
Shape Analysis with Reference Set Relations

Mark Marron1, Rupak Majumdar2, Darko Stefanovic3, and Deepak Kapur3

1IMDEA-Software,mark.marron@software.imdea.org
2University of California Los Angeles,rupak@cs.ucla.edu

3University of New Mexico,{darko, kapur }@cs.unm.edu

Abstract. Tracking subset relations between the contents containerson the heap
is fundamental to modeling the semantics of many common programing idioms
such as applying a function to a subset of objects and maintaining multiple views
of the same set of objects. We introduce a relation,must reference sets, which
subsumes the concept ofmust-aliasingand enables existing shape analysis tech-
niques to efficiently and accurately model many types of containment properties
without the use of explicit quantification or specialized logics for containers/sets.
We extend an existing shape analysis to model the concept ofreference sets. Ref-
erence sets allow the analysis to efficiently track a number of important relations
(must-=, andmust-⊆) between objects that are the targets of sets of references
(variables or pointers). We show that shape analysis augmented with reference
set information is able to precisely model sharing for a range of data structures
in real programs that cannot be expressed using simple must-alias information.
In contrast to more expressive proposals based on logic languages (e.g., exten-
sions of first-order predicate logic with transitive closure or the use of a decision
procedure for sets), reference sets can be efficiently tracked in a shape analyzer.

1 Introduction

Precise reasoning about the structure of the program heap iscrucial to understanding
the behavior of a given program, particularly for object-oriented languages. Traditional
points-toanalyses, which calculate sharing properties based on coarse aggregations of
the heap (for example by coalescing all cells from the same allocation site and ignoring
program flow [15]), are known to be too imprecise for many applications. More precise
shape analysistechniques [1,5,6,9,13,16–19] have been proposed when more accurate
information is desired. These analyses recover precise information by distinguishing
heap cells based on additional reachability, allocation site, or type information. Using
this additional information, these analyses can preciselymodel recursive data struc-
tures [5,19] and composite structures [1,6,18].

Most work on shape analysis has focused on existential (may) sharing properties
(and by negation, separation properties) of pointers or variables—the fundamental ques-
tion asked of the abstract heap representations is whether two abstract referencesmay
represent pointers thatalias each other. While this is often enough to prove many so-
phisticated properties of data structures that have limited amounts of sharing or where
the sharing is simple (e.g., variable aliasing), the reasoning becomes overly restrictive
(and imprecise) for more complex subset relationships among sets of shared objects.
Such relationships arise in programs that use multiple views of the same collection of

01 Vec tor V = new Vector () ;
02 Data [] A = new Data [N] ;
03 f o r (i n t i = 0 ; i < N; ++ i)
04 A[i] = new Data (abs (r a n d I n t ())) ;

05 f o r (i n t i = 0 ; i < A. l e n g t h ; ++ i) {
06 Data d = A[i] ;
07 i f (d . f > 0) V. add (d) ;
08 }

09 f o r (i n t i = 0 ; i < V. s i z e () ; ++ i) {
10 Data d = V. ge t (i) ;
11 d . f = 0 ;
12 }

Fig. 1. Initialize array (lines 3-4), Filter values (lines 5-7), and Updatef fields (lines 9-11)

objects (for efficiency, a class might keep the same set of objects in aVectorand in
a Hashtable) or when performing updates on a set of shared elements (filter-map and
subset-remove loops, where a sub-collection is first computed then operated on).

We introducereference setrelations that track set relations (must-=, andmust-⊆)
between the targets of sets of variables/pointers in the concrete program. Thus,must ref-
erence setinformation is stronger than, and subsumesmust-aliasing(which only tracks
must-= between pairs of variables/pointers). We show that when an existing shape anal-
ysis is extended with two simple relations to track the most commonly occurring refer-
ence set relations it can efficiently and precisely model many sharing properties in the
program, and also model how these properties affect the behavior of the program.

Sharing relations between sets of objects, including reference set relations, can be
modeled by extending the analysis with a theory for sets [8] or by quantification with
a “forall-exists” quantifier structure (i.e., for all objects pointed to by a reference in
arrayA, does there exist a reference in arrayB pointing to the same object?). However,
the introduction of additional theories or using more general logics (with quantification
and disjunction) makes reasoning computationally expensive. Instead, as demonstrated
in this paper, many sharing properties can be efficiently tracked on top of an existing
shape analysis with enough accuracy to prove many importantsharing relationships.

2 Example and Motivation

Consider the three loops in Figure 1: array initialization,filtering elements into a sub-
collection, and updating the contents of the sub-collection. For simplicity the example
uses a dummy classData with a single integer fieldf .

