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Abstract. We propose a stochastic model for molecular transport at the nanoscale
that describes the motion of two-dimensional molecular assemblies called multi-
valent random walkers (MVRWs). This walker model is an abstract description of
the motion of multipedal molecular assemblies, called molecular spiders, which
use deoxyribozyme legs to move over a surface covered with substrate DNA
molecules, cleaving them to produce shorter product DNA molecules as they go.
In this model a walker has a rigid inert body and several flexible enzymatic legs.
A walker moves over a surface of fixed chemical sites. Each site has one of sev-
eral molecular species displayed, and walker legs can bind to and unbind from
these sites to move over the surface. Additionally, the enzymatic activity of the
legs allows them to catalyze irreversible chemical changes to the sites, thereby
permanently modifying the state of the surface. We describe a MVRW system
as a continuous-time Markov process, where all state transitions in the process
correspond to chemical reactions of the legs with the sites. We model the kinetics
of the leg reactions by considering the constrained diffusion of the walker body
and unattached leg. Through kinetic Monte Carlo simulations, we show that the
irreversibility of the enzymatic action of the legs can bias the motion of walkers
and cause them to move superdiffusively over significant distances.

1 Introduction

Nature at the nanoscale is different from our familiar macroscopic experience in many
ways, the most fundamental of which is the stochastic character of motion and events.
At this scale, all objects experience random collisions with molecules that transfer sig-
nificant energy, effectively randomizing momentum and leading to diffusive motion.
Diffusive motion is often not desirable as it becomes a limiting factor in the transfer
of material and information in chemical computational systems. However, nanoscale
walkers have the potential to move in purposeful, directed ways by expending energy
to bias their otherwise diffusive motion, thus providing a mechanism for superdiffusive
motion.

Recently a new class of molecular walker based on DNA has been synthetically
constructed. These molecular spiders [11] consist of a rigid, inert body and several de-
oxyribozyme (i.e., catalytic single-stranded DNA) legs that act as enzymes and attach
to and cleave complementary single-stranded DNA substrates (at a sepecific ribonu-
cleotide impurity). When the substrates are arrayed as nanoscale tracks and paths on
a surface the walker can move along such tracks by binding, cleaving, and unbinding
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from the track sites [8]. As shown in Fig. 1, when the legs enzymatically modify a bound
site by cleaving the substrate they leave behind a shorter product DNA sequence. The
product remains complementary to the lower part of the leg. Thus, the legs can walk
back over the product sites, albeit at a different rate than that for the substrates, and
they can no longer modify the product sites.

time
Substrate 

Product (Cleaved) 

Unbound leg

Bound leg

Fig. 1: A molecular spider moves over a surface covered with fixed chemical substrate sites as
legs bind and unbind to the sites.

In order to understand how molecular spiders move, we have developed the multi-
valent random walker (MVRW) model. The model describes spiders in a 2-dimensional
environment of chemical sites. The motion of the spiders is modeled as a continuous-
time Markov process, where each transition in the Markov process corresponds to a
chemical reaction between a leg and a surface-bound site.

In this work we describe the model in detail, and briefly discuss our Monte Carlo
simulation methods. We explain that when there is a residency-time bias between mod-
ified and unmodified sites, the walker motion is biased in the direction of unmodified
sites. Through simulation we show that this bias causes the walker to move superdiffu-
sively, even in opposition to a force.

2 The Multivalent Random Walker Model

At the single-molecule level, chemical kinetics are stochastic in nature. Each individ-
ual reaction can be viewed as a transition between two different chemical states of the
system as a whole. Accordingly, chemical systems at the single-molecule level can be
modeled as continuous-time stochastic processes [9]. A key assumption in such stochas-
tic models is that the system reaches a physical equilibrium (i.e., it is well mixed) in
between successive chemical reactions. This makes the system Markovian, and it makes
determining the rates of chemical reactions tractable, as the exact position and momen-
tum of particles do not need to be part of the system state, and the state space of the
system remains discrete. In the 1970’s Gillespie popularized the use of Monte Carlo
methods for numerical simulation of stochastic chemical kinetics [3].

