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Abstract

We have constructed a stochastic stage-structured model of the cytotoxic T lymphocyte (CTL) response to antigen and the

maintenance of immunological memory. The model follows the dynamics of a viral infection and the stimulation, proliferation, and

differentiation of na.ıve CD8+ T cells into effector CTL, which can eliminate virally infected cells. The model is capable of following

the dynamics of multiple T cell clones, each with a T cell receptor represented by a digit string. MHC–viral peptide complexes are

also represented by strings and a string match rule is used to compute the affinity of a T cell receptor for a viral epitope. The avidities

of interactions are also computed by taking into consideration the density of MHC–viral peptides on the surface of an infected cell.

Lastly, the model allows the probability of T cell stimulation to depend on avidity but also incorporates the notion of an antigen-

independent programmed proliferative response. We compare the model to experimental data on the cytotoxic T cell response to

lymphocytic choriomeningitis virus infections.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cytotoxic T lymphocytes (CTL) play a crucial role in
the immune system’s defense against viral infections.
After the first exposure to a virus, T cells rapidly
replicate and attack infected cells in a primary response.
The T cell population then decreases, leaving behind a
population of long-lived memory cells. These memory
cells allow the immune system to respond to subsequent
encounters with similar infections more efficiently in a
secondary response. A lifetime of exposure to pathogens
shapes an organism’s repertoire of memory cells,
making the states of individual immune systems unique.
Based on a variety of experimental results, we

constructed a stochastic model of the CTL response to
antigens. Our ultimate goal is to use the model to
provide insight into the pathology and possible treat-
ments of diseases such as AIDS, influenza, cancer, and
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autoimmune disorders. In the process of building the
model we were able to situate experimental data from
multiple experiments in a coherent framework that
forms a relatively complete and consistent interpretation
of T cell behavior. We take a computationally efficient
stage-structured modeling approach which allows us to
incorporate biologically realistic features of T cell
proliferation and differentiation relatively easily, result-
ing in a model that makes quantitative predictions.
In the sections that follow, we summarize relevant
CTL biology, describe our model, then present pre-
liminary results.
2. T cell biology

CTL reside in tissue or circulate through the body via
the blood and lymph to detect cells that have been
compromised by foreign organisms, such as viruses. We
present a summary of the CTL biology relevant to our
model. Many essential components of the immune
response, such as the innate immune system, dendritic
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cells, and CD4+ T cells, are intentionally omitted; their
roles in facilitating the CTL response are implicit in the
model.

2.1. T cell receptors and repertoire

Most of the body’s cells process a sample of their
internal proteins into short peptide fragments that form
complexes with cell surface proteins called major
histocompatibility (MHC) class I molecules. There are
hundreds of MHC class I alleles in humans (Marsh et al.,
2002), and an individual can express as many as six
of them. Each MHC type binds a particular set of
peptides and is thus capable of presenting a different set
of epitopes than other MHCs. The external presentation
of cell peptides allows T cells to view a sample of a cell’s
contents non-invasively. When a cytotoxic T cell binds
to peptide–MHC complexes, it can initiate a set of
actions that leads to the destruction of the infected cell.
One of the primary factors that determines whether a

T cell binds to a cell is the affinity of its T cell receptor
(TCR) for the peptide–MHC complexes. Each T cell
expresses thousands of copies of identical receptors that
bind to their cognate peptide–MHC complexes with
high affinity. Thus, both the target cell peptides and the
particular MHC type that presents the peptide play a
role in determining affinity. The set of all TCR
specificities in a body, on the order of 107 in humans
(Arstila et al., 1999) and perhaps 106 in mice (Pannetier
et al., 1993), comprise the T cell repertoire. Avidity, or
the sum of the binding interactions between the
receptors of a CTL and the surface of a target cell,
determines whether a CTL recognizes the target. The
number of copies of a particular peptide displayed by
a target cell, its expression density, affects the avidity
of the interaction. Due to thymic selection, described
below, it is unlikely that a T cell will react to an
uninfected self cell—infected cells express foreign (e.g.,
virally encoded) peptides that make them subject to
T cell responses. The antigenic peptides that stimulate
T cells are known as epitopes.
T cell receptors are generated with more or less

random specificities, so many potentially harmful self-
reactive ones are created. Most are screened out early in
their maturation process in the thymus, where they are
exposed to a large array of the body’s own peptides
presented on MHC molecules. During positive selection,
T cells that have an extremely weak avidity to self-
peptides bound to MHC are eliminated (Blackman et al.,
1990). This process eliminates T cells that are useless
because they probably cannot bind to any peptide–
MHC pairs. Negative selection ensures that they do not
bind too tightly to MHC–self-peptides (Kappler et al.,
1987), eliminating T cells that are potentially self-
reactive. About 1–3% of pre-selection T cells pass both
these ‘‘tests’’ and leave the thymus to join the peripheral
repertoire as na.ıve T cells (Shortman et al., 1990).