The first code fragment allocates an arrayA and then fills it withData objects with
random non-negative values stored in theirf fields. The second loop scans the array for
elements that have strictly positive values in thef fields and constructs a new vector
V of these elements. The third loop sets thef field of every element in the vectorV to
zero. If these loops are analyzed using one of the existing shape analysis that can model
collections, such as [12], we get the abstract heap graph shown in Figure 2(a) at the end
of the second loop. In this figure we have simplified the edge/node labels to focus on the
concept of howmustsharing relations between sets of objects can be used to precisely
model the behavior of a program.

The simplified model shows the variableA referring to a node with anid tag of 1
(a unique identifier given to each node/edge to simplify the discussions of the figures)
which abstracts an object of typeData[] . There may be many pointers stored in this

(a) (b) (c)

Fig. 2. Abstract model and two possible concrete heaps.

array (these pointers are abstracted by the edges with theid’s 2, 4); since these pointers
are stored in an array we give them the special storageoffset? (indicating that they
are stored at an indeterminate index in the array/container). The two outgoing edges
indicate that the pointers stored in the array may either refer to objects abstracted by
node 2 or to objects abstracted by node 4. The notationf:0 , f:+ , andf:0+ indicates
the values of the integer fields using a simplesign domain [4], wheref:0 in node 2
indicates that all the objects that are abstracted by this node have the value 0 stored in
thef field while thef:+ entry in node 4 indicates that all the objects abstracted by that
node have values in the range[1,∞) in their f fields (andf:0+ , used later, indicates f
values in the range[0,∞)). Figure 2(a) also shows the variableV which has an edge to a
node abstracting aVector object. The pointers stored in this vector are abstracted by
edge 5 and they refer to objects abstracted by node 4.

Based on this information both of the concrete heaps shown inFigure 2(b) and 2(c)
are consistent with this model (i.e., they are valid concretizations). In Figure 2(b) we
see that arrayA contains threeData objects (some of which have 0 field values and
some of which have positive values), the first and third of which are also stored in the
Vector V (which only contains objects with positive values). This heap is clearly a
possible result of the construction and filter loops in our example. If we look at the
concrete heap shown in Figure 2(c) it is apparent that this program state is infeasible
since the contents ofV are not a subset ofA and there is aData object inA with a
positive field value that is not inV. However, this concrete heap is consistent with the
information provided by the abstract graph model, as the fact that edges 4 and 5 end
at the same nodeonly means that theremayexist an object that is referred to by both
a pointer abstracted by edge 4 and a pointer abstracted by edge 5. In particular, the
abstraction is too weak to prove that at the end of the third loop, every element inA has
the value zero in thef field.

Thus, in order to precisely represent the desiredmustsharing relations between
various sets of pointers stored in the array and vector we need to extend the graph model
with additional information. The analysis presented in this paper extends a standard
shape analysis by tracking tworeference set equivalencerelations on the heap. The first
relation is on pairs of abstract edges, which tracks pairs ofedges such that the sets of
references abstracted by the two edgesmustalways refer to exactly the same set of
objects. The second relation is on edges and nodes, and tracks edges that abstract a set
of references such that all of the objects abstracted by a node are pointed to by one of
the references in the set.

Fig. 3. Abstract Graph With Reference Set Information

These reference set properties allow the analysis to precisely model the result of the
construction and filter loops in our example. The model enhanced with the reference set
properties is shown in Figure 3. We have made two additions tothe model in Figure 2(a).
First, theEdgeEQrelation tracks which edges abstract references that always refer to
the same sets of objects. Second, for each node we add a list ofsets of edges such that
every object abstracted by the node is referred to by a reference represented by one of
the edges in the set. Intuitively, these additional relations tell us that the set of objects
referred to by references abstracted by edge 4 is equal to theset of objects referred to by
references abstracted by edge 5. This information and the structure of the graph imply
that every object stored in the vectorV mustalso be stored inA and also that if an object
is stored inA it must be either abstracted by node 5 (and have the value 0 stored in the
f field) or by node 4 (and be stored inV, which as desired, excludes the concrete heap
in Figure 2(c) from the set of feasible concretizations).

This last property then allows us to precisely model the third loop in the running
example. In particular we know that since every object inA with a non-zerof field is
stored inV we can infer that if every object inV has thef field set to 0 then after the
loop every object inA will have 0 in thef field.

3 Concrete and Abstract Heaps

3.1 Concrete Heap and Reference Set Relations

The semantics of memory are defined in the usual way, using anenvironment, mapping
variables into values, and astore, mapping addresses into values. We refer to the envi-
ronment and the store together as the concrete heap, which isrepresented as a labeled,
directed multi-graph(V,O,R) whereV is a set ofvariables, O is a set ofobjectson the
heap, andR⊆ (V ∪O)×O×L a set ofreferences, whereL is the set of storage location
identifiers (a variable name in the environment, a field identifier for references stored in
objects, or an integer offset for references stored in arrays/collections).