Inspired by this approach to chemical kinetics, the MVRW model describes the mo-
tion of the molecular spider as a discrete-state, continuous-time Markov process where
each transition corresponds to a chemical reaction. In our case, this is a reaction of a leg
binding, unbinding, or cleaving sites on the surface, but under the restrictions imposed
by the attachment of the legs to a common body. In between reactions, the walker and
its legs are assumed to reach a physical equilibrium over all feasible positions. By com-
puting the distribution of the spider’s body location after each step, we can accurately



3

model the chemical reactions and how their rates are affected by the spatial constraints
imposed by the spiders’ geometry and the pattern of sites on the surface.

2.1 The State Space of the Walker and the Environment

In the MVRW model, the state of the Markov process is defined by the state of the
walker and the state of the environment. Walkers are two-dimensional (2D), with a
point body to which are attached k flexible legs. Each leg has length ` and a reactive
site at the end called the foot. The walkers move in an environment of fixed chemical
sites. The environment is defined by a (countable) set S ⊂ R2 of sites and a finite set
Σ of species. Each site has a single species associated with it, but the species can be
changed by the action of the walker legs. Thus, the state of the environment is defined
by a mapping π : S→ Σ that assigns a species to each site. The state of the walker is
completely described by the state of its k feet. A foot is either attached to a site in S or
is detached. No two feet may be attached to the same site. The state of the walker is
represented by the number of detached legs 0 ≤ d ≤ k, and the set A ⊂ S of attached
sites. Thus the state of the MVRW system is defined by the triple (π,d,A).

2.2 State Transitions

There are three types of state transitions corresponding to the three types of chemi-
cal reactions that can take place: binding (association), unbinding (dissociation), and
catalytic transformation (cleavage). While the model can accommodate more general
leg-site chemistries, we focus on the chemistry of the deoxyribozyme-based molecu-
lar spiders. In this system, there are two species Σ = {S,P}, a substrate and a product
(cleaved) oligonucleotide. A leg (L) can reversibly bind to each species to form a leg-
substrate (LS) or leg-product (LP) complex. Additionally, an LS complex can undergo
catalysis, transforming the leg into a product before eventually unbinding. These re-
actions and the relevant rates are defined in Eq. 1. Note that we take kcat = kcat(S) to
encompass the rate of cleavage as well as the subsequent dissociation, and we assume
this process is irreversible.

L+S
k+(S)−−−→←−−−
k−(S)

LS
kcat(S)−−−→ L+P

L+P
k+(P)−−−→←−−−
k−(P)

LP

(1)

Of the three types of state transitions, dissociation and cleavage are both unimolec-
ular reactions and, as in the Gillespie model of chemical kinetics, each individual LS
or LP pair will dissociate or cleave according to the rates k−(S), k−(P), and kcat. How-
ever, the association reactions are more complicated as they are bimolecular and their
propensity depends on the likelihood of the leg being proximate to the chemical site, so
that it may bind. This likelihood, in turn, depends on the position of the body and the
unattached legs.
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Fig. 2: The feasible body positions F for spiders in 1D (a) and 2D (b) are indicated in dark
blue. We assume all legs have a maximum length ` and the body positions cannot violate these
constraints. In light blue we show the region of feasible sites. These are the sites that can be
reached by an unattached leg from some feasible body position.

2.3 The Equilibrium Body Distribution

The states of the environment and the walker have been defined to capture only the
parts of the system that remain fixed in between reaction events, but that change after
a reaction. Notice that the states are discrete, and that the body position is not part of
the system state. In this way, the state transitions correspond directly to the chemical
reactions and not to the physical motion of the walker body and legs. We assume that
non-reactive processes, such as solvent collisions and molecular vibrations, occur on
much faster timescales than the chemical reactions so that they come to an equilibrium
in between state transitions.

First, let us consider the diffusion of the body. In between reaction events, the body
will move in a constrained diffusion. Let random variable BBB give the 2D coordinates of
the spider’s body. We assume the legs are flexible with a maximum length ` and do not
become tangled. Thus, the body will be constrained to be within distance ` from each
site with an attached foot, so that P [BBB = ppp ] = 0 if there is any attached site sss ∈ A such
that ‖ppp− sss‖> `.

We call all values of ppp that satisfy ‖ppp− sss‖ ≤ ` for all sss ∈ A the feasible body
positions, as it is possible the body is in that position when a reaction finally occurs.
The set of all feasible positions is denoted F , and is illustrated as dark blue in Fig. 2.