2.2. T cell response

A na.ıve T cell remains quiescent until it receives
antigenic stimulation from its cognate peptide–MHC
complex. Larger antigen doses stimulate a greater
fraction of na.ıve cells (perhaps more low affinity T
cells) but probably do not affect the degree to which the
individual cells are stimulated (Kaech and Ahmed,
2001). After stimulation, na.ıve cells appear to be
committed to a programmed response that causes them
to divide and acquire effector functions even in the
absence of continuing antigenic stimulation (Kaech and
Ahmed, 2001; van Stipdonk et al., 2001). For the first
24 h, they do not replicate (Oehen and Brduscha-Riem,
1998; Gett and Hodgkin, 2000; Veiga-Fernandes et al.,
2000; van Stipdonk et al., 2001), but after this initial
phase, they can rapidly undergo a fixed number of
divisions (up to 8 or more) (Kaech and Ahmed, 2001)
once every 5–8 h (Murali-Krishna et al., 1998; Gett and
Hodgkin, 2000; van Stipdonk et al., 2001). After a few
divisions, they acquire effector functions, such as
cytotoxicity. Effector CTL kill target cells either by
releasing perforins that create holes in the target cell’s
membrane or by triggering apoptosis (i.e. cell suicide) in
the target cell. Even during this period of rapid
expansion, the cells have a high death rate, reducing
net population growth. After initial expansion, the death
rate dominates CTL kinetics and the population declines
rapidly (Badovinac et al., 2002). If the infection persists,
the remaining T cells can become ineffective and
unresponsive to antigen.

2.3. T cell memory

After the activation and proliferation in response to
an infection, most of the T cells activated in the response
die, but a small subpopulation persists as memory cells

(Murali-Krishna et al., 1999). Memory cells are able to
mount a quicker and more aggressive response in future
encounters with the same or closely related pathogens
(Dutton et al., 1998). This secondary response can clear
an infection before significant damage is inflicted upon
the body. Immunological memory forms the basis of
vaccination, in which an organism is exposed to viral
antigens in order to build immune memory to the virus.
The repertoire of memory cells generated by a

primary response appears to be similar to the repertoire
of the effectors from the response (Sourdive et al., 1998;
Busch et al., 1998a; Blattman et al., 2000), indicating
that the conversion of the effectors of the primary
response to memory cells is independent of their avidity
to the antigen. However, their recruitment into a
secondary response is dependent on their avidity for
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Fig. 1. The process of infection and the life cycle of CTL in our model.

Target cells are infected by virus, and these infected cells generate more

virus and interact with T cells. Na.ıve cells, when stimulated by antigen

proliferate and become effector cells. The probability of a na.ıve cell

being stimulated by antigen depends on the string distance between the

TCR and the antigen–MHC complex. Most effectors die, but about

5% of these proliferating effector cells become memory cells. The

memory cells can be stimulated to become effectors in a secondary

response (not shown).
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antigen, so the secondary response can have a different
clonal composition from the primary (Bousso et al.,
2000). It can take 2 or 3 weeks for a cell to develop a full
memory cell phenotype after the initial infection (Kaech
et al., 2002). Therefore, memory cells are not likely to
join the immune response that initially generated them.
Upon antigenic stimulation, memory cells begin to

proliferate almost immediately and develop cytotoxicity
within a few hours (Bachmann et al., 1999; Barber et al.,
2003; Byers et al., 2003). They probably have the
same antigenic stimulation requirements as na.ıve cells
(Bachmann et al., 1999; Kersh et al., 2003), although
some studies found stimulation requirements to be lower
(Pihlgren et al., 1996). Their replication rates are
approximately the same as recently activated na.ıve
cells. Memory cell-derived effectors die at a slower
rate than effectors created in the primary response
(Veiga-Fernandes et al., 2000; Grayson et al., 2002),
giving them a faster accumulation rate and possibly
allowing a larger portion of them to revert to memory.
Presumably, the shorter time to acquire effector func-
tions, the larger starting populations, and their faster
accumulation rates allow memory cells to clear infected
cells much faster than na.ıve cells.
Homeostatic mechanisms appear to regulate the size

