
Supervised learning in an adaptive DNA strand
displacement circuit

Matthew R. Lakin1,2 and Darko Stefanovic1,2

1 Department of Computer Science, University of New Mexico, NM 87131, USA
2 Center for Biomedical Engineering, University of New Mexico, NM 87131, USA

{mlakin,darko}@cs.unm.edu

Abstract. The development of DNA circuits capable of adaptive behavior is a
key goal in DNA computing, as such systems would have potential applications
in long-term monitoring and control of biological and chemical systems. In this
paper, we present a framework for adaptive DNA circuits using buffered strand
displacement gates, and demonstrate that this framework can implement super-
vised learning of linear functions. This work highlights the potential of buffered
strand displacement as a powerful architecture for implementing adaptive molec-
ular systems.

1 Introduction

Implementing adaptive behaviors, such as supervised learning, is a key challenge for the
fields of molecular computing and synthetic biology. Addressing this challenge would
enable the development of molecular computing solutions to important practical ap-
plications, such as the detection of emerging pathogens [1] whose signatures mutate
over time. Furthermore, the development of molecular computing systems that are ca-
pable of operating over an extended period of time would advance the state of the art of
molecular circuit design, as most current systems are single-use devices.

Previous experimental work has shown that neural networks may be implemented
using DNA strand displacement circuits [2] comprising “seesaw” gates [3, 4]. However,
in that work the neural network was trained in silico and each instance of the experi-
mental system could only be used one time. Our prior theoretical work has demon-
strated that a biochemical system assuming hypothetical, DNAzyme-like reactions can
learn a class of linear functions [5], and other work has shown that high-level artificial
chemistries can learn to implement Boolean functions [6] and perceptron-like classifi-
cation tasks [7]. Here we present a design for an adaptive, reusable DNA learning circuit
based on the framework of four-domain DNA strand displacement reactions, which has
been shown to be capable of implementing arbitrary chemical reaction networks in a
concrete biochemical system [8]. Thus, this paper offers a route to an experimental
realization of adaptive DNA computing systems.

The remainder of this paper is organized as follows. In Section 2, we introduce
buffered DNA strand displacement systems and illustrate their use for implementing
adaptive systems. In Section 3, we present an adaptive buffered amplifier, which is a
key component of the learning circuit that we present in Section 4. We present results



from computational simulations of this learning circuit in Section 5, and conclude with
a discussion in Section 6.

2 Buffered DNA strand displacement for adaptive systems

The idea of buffered DNA strand displacement gates was introduced (as “curried” gates)
by Cardelli [9]. This idea was further developed in the context of implementing DNA
oscillators with robust long-term kinetics [10]. In this section we recap the principle
of buffered strand displacement gates and show how they can be used to implement
adaptive molecular systems.

The basic principle of buffered strand displacement is illustrated in Figure 1. In this
paper we base our gate designs on the “four-domain” encoding of abstract chemical
reaction networks into DNA strand displacement, developed by Soloveichik [8]. In the
four-domain encoding, each abstract species X is represented by three domains Xaˆ,
Xb and Xcˆ. We write “?” to denote a “history domain” whose identity is irrelevant for
the operation of the gate (however, the history domains for the product species must be
freshly generated for each gate, to avoid crosstalk). The key difference is that, rather
than initializing the system with populations of active gates capable of accepting in-
put strands directly, a buffered system is initialized with a buffer of inactive gates that
cannot initially accept input strands. A population of “unbuffering” strands must first
be introduced, which (irreversibly) activate a subset of the buffered gates, so that they
can accept input strands as normal. We design the gates so that an additional copy of
each gate’s unbuffering strand is released along with the gate’s outputs, to maintain a
(roughly) constant population of active gates. Furthermore, since the gates in the buffer
are inactive, the population of inactive buffered gates can be replenished, either at in-
tervals or continuously, without significantly affecting the reaction kinetics. If waste
products were removed, to prevent them from accumulating, this could allow buffered
strand displacement systems to run indefinitely.