The exact distribution of BBB at equilibrium will be a Boltzmann distribution over the
feasible positions ppp ∈ F according to the energy E(ppp) at each of those positions,

P [BBB = ppp ] = pBBB(ppp) =
e−βE(ppp)∫

F e−βE(ppp)d ppp
. (2)

In Eq. 2, β = 1/kBT , where kB is Boltzmann’s constant and T is absolute temperature.
We are not concerned with temperature variation, so T will be constant.
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2.4 Leg-site Interactions

The kinetics of the bimolecular reaction of leg-site binding is controlled by two factors:
the probability of the leg being proximate to a site, and the probability that the leg and
site molecules have enough energy to surmount a reaction energy barrier while they
are proximate. These probabilities are controlled by the diffusion of the reactants and
the activation energy barrier of the reaction [6]. Depending on which of these two pro-
cesses is rate-limiting, there are two different types of kinetics for the leg-site binding
reactions. If the energy barrier is relatively low, the leg is likely to react with one of the
first few sites it comes in contact with. Thus, the leg will be more likely to react with
sites closer to where it had previously been attached. Because the diffusion to new sites
is the limiting factor in the reaction this situation is called diffusion-limited. On the other
hand, if the energy barrier is higher, the probability of gaining enough kinetic energy
from thermal fluctuations will be the limiting factor. This situation is called reaction-
limited. The leg will diffuse around until there is enough energy to react, and because
the leg is constrained to move over a small area, it will quickly reach an equilibrium
distribution over sites.

At present we consider the reaction-limited case. Under these conditions, we can
assume that the probability of a leg attaching to a site is proportional to the probability
that the body is in a position that is less than distance ` from the site. We define a
function

fL(ppp) =

{
1 ‖ppp‖ ≤ `

0 otherwise
,

that determines if a site at position ppp is feasible from the origin.
Now, because the body has a distribution over feasible positions, some sites can

only be reached from a portion of the feasible body positions. For any site sss, we can
define the probability for leg i being proximate to sss when it reacts as

P [ i proximate to sss ] =
∫

F
pB(ppp) fL(sss− ppp)d ppp. (3)

Any site with non-zero probability of being reached is called a feasible site and
this defines the region of feasible sites shown in Fig. 2 in light blue. Sites outside the
feasible region have a rate of 0 for attachment to a leg. If a leg is proximate to a site,
there is a a constant rate per unit time at which the particular leg-site binding will occur.
This rate is a function of the diffusion rates, leg structure, and chemical free energy
barriers, but as these are constants we ignore the details and just assume that the rate is
k+(π(sss)) when the site sss has species π(sss). Then the rate of attachment for unattached
leg i to feasible site sss is k+(π(sss))P [ i proximate to sss ]. Together with the much simpler
rates for the uni-molecular dissociation and cleavage reactions, which are independent
of body and leg diffusion, this enables us to model all of the reactions that lead to state
transitions in the model.

2.5 Effect of Forces on Walkers

The MVRW model can also model the effect of forces on the body of the walker. This
is an advantage of modeling the body’s distribution as a Boltzmann distribution deter-
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mined by the energy of the spider at each feasible position. Consider the original energy
function E(ppp). Under the effect of a force fff , the new energy of position ppp becomes,

Ẽ(ppp) = E(ppp)− fff · (ppp− ppp000). (4)

Because the probability is determined by a Boltzmann distribution, the absolute value of
the energy doesn’t matter, so any ppp000 reference point will do for determining the energy
of the positions.

The new energy Ẽ will give a new equilibrium distribution whose probability mass
is shifted in the direction of the applied force. The effect of forces on the body’s equi-
librium position, and the propensity for each of the feasible sites is shown graphically
in Fig. 3.

x̂

ŷ

−0.0x̂pN −2.5x̂pN −5.0x̂pN

Fig. 3: The equilibrium body distribution for a walker under several different forces: −0.0x̂xxpN,
−2.5x̂xxpN, and −5.0x̂xxpN. As the force increases the energy of positions in the +x̂xx direction be-
come higher, and their probability decreases. The body is drawn at the distribution mean, and the
color and size of sites indicates their effective rate for attachment reactions.