of the memory pool, which remains approximately
constant in size (Rocha et al., 1989). New memory cells
from heterologous infections can displace the memory
cells from responses to prior infections (Selin et al.,
1996; McNally et al., 2001). In the absence of immune
system challenges, memory cells turn over slowly
(Dutton et al., 1998; Murali-Krishna et al., 1999).

2.4. Lymphocytic choriomeningitis virus: a model

pathogen

Much of what we know about the kinetics of
cytotoxic T cell responses in vivo comes from studies
of mice infected with lymphocytic choriomeningitis virus
(LCMV) (Armstrong and Lillie, 1934; Traub, 1935).
LCMV stimulates a well-characterized CTL-mediated
immune response, and infection is generally non-lethal
and asymptomatic. Although we calibrate the model
developed below with mouse data, the model parameters
can easily be changed to human-derived parameters as
needed. Running our model with mouse parameters
allows us to compare our results with the numerous
published experimental results based on LCMV.
3. The model

Our model consists of two interacting parts: a stage-
structured model of the T cell activation, proliferation
and differentiation and a model of viral infection. The
models are coupled in that infected cells stimulate
na.ıve T cells and are killed by effector T cells (depicted
in Fig. 1). In addition, our model includes a representa-
tion of TCR binding and a realistic-sized T cell
repertoire.

3.1. Approaches to immunological modeling

Differential equation models have long been used for
immune system and viral infection modeling (Bell, 1970;
Dibrov et al., 1977; P$rikrylov!a et al., 1992; Perelson and
Weisbuch, 1992; Ho et al., 1995; Nowak and Bangham,
1996; Bocharov, 1998; Perelson, 2002). Analytical
techniques allow modelers to define regimes of system
behavior and their associated parameters and initial
conditions. For example, one can determine the
model parameters for which an infection is effectively
cleared by the immune system (Bocharov, 1998). The
solutions capture the average behavior of large popula-
tions of perfectly mixed, identical individuals. Many
techniques that could make these models more faithful
to biological reality, such as adding time delays or age-
structured partial differential equations (Antia et al.,
2003), complicate solving the models analytically or
numerically.
Agent-based simulation is a promising technique

made feasible with the advent of greater computer
power. These simulations monitor the actions of a large
number of simple entities, or agents, in order to observe
their aggregate behavior. Each agent consists of state
variables and a set of rules that governs its behavior, and
agents can interact either directly with each other or
indirectly through the environment. Because all indivi-
duals in a population are explicitly represented, they can
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have unique histories and behaviors. The combined
behavior of these agents is observed in a discrete-time or
event-driven simulation.
Agent-based modeling has many features suited to

modeling the immune response. It is adept at incorpor-
ating stochastic events, which appear to be crucial in
regulating immune function (Germain, 2001). A single
chance event, such as the serendipitous recognition of a
cancer antigen by a single cell in the immune system, can
determine the fate of an organism (Ochsenbein et al.,
2001). The addition of randomness to a model allows
one to explore the distribution of possible outcomes, as
in Detours and Perelson (2000), as opposed to only the
single most likely one addressed by most mathematical
models. This is especially valuable when studying
immune responses, as even genetically identical indivi-
duals can exhibit different responses to the same antigen
(Lin and Welsh, 1998). Because small numbers of cells
are involved in the beginning of an immune response
(Ehl et al., 1998; Bousso et al., 1999), using a discrete
model might be more suitable in this context than a
continuous one. The existing agent-based models of
the immune system, such as IMMSIM (Celada and
Seiden, 1992; Seiden and Celada, 1992; Kleinstein and
Seiden, 2000), the B cell model of Smith et al. (Smith
et al., 1999), and the self-nonself discrimination model
of Langman and Cohn (Cohn et al., 2002; Langman
et al., 2003), take advantage of these features. Another
advantage of agent-based models is that by explicitly
representing individual cells, they are in many
ways closer to the modeled system. In contrast to
population-level models, agent-based model parameters
Table 1

