversely affect the kinetics of the reactions producing that strand
as an intermediate if an excess quantity of that strand is supplied as fuel. This
subtle point should be addressed in future two-domain gate designs.

Our definition of species encodings works for any scheme in which there is
a bijective mapping between the formal species and the DSD species which rep-
resent them, such as the two-domain scheme. A straightforward generalization
of our representation language to handle wildcard domains should allow us to
verify gate designs such as those which use three- and four-domain species en-
codings using history domains [2, 3]. In these schemes a single formal species is
encoded by a family of related DNA species with similar structure but a differ-
ent history domain. To extend our results to history domains, it would suffice
to prove that each reaction encoding can accept any variant of the input strand,
regardless of the history domain. Our other key results, such as serializability
and soundness, do not rely on a bijective species encoding and should remain
valid. Finally, we have demonstrated that the restrictions we imposed on reac-
tion encodings are sufficient to obtain a serializability result. Another important
future research direction will be to determine which restrictions are necessary to
derive such a result.

Prior work on CRN verification [12, 14] has focused on analyzing full sys-
tems, and we believe that there is a strong connection between our work and
the weak bisimulation-based approach of [14]. In other related work, Cardelli
and Laneve [15, 16] developed a theory of reversible computational structures
with a strong relationship to DNA strand displacement reaction gates. How-



ever, that work did not take the initial state of a computation into account and
was therefore not capable of distinguishing between traces where reactions in-
volving the same species could be safely permuted. Existing work on reachabil-
ity in CRNs [11], and in particular the notion of copy tolerance, is directly related
to our work, as is previous work on CRN programmability [17, 18].

Our modular approach provides a path to verification of module definitions,
for example, checking that a definition which maps arbitrary species w, x, y and
z to the corresponding reaction encoding Jw + x A y + zK produces a correct
reaction encoding for any values of w, x, y and z, some of which might in fact
represent the same formal species. Note that in Section 6 we did not verify
the module definition directly, but rather a number of specific instantiations of
it. Expressing our correctness criteria in a temporal logic would allow module
definitions to be checked automatically using a model checker, in order to cover
all possible input patterns.

Finally, we note that our formalism and proofs do not take account of reac-
tion rates. Expressing correctness in terms of reachability is both important and
natural from a computer science perspective. However, unfavourable kinetics
might cause gates that satisfy our reachability criteria to function poorly in
practice, as discussed above. Furthermore, certain gate designs that fail to sat-
isfy the criteria might function acceptably in practice due to favourable kinetics,
as exemplified by the “wisdom of crowds” example [6, 5]. Proving soundness
of gate designs is already challenging without considering reaction rates, and
indeed it is not clear how such a correctness result would be formulated in a
modular setting when considering reaction rates. Previous work [2] presented
similar proofs for a particular encoding of chemical reaction networks using
DNA strand displacement, and future extensions of our work may enable such
results to be proved for arbitrary reaction encodings in a modular way. For in-
stance, it may be possible to relate the expected time to fully execute a reaction
encoding to the rate of the corresponding formal reaction, either by solving
the corresponding continuous-time Markov chain analytically or by using a
probabilistic model checker such as PRISM [19]. However, such efforts would
be complicated by the fact that the output species from a reaction encoding are
typically released gradually, some time before the final irreversible reaction that
concludes the execution of the encoding. Hence, it is not obvious which point
in time should be considered as the end of the execution of the encoding for the
purposes of proving results about the kinetics.
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