3 Simulation

The MVRW model takes the form of a discrete-space, continuous-time Markov process
(CTMP). Let Ω be the set of states for the MVRW process, and recall that, as described
in Section 2.1, each state ω ∈ Ω can be defined as a triple (π,d,A). Then, given set-
tings for the relevant model parameters and a suitable start state ω0 = (π0,d0,A0), the
MVRW Markov process is described by X(t), where for each t ∈ [0,∞), X(t) is a ran-
dom variable over Ω giving the distribution for the state of the process at that time.
A full characterization of the Markov process would involve analytic estimates for the
probability distributions X(t). However, this is both infeasible and unnecessary for our
purposes.
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3.1 Monte Carlo Simulation

A more tractable way to analyze CTMP’s is though the Monte Carlo approach. A Monte
Carlo simulation generates a function x : [0, tmax]→Ω , called a realization of X(t). At
each time t, x(t) is a sample of the random variable X(t).

Discrete-state Markov processes must jump instantaneously from one state to the
next, hence such processes are often called jump Markov processes [4]. A jump Markov
process can be described by a transition rate function Q, where Q(ω1→ ω2)≥ 0 gives
the rate of transition (jumping) from state ω1 to state ω2. This function, and an initial
start state ω0, completely determine the Markov process X(t). For jump Markov pro-
cesses, Monte Carlo simulation can be carried out exactly, because a realization x(t)
will be a piecewise constant function, consisting of jumps to a sequence of states {si}
at a sequence of jump times {ti}, so that x(t) = si for t ∈ [ti, ti+1).

There are two main uses for Monte Carlo simulations of Markov processes. The
first is to estimate the equilibrium distribution of Markov processes with a limiting
distribution. In this approach the state sequence {si} becomes an unbiased sampling
from a distribution that would otherwise be hard to sample from. The second use is to
estimate the dynamic or kinetic properties of a Markov process as it evolves from its
initial state. In this case we are interested in how an out-of-equilibrium Markov process
behaves as it evolves according to the transition function Q.

To study the MVRW model we use both types of Monte Carlo simulations. At the
timescales of chemical reactions we use the kinetic Monte Carlo algorithm to sim-
ulate the dynamics of the MVRW Markov processes, obtaining traces of individual
spiders moving stochastically according to transition rates. In contrast, at the physical
timescales we use the Metropolis-Hastings algorithm to sample from the equilibrium
distribution of the body’s position as it moves by constrained diffusion in the feasible
region F .

3.2 The Kinetic Monte Carlo Algorithm

The kinetic Monte Carlo (KMC) method refers to a rejection-free method of generating
exact realizations of a jump Markov process by starting at some fixed initial state and
evolving the system state and time according to the transition rates of the model [13].
Let X(t) be a Markov process over state space Ω with transition rate function Q. Given
an initial state s0, the KMC algorithm evolves the system state through time. After the
n-th step of the algorithm, the system will be in state sn at time tn. The task of the KMC
algorithm is to stochastically choose sn+1 and tn+1 according to the transition rates, Q.
Let Z = {s′ ∈ Ω |Q(sn→ s′) > 0} be the set of transitions from state sn with non-zero
rate. We assume that |Z| = k is finite and non-zero, and thus we can enumerate it as
Z = {zi}k

i=1, and define rates {ri}k
i=1, with ri = Q(sn → zi). Let the total rate of all

transitions be R = ∑k
i=1 ri. This situation is illustrated in Figure 4a.

The probability of the process moving to state zi at step n + 1 is given by the
ratio ri/R. We can choose a next state z∗ ∈ Z by selecting a random number α ∼
Uniform([0,R)) and choosing z∗= z j, where j is the smallest integer satisfying ∑ j

i=1 ri >
α . This process is depicted in Figure 4b.
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α(b)Current State: sn

r1 r2 r3 rk

(a)

z1 z2 z3 zk

Fig. 4: (a) At step n of the KMC algorithm, the system is in state sn, and we must choose sn+1
from amongst the k possible next states {zi}k

i=1 according to their respective transition rates
{ri}k

i=1. (b) We can select the next state with a single random number α ∼ Uniform((0,R)),
where R = ∑ri is the total rate. This example shows the next state chosen to be z2.