A summary of model parameters

Attribute Value

Time step (Dt) 10min

Na.ıve cell clone size 10 cells

Maximum T cell recruitment rate (g) 1 day�1

Delay before a stimulated na.ıve cell becomes an effector ðtnÞ 19 h

Delay before a stimulated memory cell becomes an effector (tm) 1 h

Na.ıve-derived active CTL death rate (dE ) 0.6 day�

Memory-derived active CTL death rate ðdEm Þ 0.4 day�

Time in B phase for CTL 5 h

Average CTL cell cycle time 6 h

Infected cell clearance rate (kc) 12 day�1

Pre-selection repertoire size 2.5� 10
MHC string length 4 digits

Peptide string length 6 digits

Susceptible cell population (T) 106 cells

Susceptible cell production rate (l) 105 cells

Susceptible cell death rate (dT ) 0.1 day�

Virus infection rate (b) 2� 10�7

Virus production rate (p) 100 day�

Virus clearance rate (c) 2.3 day�

Infected cell death rate (dI ) 0.8 day�
correspond to actual properties of the cells, and the
output of these models can be processed so that they can
be observed at any level, from the level of the individual
cell to the population level (Table 1).
Unfortunately, agent-based modeling can be compu-

tationally expensive. There may be as many as 1012 T
cells in a human and 108 T cells in a mouse. Running a
model with this many distinct entities would be
prohibitive. To address such problems, agent-based
models can be implemented to take advantage of
multiple computers, such as the parallel version of
IMMSIM known as ParImm (Bernaschi and Casti-
glione, 2001). Because agent-based models must be run
many times to characterize the distribution of outcomes,
they should be as simple and efficient as possible
without sacrificing essential aspects of the immune
response. Using techniques such as lazy evaluation
(Smith et al., 1998) allows models to instantiate only
cells that participate in an immune response, but a
response in a mouse can involve on the order of 107 CTL
(Butz and Bevan, 1998; Murali-Krishna et al., 1998),
which is still a large number to simulate explicitly.
For computational efficiency, we use a stochastic

stage-structured approach to modeling the immune
response (Chao et al., 2003). Stage-structured models
have been used to model populations in ecology
(Lefkovitch, 1965; Usher, 1966; Manly, 1990) but
have not been applied to immune systems. In stage-
structured models, an individual’s or cell’s life cycle is
divided into stages, such as developmental maturity or
differentiation states. All individuals in a given stage are
assumed to be identical. The transition probabilities
Reference

Casrouge et al. (2000)

Oehen and Brduscha-Riem (1998); Gett and Hodgkin (2000);

Veiga-Fernandes et al. (2000); van Stipdonk et al. (2001)

Bachmann et al. (1999); Barber et al. (2003)
1 Veiga-Fernandes et al. (2000)
1 Veiga-Fernandes et al. (2000)

van Stipdonk et al. (2001)

van Stipdonk et al. (2001)

Barchet et al. (2000)
8

Detours et al. (1999)

Detours et al. (1999)

/day
1

1

1 Lehmann-Grube (1988)
1
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between stages are specified, and the model can be used
to predict the demographics of a given initial population
over time. Stochasticity can be added to the model if
needed. Analytical techniques have been developed for
studying these models, but when there are interacting
populations, in our case T cells and antigens, it is easier
to run the model on a computer multiple times. In order
to allow T cells to interact with virally infected cells, we
run the T cell model and the viral model synchronously
and at each time step the populations can interact. For
example, at some stages T cells can eliminate infected
cells, so at each time step the number of infected cells is
reduced by a function of the number of T cells that are
in the effector stages.
By using discrete rather than continuous populations

and by explicitly specifying the actions and transitions
of cells as probabilities per individual cell, our model
enforces the realistic behavior of individual cells without
the computational cost of representing each cell
explicitly. The model attempts to strike a balance
between the unrealistically small number of populations
used by analytical approaches and the unwieldy one-
agent-per-cell implementations of agent-based models.
Because we do not intend to solve our system
analytically, the model can accommodate multiple cell
states. However, to make the model more efficient than
an equivalent agent-based model, we must limit the
number of possible cell states to a manageable number
(described in Section 3.6).