We will write a buffered strand displacement gate that implements the reaction R−→
P with buffer species B using the notation B ` R −→ P, and we will use the ∅ symbol to
denote an empty (multi)set of reactants or products.

We propose to use buffered strand displacement gates to implement adaptive sys-
tems. To this end, we note that altering the concentration of unbuffering strands that are
available for a given buffered gate provides a means of controlling the rate of the gate’s
reaction: if more copies of a given reaction gate are activated from the buffer, it will
emulate a faster reaction. (This is a simpler approach than engineering toehold binding
energies or developing remote toehold systems [11].) Furthermore, in addition to regen-
erating its own unbuffering strand, a given buffered gate may also release unbuffering
strands for other gate populations as part of its output. This crucial fact enables one
buffered gate to adjust the number of active gates of a second kind, thereby controlling
the rate of the second buffered gate’s reaction.



Fi
g.

1.
E

xa
m

pl
e

of
a

bu
ff

er
ed

fo
ur

-d
om

ai
n

D
N

A
st

ra
nd

di
sp

la
ce

m
en

tg
at

e,
im

pl
em

en
tin

g
th

e
bu

ff
er

ed
re

ac
tio

n
B
`

X
−→

X
+

Y
.a

.T
he

fir
st

re
ac

tio
n

is
th

e
un

bu
ff

er
in

g
re

ac
tio

n,
in

w
hi

ch
an

un
bu

ff
er

in
g

st
ra

nd
bi

nd
s

to
a

bu
ff

er
ed

ga
te

an
d

re
ve

rs
ib

ly
pr

od
uc

es
an

ac
tiv

e
in

pu
tg

at
e.

T
he

bi
nd

in
g

to
eh

ol
d

fo
r

th
e

X
re

ac
ta

nt
st

ra
nd

is
ex

po
se

d
in

th
e

ac
tiv

e
in

pu
tg

at
e.

b.
To

m
ak

e
th

e
un

bu
ff

er
in

g
re

ac
tio

n
ef

fe
ct

iv
el

y
ir

re
ve

rs
ib

le
,a

n
ad

di
tio

na
ls

in
k

ga
te

fo
r

th
e

st
ra

nd
re

le
as

ed
by

th
e

un
bu

ff
er

in
g

re
ac

tio
n

is
pr

ov
id

ed
(t

hi
s

ga
te

is
no

tr
eq

ui
re

d
in

st
an

da
rd

fo
ur

-d
om

ai
n

ch
em

ic
al

re
ac

tio
n

ne
tw

or
k

en
co

di
ng

s)
.c

.A
re

ac
ta

nt
st

ra
nd

X
ca

n
bi

nd
to

an
ac

tiv
e

in
pu

tg
at

e
vi

a
th

e
X

aˆ
to

eh
ol

d,
ir

re
ve

rs
ib

ly
di

sp
la

ci
ng

an
in

te
rm

ed
ia

te
st

ra
nd

.d
.T

he
re

le
as

ed
in

te
rm

ed
ia

te
st

ra
nd

bi
nd

s
to

th
e

ou
tp

ut
ga

te
an

d
re

le
as

es
al

lo
f

th
e

pr
od

uc
ts

in
a

si
ng

le
st

ra
nd

di
sp

la
ce

m
en

tr
ea

ct
io

n.
H

er
e,

in
ad

di
tio

n
to

th
e

pr
od

uc
ts

tr
an

ds
X

an
d

Y
,a

n
ad

di
tio

na
l

ou
tp

ut
,B

,i
s

ge
ne

ra
te

d,
w

hi
ch

is
a

ne
w

co
py

of
th

e
un

bu
ff

er
in

g
st

ra
nd

fo
rt

hi
s

ga
te

.T
hu

s,
a

ne
w

ga
te

w
ill

be
ac

tiv
at

ed
fr

om
th

e
bu

ff
er

to
re

pl
ac

e
th

e
ga

te
th

at
w

as
co

ns
um

ed
to

ex
ec

ut
e

th
is

re
ac

tio
n.