Finally, the algorithm decides how much time should elapse until the transition to
z∗. From our current state, all of the possible transitions in Z occur stochastically with
constant rate per unit time. Thus, the time τi until the transition to zi will be exponen-
tially distributed, τi ∼ Exp(ri). We are interested only in the probability distribution for
the minimum of these times, τ∗ = min{τ1, . . . ,τk}. The exponential distribution has the
convenient property that τ∗ will also be exponentially distributed, as

P [min{τ1, . . . ,τk}> t ] = P

[
k∧

i=1

τi > t

]
=

k

∏
i=1

P [ τi > t ] =
k

∏
i=1

e−tri = e−t ∑ri = e−tR.

Thus, we see that τ∗ ∼ Exp(R). Sampling from the exponential distribution is particu-
larly easy, as τ∗ =− lnβ/R for β ∼ Uniform((0,1)).

At this point, the KMC algorithm records the next state sn+1 = z∗ and the new time
tn+1 = tn + τ∗, and then the process repeats until N simulation steps have been made.

3.3 Metropolis-Hastings Distributions

The MVRW model assumes that the body and unattached legs come to an equilibrium
distribution in between reaction steps. In Section 2.4 we explain how the transition
rates for binding reactions are computed given a probability distribution pBBB(ppp) over
body locations, and a probability distribution pL(d) for the leg’s distance from the body.
Overall, the rate at which unbound leg i binds to site sss is given by Eq. 3.

With knowledge of pBBB, we can estimate the rates ri→sss using Monte Carlo integra-
tion. If PPP1, . . . ,PPPn ∼ BBB are samples from BBB, they can be used as an unbiased estimator
for a function f of the body’s position [7],

∫
F

f (ppp)pBBB(ppp)d ppp =

〈
1
n

n

∑
i=1

f (PPPi)

〉
.

The distribution pBBB is defined in Eq. 2. The denominator in this function,

Z =
∫

F
e−βE(ppp)d ppp, (5)
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is called the partition function, and is difficult to compute making sampling directly
from pBBB difficult. The Metropolis-Hastings (MH) algorithm [5, 10] allows pBBB to be
sampled without knowledge of Z.

The MH algorithm samples from pBBB by starting with any Markov process on the
distribution domain, R2, transforming that Markov process into an ergodic discrete-
time Markov chain that has pBBB as an equilibrium distribution. This Markov chain is
defined by transition probabilities Q̃ where Q̃(ppp1→ ppp2) = Q(ppp1→ ppp2)α, and

α = min
{

1,
pBBB(ppp2)Q(ppp2→ ppp1)

pBBB(ppp1)Q(ppp1→ ppp2)

}
. (6)

The MH algorithm can simulate the Markov process under Q̃ without ever construct-
ing a rate table explicitly. Also, because the definition of α has pBBB in the numerator and
denominator, the partition function Z will cancel eliminating the need to compute it.
Together these considerations make the MH algorithm an efficient and effective means
of sampling from pBBB.

The result of the MH algorithm is a sequence of values {pppi}N
i=0. At step i, the sim-

ulation has value pppi and it uses this to draw a candidate value ppp∗ ∼ q(ppp) = Q(pppi→ ppp).
If Eq. 2 is written as pBBB(ppp) = f (ppp)/Z, then we calculate f (ppp∗) and with Eq. 6 get

α = min
{

1,
f (ppp∗)Q(ppp∗→ pppi)

f (pppi)Q(pppi→ ppp∗)

}
.

With probability α we choose to accept the point and set pppi+1 = ppp∗, otherwise
we reject this candidate value and try again. We repeat this until we have generated
N values. This procedure is illustrated in Figure 6. The sequence of values returned
will include an initial period before the chain reaches equilibrium. The initial points are
highly dependent on the starting value, and thus are not an unbiased sample. Typically
these points are dropped. Depending on the nature of the distribution and the application
a threshold can be set so that subsequent points are independent of the starting value
with high probability [2].

p(x) = P[X = x]