3.2. Receptor binding

Our model uses digit strings and string match rules to
represent antigens and affinities, as several immunolo-
gical models have in the past (Farmer et al., 1986;
Celada and Seiden, 1992; Detours et al., 1999; Smith
et al., 1999; Bernaschi and Castiglione, 2001). Each
antigen in the simulation is associated with one or more
digit strings representing its epitopes. The strings loosely
represent amino acid sequences. Each epitope also has a
scalar value representing its surface expression density,
r; which affects avidity. We assume that all cells infected
with the same pathogen have the same epitope densities,
making them all equally antigenic.
Strings also represent the portion of MHC visible to

the TCR (Fig. 2). Each MHC allele is represented by
a different random string. Self-peptides are represented
by 103–104 random strings of the same length as the
antigenic epitope strings. Each antigenic and self-
peptide string is assigned a single MHC allele to which
it is concatenated, representing the assumption that each
peptide is presented by only a single MHC type in the
body. We use the length of the strings chosen in Detours
et al. (1999): 4 digits for the MHC and 6 digits for the
peptides.
Each CTL clone has a string representing its TCR
that is as long as an MHC and a peptide string
combined. A string match rule defines the binding
affinity between the TCR and the MHC–peptide
complexes. The avidity of a TCR for an epitope is a
function of its affinity, determined by the string match
rule, and the epitope’s density on a cell surface. Thus, a
high-affinity match can result in low avidity if that
particular epitope’s density is low. The string distance
between newly generated TCR and the MHC–self-
peptide complexes determines which T cells survive
thymic selection. The string distance between TCR and
MHC-foreign peptide complexes determines the beha-
vior of T cells in the periphery. The choice of string
match rule determines the affinity distribution of TCR
clones from antigens and the effect mutating digits has
on affinity.
We have explored a variety of rules that have different

properties that may affect the behavior of our model,
particularly with regard to the cross-reactivity among
responses to different antigens and the mutation of
epitopes. For example, the Hamming distance rule,
which has been used to represent B cell–ligand binding
(Smith et al., 1997), defines the distance between two
strings to be the number of positions in which the two
strings differ (Hamming, 1950). If there is a single digit
‘‘mutation’’ in one of the strings, then the distance will
either increase or decrease by 1 or remain the same. One
can interpret this to mean that each position in the TCR
string either binds or does not bind to the MHC–peptide
complex. The Manhattan distance rule, also known
as the first-order Minkowski norm ðL1Þ; defines the
distance between two strings to be the sum of distances
between their respective digits, with, for example, the
distance between 8 and 5 being 3. Therefore, a single
digit mutation can change the distance between two
strings by as much as a; where a is the size of the
alphabet. In other words, each position in the TCR
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string can have a degrees of affinity for each corre-
sponding location in the MHC–peptide complex. The
xor rule, in which the distance is the sum of the bitwise
exclusive ors of the digits of two strings, also allows for a
large range of degrees of affinity between two digits but
is more computationally efficient than the Manhattan
rule (Detours et al., 1999). For all of these distance rules,
it is assumed that the binding strengths between
corresponding digits are additive and independent of
the other digits, which agrees with the observation that
amino acid side chains of peptides seem to make
independent contributions to the binding energy with
the TCR (Parker et al., 1994). It is difficult to determine
which rule is most appropriate a priori, and different
data sets might require different match rules.
To generate a T cell repertoire, TCR strings are first

randomly generated uniformly over the universe of
strings. These TCR are subjected to thymic selection
(Fig. 3), in which T cells are eliminated if their receptors
are too far from all MHC-self-complexes or too close to
any MHC-self-complex, representing positive and nega-
tive selection respectively. Therefore, the space of TCR
sequences is not uniformly populated. The surviving
TCR comprise the na.ıve repertoire.
In order to model the response to a set of pathogens,

we do not need to instantiate the whole repertoire of
T cell clones, but only the small fraction of cells involved
in the immune responses to the pathogens, a technique
known as lazy evaluation (Smith et al., 1998). The clones
that have no affinity for the antigens (i.e., those that are
too antigenically distant and outside the ‘‘cross-reactive
cutoff’’) play no role in the response. Therefore, the
model considers only the cells that can react to the
antigen, which reduces the number of T cells by several
orders of magnitude. For each simulation run, random
TCR strings are generated within the cross-reactive
X