A regionof memoryℜ = (C,P,Rin,Rout) consists of a subsetC⊆ O of the objects
on the heap, all the referencesP = {(a,b, p) ∈ R | a,b∈C∧ p∈ L} that connect these
objects, the references that enter the regionRin = {(a,b, r)∈R| a∈ (V∪O)\C∧b∈C∧
r ∈ L}, and references exiting the regionRout= {(a,b, r)∈R| a∈C∧b∈O\C∧r ∈ L}.
Note thatℜ is determined byC, and we say a regionℜ is induced bya setC of objects.

Given a regionℜ = (C,P,Rin,Rout) and a set of referencesRs⊆ Rin we define the
function:Target(Rs) = {o∈C | ∃a∈ (V ∪O), r ∈ L s.t.(a,o, r) ∈ Rs}.

Definition 1 (Reference Set Relations).Given a regionℜ = (C,P,Rin,Rout), reference
sets Rs⊆ Rin and R′s⊆ Rin, we define the following relations:

Reference ContainsR′s� Rs if Target(R′s)⊆ Target(Rs).
Reference Equivalent R′s∼ Rs if Target(R′s) = Target(Rs).
Region Covers Rs ⊲ ℜ if C ⊆ Target(Rs).

Aliasing of two referencesx, y in the concrete heap is equivalent to the reference
set relation{x} ∼ {y}, thus theconcrete reference set relationssubsume the standard
notion of aliasing.

3.2 Abstract Graphs

Our abstract domain is based on thestorage shape graph[2, 3] approach. Let̂L be a
set of abstract storageoffsets(variable names, field offsets, or special offsets for ref-
erences stored in arrays/collections) which are related tothe storage locationsL by an
abstraction functionαoffset : L 7→ L̂. A storage shape graph (ssg)is a tuple of the form
(V̂,N̂, Ê), whereV̂ is a set of nodes representing the variables,N̂ is a set of nodes (each
of which intuitively abstracts a regionℜ of the heap), and̂E ⊆ (V̂ ∪ N̂)× N̂× L̂ are the
graph edges, each of which intuitively abstracts a set of references.

Definition 2 (Valid Concretization of a ssg). A given concrete heap h= (V,O,R) is
a valid concretizationof a labeled storage shape graphg = (V̂,N̂, Ê,Û) if there are
functionsΠv : V 7→ V̂ , Πo : O 7→ N̂, Πr : R 7→ Ê such thatΠv is 1-1, and

– for all (o1,o2, p)∈R with o1,o2∈O, if Πr(o1,o2, p)≡ (n1,n2, l), then n1 = Πo(o1),
n2 = Πo(o2), and l= αoffset(p).

– for all (v,o,v) ∈R with v∈V and o∈O, if Πr(v,o,v)≡ (n1,n2, l), then n1 = Πv(v),
n2 = Πo(o), and l= v.

We say(Πv,Πo,Πr) witnessthat h is a valid concretization of g. We introduce the
following notation for pre-images of nodes and edges of an ssg:

– We write h↓g e for the set{r ∈ R |Πr(r) = e} of references in the concrete heap h
that are in the pre-image of e∈ Ê underΠr .

– We write h↓g n for the concrete regionℜ induced by the set{o∈O |Πo(o) = n}.

In our analysis, we extend ssg’s with a set of additional instrumentation predicates
that restrict the set of valid concretizations of an ssg. LetU denote a set of relations
(called instrumentation predicates) on concrete objects and references, and letÛ de-
note instrumentation relations on the nodes and edges of an ssg, withu : U → Û a 1-1
map between them. Alabeled storage shape graphs (lssg)is a tuple(V̂,N̂, Ê,Û) where
(V̂,N̂, Ê) is a ssg and̂U is a set of relations over̂N andÊ. In the following, we refer to
lssg’s simply asabstract graphs. A concrete heaph is a valid concretization of an lssg
(V̂,N̂, Ê,Û) if h is a valid concretization of the ssg(V̂,N̂, Ê) through the functionsΠv,
Πo, Πr , and additionally, for eachp∈ Û , nodesn1, . . . ,nk ∈ N̂, and edgese1, . . . ,el ∈ Ê,
if (n1, . . . ,nk,e1, . . . ,el) ∈ p holds, then each tuple in{(o1, . . . ,ok, r1, . . . , r l) | oi ∈ h ↓g
ni , i ∈ {1, . . . ,k}, r j ∈ h ↓g ej , j ∈ {1, . . . , l}} is in u−1(p).