X

x0

x1

x2

x3

x4

Fig. 6: The Metropolis-Hastings algorithm samples
from probability distribution p(x), by simulating a
Markov chain with an equilibrium distribution equal
to p(x). The algorithm generates a sequence of points
{xi}N

i=0 by using the current point to draw a new can-
didate point, and choosing to accept or reject that
point with probability α . In this figure a red cross
represents a rejected point, and a labeled black point
represents an accepted point.
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Parameter Description

k = 4 Number of legs
`= 2.5nm Length of each leg
k+(S) = k+(P) = 1.0×103 s−1 On rate for leg binding
k−(P) = 1.0s−1 Off rate for products
k−(S) = 0.0s−1 Off rate for substrates
kcat ∈ {1.0s−1,0.01s−1} Catalysis rate
f ∈ {0.00pN,0.05pN,0.10pN,0.50pN} Force in the −x̂xx direction
T = 300.0K Absolute temperature

Table 1: Parameters used in simulations.

4 Preliminary Results

We used our KMC algorithm to simulate 100 realizations of the MVRW Markov pro-
cess for several different parameter values. The walkers were simulated until time
tmax = 3.0×106 s. In our experiment the walker started at the origin on a semi-infinite
track. The track is 3 sites wide and sites are on a 1.0nm× 1.0nm grid, as shown in
Fig. 7. The walkers experienced a force in the −x̂ direction that essentially opposed the
direction of highest substrate gradient. The simulations parameters are summarized in
Table 1. The only parameters varied were the force and the catalysis rate. The exper-
iments with kcat = 1.0s−1 have no effective difference between substrate and product,
so walkers can only be expected to move diffusively (at least in the absence of any
force). However, the walkers with kcat = 0.01s−1 will experience significantly slower
detachment from substrates than from products, producing a residency-time bias.

−0.10x̂pN

x̂

ŷ

Fig. 7: An example configuration of a MVRW simulation. The walker has three attached legs.
Light gray sites represent products, dark gray are substrates. Each attached leg forms a circular
constraint on the body’s position, defining the feasible region in orange. The body’s distribution
is shown within this feasible region, and the color and size of surrounding sites represents their
effective rate for attachment reactions.

To quantify the diffusive properties of the walker we estimated moments of several
random variables relevant to the walker motion. One of the defining characteristics of
diffusive motion is that the mean-squared displacement,

〈
‖ppp‖2

〉
, of a walker increases
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as a power law with exponent α = 1. Eq. 7 defines various forms of anomalous diffusion
when 0≤ α ≤ 2, where d = 2 is the dimension and D is the diffusion constant.

〈
‖ppp(t)‖2〉= (2dD)tα ,



α = 0 stationary
0 < α < 1 subdiffusive
α = 1 diffusive
1 < α < 2 superdiffusive
α = 2 ballistic or linear

. (7)

In Fig. 8(a) we show the mean-squared displacement of the walkers on a log-log
plot where power laws are straight lines. We show reference lines for the power laws
corresponding to diffusive and ballistic motion. Clearly, the walkers with lower kcat
experience significant periods of superdiffusive motion, while the walkers with kcat =
1.0s−1 move mainly diffusively.
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(a) (b)

Fig. 8: (a) The mean squared displacement of walkers shows significant superdiffusion in walkers
with small kcat. (b) The work done by walkers against an opposing force. The walkers moving
under zero force always do zero work. Note that 〈W (t)〉 → 4.14pN ·nm = kBT , as t→ ∞.

If we consider the work done against the opposing force, there is a significant
amount of work done on average for all of the walkers, but the maximum mean work is
done by walkers with lower kcat. In Sec. 5 we show that the lower values of kcat act to
bias the walker in the direction of uncleaved substrate, and this direction is essentially in
opposition to the force exerted on the walkers, allowing them to use this bias to do work
against the force. Eventually, however, all of the walkers move backwards into regions
of product sites, and end up effectively diffusing like the walkers with kcat = 1.0s−1

(Fig 8(b)).
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5 Mechanism of Superdiffusive Motion

The results of Sec. 4 show that spiders can move superdiffusively in the direction of
new sites even in opposition to a force. Over significant spans of time, the walkers will
have effectively done work against the force as their motion is biased by the chemical
energy in the sites they cleave.