X

X

Clone eliminated by positive selection
Clone eliminated by negative selection

Surviving T cell clone

MHC-antigen complex

Cross-reactive cutoff

MHC-self complex

Negative selection distance

Positive selection distance

Fig. 3. A representation of thymic selection in a two-dimensional

‘‘shape space’’ (Perelson and Oster, 1979). TCR and antigens are

mapped to a plane such that the distance between TCR and antigens is

proportional to the affinity between them. TCR are generated around

each antigen, and each randomly generated TCR is subjected to

positive and negative selection against a set of MHC–self-peptide

complexes. All TCR that are too far from all MHC–self-complexes are

eliminated in positive selection. Those that are too close to an MHC–

self-complex are eliminated in negative selection. The remaining TCR

are in a window of affinities from an MHC–self-peptide complex.
cutoff from the antigenic strings to form the pre-
selection repertoire, then these strings are subject to the
simulated thymic selection process described above. In
the past, modelers used artificially small repertoires
(Kleinstein and Seiden, 2000), had each agent in the
simulation represent more than one cell (Smith et al.,
1999), or required substantial computing resources
to simulate a realistic-sized repertoire (Detours and
Perelson, 2000). In our model, all of the active cells of a
realistic-sized repertoire are represented.

3.3. Viral infection

We adopt a standard model of viral infection
previously used to describe human immunodeficiency
virus (HIV) and hepatitis C virus (HCV) dynamics (Wei
et al., 1995; Perelson et al., 1996; Neumann et al., 1998).
In the absence of an immune response, the course of a
viral infection is described by the following:

’T ¼ l� dT T � bTV ; ð1Þ

’I ¼ bTV � dI I ; ð2Þ

’V ¼ pI � cV ð3Þ

where T is the number of uninfected (or ‘‘target’’) cells, I

is the number of infected cells, V is the number of virus
particles, l is the rate of uninfected cell production, p is
the rate of virus production by infected cells, b is the
infectivity parameter, dT is the death rate for target cells,
dI is the death rate for infected cells, and c is the
clearance rate for free virus. Typically, after infection
the viral load and the number of infected cells increases
exponentially, peaks, and then declines. Section 3.5
describes how effector T cells clear infected cells I in the
model.
In our implementation, we use a difference equation

version of the system of ODEs described by Eqs. (1)–(3):

DT ¼ ðl� dT T � bTV ÞDt; ð4Þ

DI ¼ ðbTV � dI IÞDt; ð5Þ

DV ¼ ðpI � cV ÞDt; ð6Þ

where Dt=10min. In order to include stochasticity, the
terms in Eqs. (4)–(6) are randomly drawn from the
appropriate distributions at each time step. We assume
that the variables are constant over the short interval Dt

and are updated at the end of each time step. For the
production of uninfected cells and the virus production
rate, we assume that they are governed by Poisson
processes, and we draw from the Poisson distribution
with their expected values as the mean (i.e., lDt and
pIDt, respectively).
To determine stochastically the number of cells out of

a population of identical cells that perform a certain
action, such as dying, we randomly draw from the



ARTICLE IN PRESS
D.L. Chao et al. / Journal of Theoretical Biology 228 (2004) 227–240 233
binomial distribution. In order to do this, we must
convert continuous rates into probabilities that events
occur in a time step. If a process occurs at rate r, then
the probability that it first occurs at time t is defined by
the exponential distribution EðrÞ ¼ re�rt: The probabil-
ity that it occurs at or before time t is 1� e�rt: Thus,
rates r can be converted to probabilities that the
processes occur in a time step Dt, 1� e�rDt: If there
are n cells each with a probability p of performing an
action, then drawing from the binomial Bðn; pÞ is a
computationally efficient way to determine the number
of cells that perform the action. For example, we
compute the number of uninfected cells T that are
infected in each time step by converting their infection
rate, bV ; to the probability that they will become
infected in a time step, 1� e�bVDt; and randomly
drawing a value from BðT ; 1� e�bVDtÞ: We compared
the results of our viral infection model implementation
to an alternate version using Gillespie’s Direct Method
(Gillespie, 1977), which is an exact stochastic simulation
technique that explicitly generates all reactions rather
than computing how many reactions occur in a given
time step. The different implementations produced
distributions of outcomes, but our method was orders
of magnitude faster.