For example, in Section 2 we introduced two instrumentationrelationstype and
sign. Formally, for a set{τ1, . . . ,τk} of object types, we add an instrumentation re-
lation Type [{τ1, . . . ,τk}] ⊆ N̂ to Û corresponding to the relationλo.typeof (o) ∈
{τ1, . . . ,τk} on objects, and require that for eachn ∈ Type [{τ1, . . . ,τk}] we have that
each objecto ∈ h ↓g n satisfiestypeof (o) ∈ {τ1, . . . ,τk}. The sign relation can be
similarly defined.

4 Instrumentation Predicates

4.1 Abstract Reference Sets

We introduce two instrumentation relations that allow us totrack many useful properties
of the heap:abstract edge equivalence, which relates two abstract edges, andabstract
node coverage, which relates a set of abstract edges to an abstract node.

Abstract Edge Equivalence Given two edgese,e′ ∈ Ê, we saye is edge equivalentto
e′, writtene∼̂e′, iff every valid concretizationh of the abstract graphg must satisfy
(h ↓g e) ∼ (h ↓g e′).

Abstract Node CoverageGiven a set of edgesEc⊆ Ê and an abstract noden∈ N̂ we
sayEc node covers n, written Ec⊲̂n, iff every valid concretizationh of the abstract
graphg must satisfy

⋃
{h ↓g e′ | e′ ∈ Ec} ⊲ (h ↓g n).

Proposition 1. Given lssg g= (V̂,N̂, Ê,Û), a valid concretization h of g, n,n′ ∈ N̂, and
e,e′ ∈ Ê.

1. If {e}⊲̂n and h↓g e= /0 then h↓g n = /0 and h↓g e′ = /0 for all e′ ending at n.
2. If e∼̂e′ and h↓g e= /0 then h↓g e′ = /0.
3. If {e}⊲̂n and{e′}⊲̂n then ê∼e′.
4. If Ec⊲̂n, Es⊆ {es | es ends at n} then

⋃
{h ↓g es | es∈ Es} �

⋃
{h ↓g ec | ec ∈ Ec}.

Given the definition forabstract edge equivalencewe can express the standard con-
cept ofmust-aliasingof edgese1 ande2 as a special case of theabstract edge equiv-
alence relation: e1 ande2 must aliasiff e1, e2 each represent a single reference and
e1∼̂e2.

We restricted the definition of theabstract referencerelations to equivalence of
edges plus a special relation on nodes. This allows us to track the most common occur-
rences of reference equivalence (the edge ˆ∼ relation) and subset relations (the⊲̂ relation
and Proposition 1). We could define a more general relation, where subset relations be-
tween sets of edges are tracked. However, this formulation requires tracking a binary
relation on the power set of̂E, which is undesirable from a computational standpoint.

4.2 Additional Instrumentation Predicates

In addition to tracking type properties of the nodes, and theedge/node abstract reference
set relations defined above, the nodes and edges of storage graphs are augmented with
the following instrumentation relations introduced in previous work [11].
Linearity. Thelinearity relation is used to track the maximum number of objects in the
region abstracted by a given node or the maximum number of references abstracted by
a given edge. Thelinearity property has two values: 1, indicating a cardinality of[0,1],
or ω , indicating any cardinality in the range[0,∞).
Connectivity and Interference. We use two instrumentation relations to track the po-
tential that two references can reach the same heap object inthe region that a particular
node represents. For this paper we use simplified versions and refer the reader to [11]
for a more extensive description of these relations.

Given a concrete regionℜ = (C,P,Rin,Rout) and we say objectso,o′ ∈C, arerelated
in ℜ if they are in the sameweakly-connected1 component of the graph(C,P).

To track the possibility that two incoming edgese,e′ to the noden abstract refer-
ences that reachrelatedobjects in the region abstracted byn we introduce theconnec-
tivity relation. We saye,e′ areconnectedwith respect ton if theremay∃(a,o, r) ∈ (h ↓g
e),(a′,o′, r ′) ∈ (h ↓g e′) s.t.o,o′ ∈ (h ↓g n) ∧ (o, o′ arerelated). Otherwise we say the
edges aredisjoint.

To track the possibility that a single incoming edgee to the noden abstracts mul-
tiple references that reach the same object in the region abstracted byn we intro-
duce theinterfererelation. An edgee representsinterferingpointers (ip) if theremay
∃(a,o, r),(a′,o′, r ′) ∈ (h ↓g e) s.t. (a,o, r) 6= (a′,o′, r ′) ∧ (o, o′ arerelated). Otherwise
we say the edge represents allnon-interferingpointers (np).