0 200 400 600 800 1000 1200
Time (s)

0

1

2

3

4

5

6

7

C
on

ce
nt

ra
ti

on
(n

M
)

X
Y
W

(b)

Fig. 2. Buffered amplifier design and ODE simulation data. a. The buffered amplifier consists of
two buffered reactions: a catalytic reaction that generates the output and a degradation reaction
that removes the input from the system. The ratio of the concentrations of active gates from
the two buffers corresponds to the gain of the amplifier. b. Data from an ODE simulation of
the buffered amplifier with multiple sequential input additions and dynamic control of amplifier
gain. The initial concentration of B′ was 100nM and the initial concentration of B was 200nM,
which sets the gain, W , to be 2.0. Addition of the X input species (1nM) at t = 100s causes the
amplifier to generate the output species Y at a concentration of 2nM, as expected. At t = 600s,
an additional 300nM of the unbuffering strand B was added, increasing the amplifier’s gain (W )
by 3.0. Then, subsequent addition of X (1nM) at t = 700s produced a further 5nM of the output
species Y , showing that the gain had indeed been increased to 5.0, as expected.

3 An adaptive, buffered amplifier

In this section, we will illustrate the use of buffered strand displacement gates to imple-
ment an adaptive amplifier whose gain can be dynamically adjusted. This contrasts with
previous work on DNA strand displacement-based amplifiers [12, 3, 13, 4, 14], which
relied on hard-coding the gain of the system in the initial species concentrations, and
gave no consideration to reusability or autonomously adjusting the gain of the amplifier.
In addition to providing an example of a buffered strand displacement system whose
result can be controlled by adjusting the provision of unbuffering strands, this circuit
design motif will be a key component of our learning circuit design.

Our design for a reusable, adaptive, buffered strand displacement-based amplifier
consists of two buffered strand displacement gates:

B ` x −→ x+ y B′ ` x −→ ∅.

The first gate is a “catalyst” gate that uses the input strand x to catalyze release of
the output strand y, and the second gate is a “degradation” gate that removes the input
strand x from the system by consuming it without releasing any output species (except
for a new activating strand B′). This design draws on ideas introduced by Zhang and
Seelig [14]: the ratio between the effective rates of the first and second gates controls
the number of output molecules y that each input molecule x can produce before it is



irreversibly consumed, and therefore this ratio controls the gain of the amplifier. Thus,
in the amplifier circuit, the concentration ratio [B]

[B′] controls the gain of the amplifier.
More specifically, if we write [z]0 for the initial concentration of species z and [z]ss for
the steady state concentration of z (assuming that a steady state exists), then we would
expect that [y]ss =

[B]0
[B′]0
× [x]0. A graphical shorthand for this circuit design element is

presented in Figure 2(a). Our approach to implementing the amplifier circuit motif is
also related to the “ideal gain blocks” developed by Oishi and Klavins [15], the main dif-
ference being that our approach produces a quiescent final state, whereas their approach
produces a steady state in which production and degradation of the output species bal-
ance. Thus, our approach prevents the supply of input species being constantly drained
as in [15]. However, our approach does require some care to be taken when compos-
ing the output from an amplifier circuit motif with downstream circuit elements, as we
outline below.

We implemented this circuit motif in the buffered strand displacement gate frame-
work introduced in Section 2, and simulated it using the beta version of the DSD com-
piler that includes support for mixing events [16]. These simulation results are presented
in Figure 2(b), and show that the amplifier produces correct results for several gain set-
tings, and that the gain of the amplifier can be dynamically adjusted by directly adding
more unbuffering strands between amplification reactions.