Molecular spiders operate by cleaving a substrate oligonucleotide, leaving behind a
shorter oligonucleotide product – an irreversible reaction. A molecular spider starting
on a substrate-covered surface is a system far from equilibrium, and consequently has
the potential to do useful work as it relaxes towards equilibrium. Under the parameters
of Table 1, there is as a residency-time bias between leg-substrate and leg-product bind-
ings for the walkers with kcat < 1.0s−1, because the leg-substrate bindings are much
longer lived than the leg-product bindings. When combined with a non-uniform local
distribution of substrates, the slower unbinding from substrates causes the walker to be
effectively biased in the direction higher substrate density.

When a leg binds to a site, it forms a constraint on the position of the body and
the actions of the other legs until a dissociation reaction occurs. According to Eq. 1,
the rate of detachment for a leg-substrate complex is kcat(S) + k−(S), versus k−(P)
for a leg-product complex. We define r = (kcat(S)+ k−(S))/k−(P). If r = 1, there is
effectively no difference between substrate and product; although the substrate sites are
transformed to products, they do not affect the behavior of the walker. This is equivalent
to a walker moving over an all-product surface – an equilibrium process. Thus, we can
expect the walker to undergo normal diffusion when r = 1. Indeed, this is what we see
in Fig. 8a, where the spiders with kcat = 1.0s−1 move diffusively with

〈
‖ppp(t)‖2

〉
∝ t.

However, when 0 < r < 1, a leg-substrate bond lasts longer than a leg-product bond,
and substrates effectively act like anchors. A leg attached to a substrate restricts the
movement of the walker body and other legs until the substrate is cleaved, and the other
legs are constrained to attach to feasible sites close to the attached leg. If a free leg
attaches to a product, it will quickly detach and be free to attach again to another site.
If there are any other substrates in the local environment, one of the other free legs
will eventually find and attach to one. Thus, the legs are in some sense attracted to
substrates, but not because they specifically seek out the substrates or prefer them to
products. Instead, the bias is more subtle, caused by a combination of the residency-
time bias and the collective constraints on the legs imposed by the connection to a
common body. The legs eventually find the substrates simply because if they attach to
a product, they will quickly end up detaching and randomly choosing a new attachment
site again and again until they find a substrate. Note that this effect is only present when
the walker has more than one leg and has r < 1, so both of these properties are critical
for spiders to move superdiffusively.

This bias, however, also depends on the local availability of substrates. Once a leg
attaches to a substrate, the site will eventually be irreversibly transformed into a product.
Thus, while the legs (passively) seek out the substrates, they eventually will deplete
the local substrate supply. For a small environment with a limited number of sites,
substrates will all quickly be turned into products, at which point the system will be at
equilibrium and the walker will move diffusively. However, with larger environments
this march towards equilibrium takes a significant amount of time, and during this non-
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equilibrium period there is potential for superdiffusive motion and for doing physical
work against a force.

x = 0 2!−2!

x = 0 2!−2!

x = 0 2!−2!

t0

t1

t2

Fig. 10: A residency-time bias combined with a
non-uniform local distribution of substrates can
lead to a directional bias. There is a boundary at
x = 0 between substrates (blue) and products (red).
At time t0 a single leg is attached to a substrate,
and the other legs can attach to any feasible sites
(shaded area). Because the leg-product pairs are
short-lived, the legs are more likely to end up at-
tached to substrates at time t1. When the first leg de-
taches at time t2, the equilibrium position and sub-
strate boundary will move right.

Now, consider what happens when the local environment has a non-uniform dis-
tribution of substrates. Suppose, as in Fig. 10, the walker has a single leg attached to
a substrate at site s with location x = 0. The local environment of feasible sites will
then consist of all sites within two leg lengths (2`) from x = 0. Suppose that all sites
with position x ≥ 0 are substrates and all sites with position x < 0 are products. Now
consider what happens when the process is started. The initially attached leg will likely
remain attached to the substrate for some time if r < 1. During this time the other k−1
legs will be restricted to the feasible sites. Short lived product attachments mean that
legs will end up preferentially attached to substrates by the time the first leg cleaves and
detaches. At this point if most of the legs are on substrates, and all of the substrates are
to the right, the spider’s equilibrium body position will move right. At the same time,
because the site at x = 0 is now a product, the boundary between the substrates and
products also moves right. Thus, the walker is biased towards moving right, and simul-
taneously shifts the biasing-inducing substrate/product boundary rightward as well. As
long as the walker stays attached to substrates by the boundary, it will tend to move
along with the boundary, causing the walker to move ballistically in the direction of
new substrates. However, there is still some probability that the walker detaches from
all substrates and moves backwards over previously visited sites. In this case, the walker
must move diffusively.