Pictorial Representation.We represent abstract graphs pictorially as labeled, directed
multi-graphs. Each node in the graph either represents a region of the heap or a variable.
The variable nodes are labeled with the variable that they represent. The nodes repre-
senting the regions are represented as a record[id type scalar linearity
nodeCover] that tracks the instrumentation relations for the object types (type), the
simple scalar domain (scalar), the number of objects represented by the node (linearity,
omitted when it is the default value 1), and the edge sets thatcover the node (node-
Cover).

Each edge contains a record that tracks additional information about the edge.
The edges in the figures are represented as records{id offset linearity
interfere connto }. Theoffsetcomponent indicates the offsets (abstract storage
location) of the references that are abstracted by the edge.The number of references
that this edge may represent is tracked with thelinearity relation. Theinterfere rela-
tion tracks the possibility that the edge represents references that interfere. Finally, we
have a fieldconntowhich is a list of all the other edges/variables that the edgemay be
connected to according to theconnectedrelation. Again to simplify the figures we omit
fields that are the default domain value (linearity = 1, interfere= np, connto= /0).

Finally, we use a global equivalence relation on the edges which tracks the abstract
edge equivalence relations (EdgeEQin the figures).

5 Abstract Operations

We now define the most important and interesting dataflow transfer functions for the ab-
stract graph domain, including how the reference set relations are updated. The domain
operations aresafeapproximations of the concrete program operations. For brevity we
omit proofs of these safety properties (which rely on simplecase-wise reasoning about
the graph structure and the instrumentation relations). For these algorithms we also
assume that all the variables have unique targets (in practice this is done by creating
one new abstract graph for each possible variable target, where in each new graph the
variable of interest has a unique target).

1 Two objects are weakly-connected if there is a (possibly non-empty) path between them (treat-
ing all edges as undirected).

5.1 Operations

Variable Nullity. When performing tests we generate one version of the abstract graph
for each possible outcome. For the nullity test of a variablewe create one abstract graph
in which the variablemustbe null and one abstract graph in which the variablemust
benon-null. In the case where the variable is assumed to benull we are asserting that
the concretization of the edge that represents the variabletarget is empty. Thus, if the
variable edge covers (⊲̂) a node we infer that the node does not represent any objects
and all the other incoming edges must also have empty concretizations. Similarly any
edge that is ˆ∼ to the edge representing the variable target must also have an empty
concretization (and can be removed from the graph).

Algorithm 1 : Assume Var Null (v == null is true)
input : graphg, varv
ev← the edge representing the target ofv;
n← the target node ofev;
if ev⊲̂n then Enull←{all incoming edges ton};
else Enull←{e′|e′∼̂ev};
for edge e∈ Enull do

g.removeEdge(e);

Indexing Bounds. In order to analyze nontrivial programs that manipulate arrays and
collections we must be able to accurately model the effects of programs that use integer
indexed loops to traverse them. To do this we use several special names for the edges
that represent the pointers stored in arrays/collections.The name? indicates elements at
arbitrary indices in an array when it is not being indexed through,at represents the dis-
tinct element at the index given by the indexing variable,bi represents all the elements
stored at indices less than the indexing variable, andai represents all the elements stored
at indices greater than the indexing variable.

In order to simulate the effect of the test,i < A.Length , we again create two
new abstract graphs, one where the test result istrue and one where the test result is
false. The true result does not provide any additional information that is applicable
in our heap domain so we do not need to do anything. The false result indicates that
the indexing variable now refers to an index larger than the array size. This implies
that there are no elements stored at indices equal to or greater than the current value
of the indexing variable, which means that the edges withoffsets atandai must have
empty concretizations and can be eliminated from the abstract graph. Further, as with
the variable nullity test we can use the reference set relation information to eliminate
other edges and nodes that must also have empty concretizations.

Figure 4(a) shows the most general abstract heap that ariseswhen using simple
integer indexing in a loop (to focus on the loop indexing we assume the body is empty)
to traverse an array as initialized in lines 3-4. In this figure we have three outgoing
edges from node 1, the edge with offsetbi (edge 6) which represents all the elements at
indices less thani (elements that have been processed), the edge with the offset at (edge
7) which represents the single element stored at indexi (the element currently being

processed), and the edge with offsetai (edge 2) which represents all of the elements at
indices greater thani (elements not yet processed).

(a) for(i = 0; i < A.Len; ++i) (b) i < A.Len is False

Fig. 4. Integer Indexing and Test

Figure 4(b) shows the abstract graph that results from assuming the test,i <
A.Length , is false. In this figure the analysis has determined that since the index-
ing variable (i) is off the end of the array all of the elements in the array must be stored
at indices less thani and that edges 2, 7 have empty concretizations. This allows the
analysis to remove them and since these edgescover(⊲̂) nodes 2, 6 respectively we can
infer that these nodes have empty concretizations and can beremoved as well.
Load. The field load operation (x = y.f) first computes which node is the target of
the expressiony.f , creating a more explicit representation as needed (Subsection 5.2).
Then it adds an edge fromx to this node and if the storage location ofy.f is unique
then we know the target ofx must be equal to the target ofy.f (and the edges repre-
senting them are ˆ∼ and have the samê⊲ properties).