3.4. Effector recruitment from the na.ıve and memory

cell pools

Antigen stimulates na.ıve and memory cells, causing
them to differentiate into effectors. Because a relatively
small number of na.ıve cells are recruited into an immune
response, we assume that they do not compete with each
other for antigen, allowing the stimulation of each na.ıve
clone to be computed independently. Stimulation takes
the form of a saturating function (De Boer et al., 2001;
Davenport et al., 2002):

Stimulation ¼
P

eiIi=Ki

1þ
P

eiIi=Ki

; ð7Þ

where Ki is the amount of antigen i required to generate
half-maximal stimulation for the T cell, ei is epitope
density on cells infected by antigen i, and Ii is the
number of infected cells expressing antigen i in
the system. This expression is in agreement with the
observation that CTL recruitment is proportional to
epitope density (Wherry et al., 1999). We assume that
na.ıve T cells are recruited into the immune response at a
rate of g multiplied by the stimulation, where g=1day�1

is the maximum recruitment rate of T cells.
Na.ıve T cells specific to a particular antigen are in the

same stage until they are stimulated. Our model
accommodates T cells of different antigen specificities
by instantiating separate stage-based models for each,
but for the purposes of discussion we will assume that
there is only one T cell specificity. As na.ıve cells are
stimulated, they must wait tn hours, representing the
developmental time before a na.ıve cell begins its
programmed response. To implement this delay, the
cells are promoted through a series of 6tn stages, with all
cells in a stage moving to the next stage at each 10min
time step. The cells in these stages do not interact with
infected cells, but when they emerge after tn simulation
hours, they become effectors and start responding to
infected cells and dividing. In our model, we assume
T cells take a minimum of 5 h to divide, and that the first
T cell divisions take place 24 h after antigenic stimula-
tion (Oehen and Brduscha-Riem, 1998; Gett and
Hodgkin, 2000; Veiga-Fernandes et al., 2000; van
Stipdonk et al., 2001), so we chose tn=19h.
Memory cells are recruited in the same manner as

na.ıve cells except that we assume it takes only 1 h
(tm=1h) for a stimulated memory cell to begin its
programmed response, reflecting the rapid response of
memory cells to pathogens (Bachmann et al., 1999;
Barber et al., 2003).

3.5. Clearance of infected cells

Because the CTL responses to different antigenic
epitopes of the same pathogen do not appear to interfere
with each other (Vijh et al., 1999), we model the immune
response to multiple epitopes as the sum of independent
responses to the individual epitopes. Therefore, we need
only define the clearance of infected cells expressing a
single epitope by many T cell clones. We assume that
effector T cells of clone j, Ej ; bind to infected cells I in
reversible reactions (at rates kb for binding and kd for
dissociation) to form complexes Cj ; and that effectors
bound in these complexes clear the infected cells at
rate kc:

Ej þ I $
kb

j

kd
j

Cj !
kc

j
Ej : ð8Þ

Directly translating the above expression to a differ-
ential equation:

’Cj ¼ kb
j
#Ej
#I � ðkd

j þ kc
j ÞCj ; ð9Þ

where #Ej and #I are unbound effectors and infected cells,
respectively. Changing variables to total cells and
conserving the number of infected cells, as suggested
in Borghans et al. (1996), gives

’Cj ¼ kb
j ðEj � CjÞ I �

X
k

Ck

 !
� ðkd

j þ kc
j ÞCj ; ð10Þ

where
P

kCk is the number of complexes of all effector
cells of all specificities with I. Assuming quasi-steady
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A0 A1 A2

B0,0 B1,0 B2,0

B0,1 B1,1 B2,1 · · ·

B0,2 B1,2 B2,2

B0,3 B1,3 B2,3

B0,4 B1,4 B2,4

Fig. 4. Implementation of the Smith and Martin two-phase cell cycle

model (Smith and Martin, 1973). Each box represents the cells in a

given stage, and the arrows represent possible transitions between

stages. Note that cells in A phase can either remain in A phase or

transition to B phase, while B phase cells progress at a fixed rate until

they reach A phase. In this figure, each B sub-stage is 1 h, and in the

model implementation each sub-stage is 10min.
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state:

0 ¼ kb
j EjI � CjI � Ej

X
k

Ck þ Cj

X
k

Ck

 !