feasible region

substrate
product sea

feasible region

boundary

substrate
product sea

boundary

(a)

(b)

Fig. 12: (a) The walker in a boundary state B where it
is attached to substrates on the boundary between vis-
ited and unvisited sites. The residency-time bias and
non-uniform local distribution of substrates gives the
spider an outward bias. (b) The walker in the diffusive
state D where it moves over previously visited sites.
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In previous work [12] we also observed significant periods of superdiffusive motion
in the simpler one-dimensional molecular spider models of Antal and Krapivsky [1].
For these models, we explained this superdiffusive motion by showing that the Markov
process can be viewed as consisting of two metastates: a boundary (B) state where
the walker is on the boundary between cleaved and uncleaved sites, and a diffusive
(D) state where the walker is moving over previously visited sites. The walker moves
ballistically in the B state and diffusively in the D state, and the overall motion depends
on how much time the walker spends in each of the metastates. Similarly, the initial
superdiffusive motion in the MVRW model for r < 1 can be understood as the walker
moving between a B and a D state as shown in Fig 12. The walker initially spends most
of its time in the B state, moving ballistically away from the origin in the direction
of unvisited sites, and in opposition to the force. However, the walker has a constant
probability of falling off the boundary and into the D state where it moves diffusively
over previously visited sites. In the D state, the force acts to bias the motion of the
walker backwards, and as the size of the region of cleaved products (the product sea)
grows, the spider takes increasingly long to return to the B state, and eventually becomes
on average stationary at some equilibrium position with mean work 〈W (t)〉 = kBT , as
observed in Fig 8a.

6 Discussion

Given the many potential nanoscale applications for molecular spiders, it is interesting
to see that the MVRW model predicts that walkers move superdiffusively over signifi-
cant times and distances, even in the presence of a force. This motion is not a product
of differing k+ rates, but is rather of a more subtle nature, emerging from the interaction
of a residency-time bias, local substrate anisotropy, and constraints imposed by multi-
ple legs attached to a single body. Walkers with r < 1 stay attached to substrate sites
longer than to product sites. The presence of a non-uniform local distribution of sub-
strates combined with the constrained diffusion imposed by the attached legs causes the
walker to move in the direction of highest substrate density, leading to superdiffusive
behavior when r < 1. This effect relies on the walker having multiple legs.

The ability of the MVRW model to stochastically incorporate the effect of force on
the walker kinetics is due to the separation of time scales between the very fast physical
motion and vibration of molecules and the much slower chemical reactions. Because
the body and unattached legs come to an equilibrium before reattaching, we can model
their motion together with the effect of a force using a Boltzmann distribution. This
assumption means that the body and unattached leg positions need not be part of the
MVRW model state, so our model remains discrete and can be simulated exactly.

Because of our choice to explicitly separate the timescales of the physical and chem-
ical events, the MVRW model uses Monte Carlo simulation separately for both equi-
librium and kinetic analysis of Markov processes. The MVRW model is a non-ergodic
Markov process describing a system significantly out of equilibrium, and we use ki-
netic Monte Carlo techniques to observe the simulated stochastic evolution of a walker
moving over the sites. This puts us in the position of a virtual experimenter, able to
run simulated traces of the spider’s motion and measure exactly any desired properties
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of their motion. In contrast to this kinetic simulation, we use the Metropolis-Hastings
algorithm to study the equilibrium distribution of the walker’s body moving under the
constrained diffusion as enforced by the attached legs.

The superdiffusive motion of walkers in the MVRW model can be understood
through the decomposition of the process into a B metastate where the walker is on the
boundary between substrates and products and is moving ballistically, and a D metastate
where the walker is moving diffusively over product sites. From a practical standpoint,
the duration of the superdiffusive effect and the magnitude of the work done against a
force can be increased by designing walkers that are less likely to move from the B to D
states. Future work will focus on the how the geometry of the walkers and their kinetic
properties can be optimized to increase the amount of time they spend in the B state
moving ballistically, hence maximizing their utility for faster than diffusion molecular
transport and communication.
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