Algorithm 2 : Load (x = y.f)
input : graphg, varx, vary, field f
nullify x;
if y. f 6= null then

g.materialize(the unique target ofy. f);
n← target node ofy;
e← the unique edge aty. f ;
assignx to refer to the target ofe;
if n.linearity = 1 then

n′ ← the target node ofe;
set edge representingx ∼̂ to e;
if e ⊲̂ n′ then set edge representingx ⊲̂ n′;

5.2 Materialization

The materialization operation [13] is used to transform single summary nodes into more
explicit subgraph representations. For the example in thispaper we only need a simple

version ofSingletonmaterialization which is restricted to handle the following case and
otherwise conservatively leave the summary region as it is:if the incoming edges can
be partitioned into two or more equivalence classes based ontheconnectedinstrumen-
tation relation. Once we have identified a node and the edge partitions we create a new
node for each partition.

Figure 5(a) shows the heap abstract graph that captures all of the possible states at
line 4 of the example program. The variableA refers to a node with the identifier 1,
which represents aData[] array, and we know it represents at most one array (the
default omittedlinearity value of 1). This array may have multiple pointers stored in it,
represented by thelinearity valueω in the edge with id 2. Each of these pointers refers
to a uniqueData object since the edge has the omitted defaultinterferevalue ofnp.
Thef:0+ entry indicates that all objects abstracted by node 2 have values in the range
[0,∞) in their f fields. Finally, based on the{2} entry of thenodeCoverset for the node
2, we know that each object is referred to by a pointer abstracted by edge 2.

(a) Result From Initialization Loop (b) Load ofA[i] (when i = 0)

Fig. 5. Load ofA[0] on result of first loop

The result of the load,d = A[i] wheni = 0 during the analysis of the first itera-
tion of the filter loop (line 6), is shown in Figure 5(b). In this figure we have split edge
2 from Figure 5(a) into two edges, one representing the pointer stored at index 0 (edge
4, with offsetat) and one representing all the pointers stored at indices[1,∞) (edge
2, with offsetai). We have also split the node which represents theData objects into
node 4 representing the object targeted by the pointer inA[0] and node 2 representing
the objects targeted by the pointers stored at the other indices in the array.

Since we know that the edge that was split (edge 2)⊲̂ the node that was split (node
2) we know that the resulting edges in Figure 5(b) must⊲̂ the resulting nodes (edge 2
⊲̂ node 2 and edge 4̂⊲ the node 4). Further we know that edge 4 represents a single
pointer (it represents the single pointer atA[0]) and, since it̂⊲ node 4, that node must
represent at most one object (the default omittedlinearity value of 1).

Finally, we have set the target of the variabled to be the same as the target of the
edge that represents the pointers stored inA[0] . Based on the load algorithm we set
the new edge (edge 11) to be ˆ∼ to edge 4 and since edge 4⊲̂ node 4, we know that edge
11 ⊲̂ node 4 as well.

6 Examples

Filter Loop Example. The filter loop (lines 5-7) demonstrates how the analysis uses
reference set information and the control flow predicate (d.f > 0) to infer additional
information about the heap, in particular that the set of objects stored inV mustequal
the set of objects with positivef fields inA. To simulate the effect of the test (d.f >
0) on the state of the program we create two abstract graphs, one for the result when
test result is true and one when the test result is false.

(a) Assert Test is True (b) Assert Test is False

(c) Fixed Point of Loop Analysis (d) i < A.Length False, Exit Loop

Fig. 6. Filter Loop Analysis

Figure 6(a) shows the abstract graph that results from assuming that the testd.f >
0 is true (on the first iteration of the loop,i = 0) and the entry is added to theVector
V. Since the test succeeds and we knowd must refer to the single object abstracted by
node 11 (default omittedlinearity value of 1) we can update the scalar information to
show that thef field must be greater than 0 (thef:+ label). We have updated the graph
structure by adding the edge 5 to represent the pointer that is stored into the vector
object. Since we know this pointer refers to the same object as d, which is represented
by edge 4, we add the entry (4, 5) to theEdgeEQrelation and since edge 4̂⊲ node 4 we
know that edge 5 alsô⊲ node 4.