4 A strand displacement learning circuit

In this section, we will present a buffered strand displacement system that can learn
linear functions f of the form

f (x1,x2) = w1× x1 +w2× x2,

where w1 and w2 are real-valued coefficients and x1 and x2 are real-valued inputs. In
the current paper, we restrict ourselves to the two-input case for clarity, although the
circuit design motifs that we will present could be replicated to handle more inputs.
In particular, a bias term could be included by incorporating an additional input signal
x0 that is always supplied with the input value x0 = −1 in each training round. This is
standard practice in studies of artificial neural networks. We will present a strand dis-
placement system that learns functions of this form using a stochastic gradient descent
algorithm [17]. Gradient descent is a general solution for many optimization tasks, in
which the current weight approximations are adjusted to minimize the squared error
over the entire training set in each training round. Stochastic gradient descent is a sim-
plification of gradient descent that only considers a single training instance in each
training round, making it more amenable to implementation in a molecular computing
system.

A molecular computing system that solves this problem must accept the input values
x1 and x2, compute the predicted output y = ŵ1× x1 + ŵ2× x2 based on the current
stored weight approximations ŵ1 and ŵ2, compare y with the supplied expected value
d = w1× x1 +w2× x2, and update the stored weight approximations according to the
gradient descent weight update rule:

ŵi := ŵi +α× (d− y)× xi, (1)



where α is a (small) positive coefficient called the “learning rate”. We now present
a strand displacement system that implements this learning algorithm using buffered
DNA strand displacement gates. Our design can be divided into two subcircuits, as
follows.

Predictor subcircuit. The predictor subcircuit is based on the adaptive amplifier pre-
sented in Section 3. The input signals, and all other numeric signals, are represented in a
dual rail format with a differential encoding, that is, the input signal xi actually consists
of two signals xi

+ and xi
−, and the value of xi is interpreted as the concentration dif-

ference [xi
+]− [xi

−]. The predictor subcircuit design is presented in Figure 3: the initial
circuit motif is replicated for each input xi. Here, and henceforth, we will omit the iden-
tities of buffer species from figures if their identity is not important when describing
the operation of the circuit. The species highlighted in grey (xi

+, xi
−, d+, and d−) are

provided by the user to initiate each training round: their concentrations represent the
input value xi and the expected result d that the user must derive using the target weight
values. (If d = 0 then we must add equal concentrations of d+ and d−. Any non-zero
concentration is acceptable, as these species must be present to drive the execution of
the predictor subcircuit.)

Each positive input signal xi
+ is “copied” by a buffered fork gate that generates four

signals with the same overall concentration as the original: two of these, xi1
+ and xi2

+,
are for use by the predictor subcircuit and the remaining two, ki1

+ and ki2
+, are for use

by the feedback subcircuit (as detailed below). Each negative input signal xi
− is copied

similarly.
The key parts of the predictor subcircuit are the buffered strand displacement am-

plifier motifs. The initial gains of the predictor subcircuit amplifiers encode the initial
approximation of each weight value stored in the system. There is one pair of amplifiers
per positive input signal and one pair per negative input signal. In each of these pairs,
the gain of one amplifier represents the positive component ŵi+ of the corresponding
weight approximation ŵi, and the gain of the other amplifier represents the negative
component ŵi−. Thus, the positive component of each input is multiplied by both the
positive and negative components of the corresponding weight, and similarly for the
negative component. The outputs of the predictor subcircuit amplifiers are two species
y+ and y−, which represent positive and negative components of the current predic-
tion, based on the current input values and stored weight approximations. The amplifier
gates are constructed such that the sign of the output species is correct with respect to
the signs of the input component and the weight component in each case.

To complete the execution of the predictor subcircuit, the y+ and y− species, whose
concentrations represent the current prediction, interact with the d+ and d− species,
whose concentrations represent the expected value of the target function. These species
interact via the four buffered reactions shown in the box on the right-hand side of Fig-
ure 3, which collectively have the effect of subtracting the value of y from the value of
d. We implement this operation via four two-input two-output reactions, in which the
d± species catalyze conversion of the y± species to d±, with signs chosen such that
the resulting concentrations of d± represent the result of a subtraction. We choose to
implement subtraction in this way, rather than using annihilator gates that degrade the
positive and negative variants of the species, to avoid sequestration of the remaining