Figure 6(b) shows the abstract graph that results from assuming that the testd.f >
0 is false(on the first iteration of the loop,i = 0) and the entry is not added toV. Since

the test fails and again we knowA[i] refers to a single object we update the scalar
information to show that thef field must equal to 0 (thef:0 label).

Figure 6(c) shows the fixed point abstract graph which represents all the states that
are generated in the loop. We see that there may be many elements in the vectorV and
many elements that are not added to the vector (represented by the edges with thebi
labels, 4 and 6 respectively). Since we tracked the⊲̂ relation of each individual object
as it was processed we know that every object referred to by a pointer represented by
edge 4 must have been added to the vectorV and thus is also referred to by a pointer
represented by edge 5. This implies that edge 5 ˆ∼ edge 4 and both edge 4⊲̂ node 4 and
edge 5⊲̂ node 4.

Figure 6(d) shows the result of assuming thati < A.Length returnsfalse. The
at andai edges (edges 7, 2) must have empty concretizations and can beeliminated
(as they abstract the pointer stored at indexi and pointers stored at indices larger than
i). As desired the analysis has determined that all the objects with a non-zerof field
have been stored in the vectorV (since node 5 only abstracts objects with 0 in thef
field and edge 4 ˆ∼ edge 5).
Update Loop Example. For brevity we omit descriptions of how the reference set in-
formation is propagated during the individual operations of the update loop (lines 9-11)
and focus on how this information is used to improve the precision of the analysis
results at the loop exit. The fixed point abstract graph for the loop body is shown in
Figure 7(a). In this figure we see that the there are potentially many pointers that come
before the current index position in the vectorV (edge 10 withoffsetbi , all of which
point to objects with 0 in thef field). It also indicates that the edges representing the
current index location (edge 8 withoffsetat) and the set of pointers that come after the
current index position (edge 5 withoffsetai) cover (̂⊲) their target nodes (nodes 4, 8).

If the exit test (i < V.size()) is falsethen we can infer that there are no entries
in the vector at indices that are greater than or equal toi . This implies that the edges
at andai (edges 8, 5) have empty concretizations since they represent pointers stored
at indices greater than or equal toi . Based on the ˆ∼ relations (4, 5) and (7, 8, 11) this
implies that edges 4, 7 and 11 have empty concretizations as well.

The result of this inference is shown in Figure 7(b). After the test (and the removal
of the edges/nodes) there are no longer any pointers to objects with non-zerof fields
in the vectorV or the arrayA. Thus, the loop has successfully determined that all the
objects in the vectorV must be updated and further, this update information has been
reflected in the original arrayA (i.e., there is no object inA that had a non-zero field
that was not updated in the loop). As desired the analysis hasdetermined that all of the
objects in the arrayA have the value 0 stored in theirf fields after the filter/map loops.

7 Experimental Evaluation

We have implemented a shape analyzer based on the instrumentation relations and ref-
erence set information presented in this paper. We use a number of benchmarks2 from
our version of the Jolden suite [7], two programs from SPECjvm98 [14], and two pro-
grams (exp and interpreter) written as challenge problems. The JOlden suite contains

2 Benchmark/Analysis code is available atwww.software.imdea.org/ ˜ marron/ .

(a) Fixed Point Update of Loop

(b) After Loop Exit

Fig. 7. Fixpoint and Exit of Map Loop

pointer-intensive kernels (taken from high performance computing applications). We
have modified the suite to use modern Java programming idioms. The benchmarksray-
trace anddb are taken from SPECjvm98 (with minor modifications to removetest har-
ness code and threading).

Benchmarksexpand interpreter, our two internally developed benchmarks, are a
basic arithmetic expression evaluator and an interpreter for the computational core of
Java. Theexp program contains a variety of heap analysis challenges (non-trivial heap
structures with and without sharing, copy traversals of thestructures and destructive
traversals of the structures), and is still small enough to understand. The interpreter
program is a large program with varied heap structures, froma large well defined tree
structure in the AST, symbol and local variable tables, a call stack of pending call
frames, and a very poorly defined cyclic structure in the internal model of the heap built
by the interpreter (thus the heap analysis must be both precise and able to deal with
ambiguity efficiently). It also has substantial amounts of sharing (variables, method
signatures and objects on the interpreters internal representation of the heap are shared
in multiple structures). Because of these characteristicswe believe these programs are
excellent challenge problems for this area of research.

The analysis algorithm was written in C++ and compiled usingMSVC 8.0. The
analysis was run on a 2.6 GHz Intel quad-core machine with 2 GBof RAM (although
memory consumption never exceeded 150 MB). Detailed information on the interpro-
cedural dataflow analysis methods used can be found in [10].