Fig. 3. Design schematic for the predictor subcircuit. The concentrations of the input species
xi
+ and xi

− (for each input signal xi) are copied by buffered fork gates to produce species that
serve as inputs to the buffered amplifier motifs that implement that linear function prediction,
and additional species (ki1

±,ki2
±) that will be used in the feedback subcircuit. The gains of

these amplifiers store the current weight approximations. The amplifiers produce species y+ and
y−, such that [y+]− [y−] equals the predicted output value. These species then interact with
the d+ and d− species, which encode the expected output value, via four buffered reactions
that implement subtraction. When the predictor subcircuit reaches steady state, the concentration
difference [d+]− [d−] should equal d−y, i.e., the error in the prediction when compared with the
expected output value.

species by the annihilator gates, which has been problematic in other work [16]. For
this reason, it is crucial that the y± species are the first input strands consumed by these
reaction gates.

Thus, when the predictor subcircuit reactions reach steady state, the concentration
difference [d+]− [d−] represents the value of d−y. If this value is positive, i.e., if [d+]>
[d−], then the predicted output value was too small. Similarly, if this value is negative,
i.e., if [d+] < [d−], then the predicted output was too large. The goal of the learning
process is to adjust the stored weight approximations ŵi to match the target weight
approximations, so that [d+] = [d−] when the predictor subcircuit reactions reach steady
state.

Feedback subcircuit. Once the predictor subcircuit has computed the discrepancy be-
tween the predicted function output and the expected output, the feedback subcircuit
must use the value of this discrepancy to update the weight approximations stored in



the predictor subcircuit, according to the gradient descent learning rule (1). A design
schematic for our feedback subcircuit is presented in Figure 4.

The first point to note from (1) is that the feedback subcircuit must take the concen-
tration of d± that denotes the discrepancy from the predictor subcircuit and, for each
input, multiply the discrepancy value by the corresponding input value, both of which
are concentrations, and by the learning rate constant α . A single buffered amplifier can
only multiply an input concentration by a gain factor encoded as a ratio of concentra-
tions. To enable two input concentrations to be multiplied together, we have developed
a two-concentration multiplier circuit motif, shown in Figure 4(a). In this motif, we
assume that no unbuffering strands are initially present for the uppermost amplifier,
which will accept the input signal x and produce the output species. The input signal k
activates an amplifier that produces the unbuffering strand for the catalyst gate from the
output-producing amplifier, with gain β . An additional input signal, whose value is con-
stant 1, activates an amplifier that produces the unbuffering strand for the degradation
gate from the output-producing amplifier, with gain 1. Thus, these secondary amplifiers
preset the gain of the output-producing amplifier to be β × [k], and upon addition of
the input signal x the resulting concentration of both output species (y and z) will be
β × [x]× [k], as desired. (Here, we include two outputs because this variation is called
for in our two-input learning circuit design.)

The feedback subcircuit uses the two-concentration multiplier circuit motif exten-
sively, to implement the weight update rule (1). Figure 4(b),(c) presents the feedback
subcircuit design for the two-input case. Execution of the feedback subcircuit is initial-
ized by buffered fork gates that copy the d± species into four species da

±, db
±, dc

±, and
dd
±. We assume that there are initially no unbuffering strands for these fork gates and,

once the predictor subcircuit has run to completion, the addition of these unbuffering
strands triggers execution of the feedback subcircuit.

For each combination of signs for the leftover d± species and the copied input
species ki j

± from the predictor subcircuit, the copied d± species and the copied ki j
±

species serve as inputs to an instance of the two-concentration multiplier circuit motif.
As described above, this circuit motif multiplies these values together (and by a scaling
factor β = α×δ , where α is the learning rate constant and δ is the denominators of the
weight ratios in the predictor subcircuit) and generates additional unbuffering strands
for certain amplifier gates from the predictor subcircuit. From the two-input predictor
subcircuit design from Figure 3, we see that additional unbuffering strands B+

ia and B+
ib

must be generated to increase weight approximation ŵi, and that additional unbuffering
strands B−ia and B−ib must be generated to decrease weight approximation ŵi. These pairs
of species must be generated together, so that the pairs of amplifiers from the predictor
subcircuit that are initialized with the same weight approximation are updated together.

5 Results

We encoded the learning circuit design from Section 4 in the DSD programming lan-
guage [18] and used the associated DSD compiler, with the “Infinite” reaction seman-
tics [10], to generate MATLAB code that implements an ODE model of the system.
The initial state of the two-input system consists of 278 species, of which the majority



Fig. 4. Feedback subcircuit. a. Graphical shorthand for a multi-amplifier motif that enables one
input concentration ([x]) to be multiplied by another concentration ([k]) and a scalar scaling factor
(β ). b. and c. Design schematic for the feedback subcircuit. Here, the scaling factor β = α ×
δ , where α is the learning rate constant and δ is the denominators of the weight ratios in the
predictor subcircuit. The feedback circuitry from b. is activated when d+ is left over from the
predictor subcircuit, and the feedback circuitry from c. is activated when d− is left over from the
predictor subcircuit.



−10 −5 0 5 10
ŵ1

−10

−5

0

5

10

ŵ
2

START

TARGET

−10 −5 0 5 10
ŵ1

−10

−5

0

5

10

ŵ
2

START

TARGET

Fig. 5. Two example weight traces from DNA learning circuit simulations (grey solid lines), over-
laid with corresponding traces from our Python reference implementation (black broken lines).
The lines coincide closely in all simulations, not just the examples shown here, indicating that
the DNA circuit works correctly.

(222) are gate complexes. It is worth noting, however, that many of these species are
variants with different combinations of history domains, so the design complexity of the
circuit is not as high as suggested by the raw species counts. Furthermore, the number
of species should scale linearly with the number of input signals, so the circuit design
presented here could be replicated to learn similar functions of more than two inputs.

We simulated the ODE model of the learning circuit using a custom MATLAB sim-
ulation routine that invokes a stiff ODE solver and that also allows mixing events to
be executed at certain time points during the simulation. These mixing events simulate
the addition of inputs to the system, or the removal of species, by the experimenter
at certain time points. In principle, stochastic simulations could also be used to inves-
tigate the behavior of the system in the limit of low species populations, though the
requirement for high populations of buffered gates could lead to poor performance in a
stochastic simulation of the full system. We found that the size of the buffer, that is, the
quantity of unbuffered gates waiting to be activated, did not affect the accuracy of the
computation performed by the learning circuit. It did, however, reduce the number of
training rounds that could be conducted before the buffer was depleted, at which point
no further training could be carried out. This point is discussed in Section 6 below.

The initial state of the system consists of the various buffered gates and their un-
buffering strands (with the exceptions of the unbuffering strands for the fork gates and
output-generating amplifiers in the feedback subcircuit, as described above). The initial
weight approximations ŵi are encoded as the gain settings of the amplifiers in the pre-
dictor subcircuit. After the gates have unbuffered (after 500s), the first training inputs
are added, which consist of the xi

± species and the d± species, whose concentrations
encode the input values and the expected function output, respectively. At the same
time, we also add the constant-valued signals that serve as an input to the feedback
subcircuit, so that the output-generating amplifiers from the feedback subcircuit will be
primed with the correct gain values before it starts executing. After a further 2000s,



0 3 6 9 12 15
Training round

0

2

4

6

8

10

12

A
ve

ra
ge

R
M

SE
in

w
ei

gh
ts

DNA
Python

Fig. 6. Learning curves from DNA learning circuit simulations and our Python reference imple-
mentation. The average RMSE in the weight approximations was computed after each training
round for 1,000 training schedules, each 15 rounds in length. Non-solid lines are one standard
deviation above and below the mean. Again, the lines coincide very well, indicating that our DNA
circuit design works correctly.

when the predictor subcircuit has completed its execution, we add unbuffering strands
for the fork gates from the feedback subcircuit, which triggers execution of the feedback
subcircuit. After a further 3500s, when the feedback subcircuit has finished updating
the weight approximations stored in the predictor subcircuit, we set the concentrations
of any remaining unbuffered (active) fork gates and output-generating gates in the feed-
back subcircuit to zero, to reset the state of the feedback subcircuit. We also add the
second set of training inputs at this time, and iterate until the specified sequence of
training instances have all been presented.