We compare the analysis results when using thereference set relationsdescribed
in this paper and when using a basic equivalence-based field-sensitive must points to

BenchmarkLOC Alias TimeRef. Time
em3d 1103 0.09s 0.11s
health 1269 1.55s 1.87s
bh 2304 0.72s 0.91s
db 1985 0.68s 1.07s
raytrace 5809 15.5s 15.9s
exp 3567 152.3 161.8
interpreter 15293 114.8 119.3

Fig. 8.Alias Time reports the analysis time with basicmust-aliastracking while Ref. Time reports
the analysis time usingreference set relations. LOC is for the normalized program representation
including library stubs required by the analysis.

relation on the abstract graph edges. In each of these benchmarks when using the ref-
erence set relations we see a moderate increase in runtime which varies based on the
quantity of subset relations generated by the program (withthe largest increase indb,
which represents an in-memory database and views of this database via arrays). Each
of these benchmarks possess some instances of data structures where the use of refer-
ence set relations allows the analysis to extract information that was not possible with
simple aliasing information. In some cases this information is not particularly useful (in
em3d the analysis discovers that the there are 2 vectors each of which refers to every
element in one of the halves of a bipartite graph). However, in most of the programs
the reference set information provides potentially valuable information. For example,
in bh the analysis discovers that the leaves of the space decomposition trees are always
a subset of a given vector, indb we know the set of entries in each view is a subset of
the entire database, and ininterpreter the analysis determines that each variable symbol
is interned in a special table and that all live stack frame objects must be stored in a sin-
gle list container. In addition the analysis is able to precisely model (as in the running
example) most of the filter-map and subset-remove type loopsthat occur.

8 Conclusion

In this paper we introduced reference set relations, a novelconcrete heap property that
subsumes the concept of must-aliasing and allows us to compactly express a wide range
of must-sharing relations (must-= andmust-⊆) between arrays, collections, and heap
data structures. By extending an existing shape analysis with two simple relations to
track the most commonly occurring reference set relations (equality via theabstract
edge equivalenceproperty,∼̂, and subset relations, indirectly, via theabstract node
coverproperty and̂⊲) we can model many useful sharing properties. As demonstrated
by the experimental evaluation, this approach has a small impact on computational costs
when compared with classicmust-aliasingand allows the tracking of a much richer set
of heap sharing properties. This work also highlights the strength of the labeled stor-
age shape graph approach, which partitions the heap into conceptually homogeneous
regions. This partitioning enables even relatively simpleconcepts such as thereference
set relationspresented in this work to extract rich information from the program (and
conversely may enable the efficient use of strong decision procedures by limiting the
complexity of the verification conditions encountered during program analysis).

Acknowledgments.he first author was supported by EU FP7 NoE S-Cube 215483
and FET IST-231620HATS, Spanish MICINN project 2008-05624/TINDOVESand
Madrid Regional project S-0505/TIC/0407PROMESAS. The second author was sup-
ported in part by the NSF grants CCF-0546170 and CCF-0702743. This material is
based upon work supported by the National Science Foundation under grant CCF-
0540600. This research is supported in part by the National Science Foundation under
grants CCF-0540600, CCF-0546170, and CCF-0702743. The authors thank Mooly Sa-
giv and Roman Manevich for their useful comments on a preliminary version of this
work.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. InCAV, 2007.

2. D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures. InPLDI,
1990.

3. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data structures. In
SAS, 2003.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InPOPL,
1979.

5. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. InSAS, 2006.

6. S. Gulwani and A. Tiwari. An abstract domain for analyzingheap-manipulating low-level
software. InCAV, 2007.

7. Jolden Suite. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.
8. V. Kuncak and M. C. Rinard. Decision procedures for set-valued fields. Proc. Abstract

Interpretation of Object-Oriented Languages, 2005.
9. T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction for shape analysis with fast and precise

transformers. InCAV, 2006.
10. M. Marron, O. Lhotak, and A. Banerjee. Call-site heuristics for scalable context-sensitive in-

terprocedural analysis. Report at:www.software.imdea.org/ ˜ marron/ , July 2009.
11. M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and D. Kapur. Sharing

analysis of arrays, collections, and recursive structures. In PASTE, 2008.
12. M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur.Heap analysis in the presence

of collection libraries. InPASTE, 2007.
13. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with

destructive updating. InPOPL, 1996.
14. Standard Performance Evaluation Corporation. JVM98 Version 1.04, August 1998.

http://www.spec.org/jvm98.
15. B. Steensgaard. Points-to analysis in almost linear time. InPOPL, 1996.
16. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. C. Rinard. Field constraint analysis. In

VMCAI, 2006.
17. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InCC, 2000.
18. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. OHearn. Scalable

shape analysis for systems code. InCAV, 2008.
19. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data structures. In

PLDI, 2008.