We ran a total of 1,000 simulations, with initial and target weight values and input
values selected from a uniform random distribution over the interval [−10,10] and with
a fixed learning rate value α = 0.01. Figure 5 shows simulation results illustrating how
the weight values evolve over the course of two 15-round example training schedules. In
the two-input case, we can plot the weight space as a 2D plot and observe the trajectory
of how the weights evolve from their initial values (labeled “START”) towards the true
values (labeled “TARGET”) over the training period. In each example, the trajectory
for the simulation of the DNA strand displacement learning circuit is overlaid with a
trajectory derived from a reference implementation of the stochastic gradient descent
learning rule (1) in Python, using the same initial state and the same training schedule.
The weight trajectories shown in Figure 5 are representative of the agreement between
the DNA system and the reference implementation observed in all cases, and of the fact
that the weight trajectories correctly home in on the target weight values. These results
give us confidence in the correct operation of our circuit design as an implementation
of the learning rule (1).

Furthermore, to investigate the aggregate learning performance from our simula-
tions, we computed the root mean square error (RMSE) of the stored weight approxi-
mations compared with the target weight values at each step of each of the 1,000 train-



ing simulations. The average RMSE values over the 1,000 training simulations, and the
standard deviations, are plotted in Figure 6. Again, the results from the DNA and Python
versions of the learning system are overlaid precisely, indicating that the DNA circuit
follows the expected behavior. The RMSE in the weight approximations is almost zero
after just 15 training rounds, suggesting that an experimental implementation of this
system could be trained to a reasonable degree of accuracy in a limited timeframe.

6 Discussion

We have presented a design for a DNA learning circuit based on buffered DNA strand
displacement reactions, and demonstrated via simulation results that the design works
as intended and can learn target weight values in a reasonable timeframe. This feedback
subcircuit design surpasses our previous work in this area [5], by allowing negative
weight values and input values. It also alleviates the problems we saw in [5] with poor
performance when trying to learn weight values near zero, by implementing a weight
update rule that is symmetric in the positive and negative directions. The weight update
rule used in this work (1) is a well-studied gradient descent learning scheme, whose
performance has been studied extensively [17]. It is well known that the learning rate
parameter (α) can have a significant effect on the rate of convergence of the learning
process. Indeed, many different procedures for reducing the learning rate over time to
achieve rapid convergence have been studied, and our system should respond to such
adjustments in the same way as the reference algorithm that we implemented in Python.

Our circuit was specifically designed to avoid the issue of input sequestration, which
can be problematic in DNA strand displacement systems. Soloveichik’s compilation
scheme for abstract chemical reactions [8] dealt with this issue by adding additional
reaction gates to compensate by sequestering all other species similarly, which slows
down the system. Other work [16] has dealt with input sequestration by artificially in-
creasing the values of certain input signals. This consideration led to the design of the
“subtractor” circuit motif shown in Figure 3 which, while elegant, has the property that
the absolute values of the positive and negative components of the weight approxima-
tions and other signals processed by the system grow monotonically over the course of
a multi-round training session, draining other species out of the system. This problem
could be ameliorated by the inclusion of an annihilator gate in the feedback subcircuit
that takes d+ and d− as inputs but produces no output, which could reduce the absolute
sizes of the signals. This annihilator gate would only need to compete with the rest of
the feedback subcircuit to drain some of the excess d± signals form the system, and we
will explore this alternative in future work.

Our use of buffered gates to implement adaptive strand displacement circuits offers
a route to implement systems whose operation can be extended by the replenishment of
buffered gate species when they are depleted, without adversely affecting the kinetics
of the system. This is an important consideration for the implementation of molecular
learning circuits. Furthermore, in this paper we have implemented the stochastic gra-
dient descent weight update rule in conjunction with a linear transfer function, which
allows the circuit to learn linear classification functions. However, the feedback subcir-
cuit design presented here could be used to learn other functional forms, including non-



linear functions, by simply replacing the predictor subcircuit to compute the desired
function of the provided training inputs. A major challenge is to implement other trans-
fer functions, in particular, non-linear transfer functions such as the Heaviside function,
which is used in classical expositions of perceptron learning [19]. Specifically, the chal-
lenge here is to implement a reusable circuit that can amplify its output to a fixed level.
Finally, to build molecular systems that can learn arbitrary functions it would be neces-
sary to connect a number of such units into networks to be trained by backpropagation,
which could be achieved by cascading several of the circuit motifs described here.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under grants 1318833 and 1422840. M.R.L. gratefully acknowledges
support from the New Mexico Cancer Nanoscience and Microsystems Training Center.

References

1. D. M. Morens and A. S. Fauci. Emerging infectious diseases: Threats to human health and
global stability. PLOS Pathogens, 9(7):e1003467, 2013.

2. D. Y. Zhang and G. Seelig. Dynamic DNA nanotechnology using strand-displacement reac-
tions. Nature Chemistry, 3(2):103–113, 2011.

3. L. Qian and E. Winfree. A simple DNA gate motif for synthesizing large-scale circuits.
Journal of the Royal Society Interface, 8(62):1281–1297, 2011.

4. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand displace-
ment cascades. Nature, 475:368–372, 2011.

5. M. R. Lakin, A. Minnich, T. Lane, and D. Stefanovic. Design of a biochemical circuit motif
for learning linear functions. Journal of the Royal Society Interface, 11(101):20140902,
2014.

6. P. Banda, C. Teuscher, and M. R. Lakin. Online learning in a chemical perceptron. Artificial
Life, 19(2):195–219, 2013.

7. P. Banda, C. Teuscher, and D. Stefanovic. Training an asymmetric signal perceptron through
reinforcement in an artificial chemistry. Journal of the Royal Society Interface, 11:20131100,
2014.

8. D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for chemical kinet-
ics. Proceedings of the National Academy of Sciences USA, 107(12):5393–5398, 2010.

9. L. Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–428, 2010.
10. M. R. Lakin, S. Youssef, L. Cardelli, and A. Phillips. Abstractions for DNA circuit design.

Journal of the Royal Society Interface, 9(68):470–486, 2012.
11. A. J. Genot, D. Y. Zhang, J. Bath, and A. J. Turberfield. Remote toehold: a mechanism for

flexible control of DNA hybridization kinetics. Journal of the American Chemical Soceity,
133:2177–2182, 2011.

12. D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree. Engineering entropy-driven reac-
tions and networks catalyzed by DNA. Science, 318:1121–1125, 2007.

13. L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand displace-
ment cascades. Science, 332:1196–1201, 2011.

14. D. Y. Zhang and G. Seelig. DNA-based fixed gain amplifiers and linear classifier circuits. In
Proceedings of the 16th International Conference on DNA Computing and Molecular Pro-
gramming, volume 6518 of Lecture Notes in Computer Science, pages 176–186. Springer-
Verlag, 2011.

15. K. Oishi and E. Klavins. Biomolecular implementation of linear I/O systems. IET Systems
Biology, 5(4):252–260, 2011.



16. B. Yordanov, J. Kim, R. L. Petersen, A. Shudy, V. V. Kulkarni, and A. Phillips. Computa-
tional design of nucleic acid feedback control circuits. ACS Synthetic Biology, 3(8):600–616,
2014.

17. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons, second
edition, 2001.

18. M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and A. Phillips. Visual DSD: a design and anal-
ysis tool for DNA strand displacement systems. Bioinformatics, 27(22):3211–3213, 2011.

19. M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT
Press, Cambridge, MA, second edition, 1972.