� ðkd
j þ kc

j ÞCj : ð11Þ

Following De Boer and Perelson (1995), we approx-
imate the solution to Eq. (11) by assuming the CjCk

terms are small enough to be omitted:

CjE
EjI � Ej

P
k Ck

I þ Kj

; ð12Þ

where Kj ¼ ðkd
j þ kc

j Þ=kb
j :

Following the derivation from the Appendix of De
Boer and Perelson (1995), the solution to Eq. (12) when
there are multiple T cell clones is

CjE
IEj

Kj þ I þ
P

k EkðI þ KjÞ=ðI þ KkÞ
: ð13Þ

Therefore, the clearance rate of I due to effectors of all
specificities is

’I ¼ �
X

j

kc
j Cj

E
X

j

�kc
j

IEj

Kj þ I þ
P

k EkðI þ KjÞ=ðI þ KkÞ
; ð14Þ

For a system with only one T cell clone, E:

’IE
�kcIE

K þ I þ E
: ð15Þ

Expression (15) yields a dose–response relationship
between effector cell numbers and the infected cell
clearance rate that saturates at kcI as the number of
effector cells increases, which agrees with experimental
findings (Lehmann-Grube, 1988). It also includes a term
for inter-clonal competition among the effector cells for
infected cells expressing a single epitope. It appears that
high- and low-avidity CTL lyse their targets at similar
rates (Derby et al., 2001), so we set kc to be the same for
all T cell clones in our model. In LCMV responses, the
value of kc was found to be 12 day�1 (Barchet et al.,
2000). Smaller populations of T cells might have higher
per capita killing rates, but we assume that most of an
infection is resolved while the effector cell population is
large. In our model, increased avidity, K, affects the
ability to detect and bind to infected cells at low
concentrations of I. Multiple T cell clones clear infected
cells at the rate described by Eq. (14), in which T cells
compete for access to infected cells based on their
avidities to them. High-avidity clones are more effective
at clearing infected cells than low-avidity clones.
We assume that effector cell mediated clearance of

infected cells is a Poisson process. From Eq. (15), we can
determine the expected number of infected cells to be
cleared in a time interval Dt to be ’IDt: We compute the
number of infected cells that are cleared during Dt by
randomly drawing from the Poisson distribution Pð ’IDtÞ
at each time step. This term is subtracted from the right-
hand side of Eq. (5) to include the effect of cytotoxic
T cell clearance on the infected cell population.

3.6. T cell replication

We implement the programmed divisions of newly
activated effector cells by keeping track of the number
of times a cell divides. When a na.ıve cell is first
stimulated, it joins the cohort of effector cells that have
not yet divided. When it reproduces, it is moved with its
daughter to the next division cohort. We adopt the
transition probability cell cycle model described by
Smith and Martin (1973), which has two phases: an A

phase with a variable residence time and a B phase that
takes a fixed length of time to traverse. Cells start in
phase A, in which the cells do not divide. At each time
step, a cell has a constant probability of entering phase
B, during which it divides in a fixed amount of time. At
the end of the B phase, both the parent cell and the new
daughter cell enter the A phase. This two-phase model
enforces a minimum time to cell division. Without the
fixed length B phase, some cells could divide an
arbitrarily large number of times in a time interval,
which is a characteristic of continuous models of cell
replication.
To implement the Smith–Martin cell cycle model,

each division cohort is subdivided into an A phase and a
set of B phase sub-cohorts (Fig. 4). To mimic the fixed
length of time it takes a cell to traverse the B phase we
allocate one B phase sub-cohort per time step that the
cells remain in B phase, and move cells from one sub-
cohort to the next at each simulation time step (Fig. 4).
We use 10-min time steps, so to model cells remaining in
the B phase for n hours, we use 6nB phase sub-cohorts
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Fig. 5. Primary and secondary CTL responses to viral infection. The

dashed lines represent virus levels, with the secondary exposure to the

virus at day 28. The solid line represents the number of T cells specific

to this virus, including na.ıve, effector, and memory cells.
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per division cohort. At each time step we draw from a
binomial distribution to determine the number of cells in
the A phase that transition to the B phase for each
division cohort.
We assume that the average cell cycle time of an

effector T cell is 6 h and that the minimum time to
division is about 5 h (van Stipdonk et al., 2001). Thus,
we choose the duration of the B phase to be 5 h and the
average duration of the A phase to be 1 h. To simulate a
5 h B phase using 10-min simulation time steps, we use
30 sub-cohorts. To mimic the 1 h average residence in
the A phase, we assume the rate at which cells in A phase
transition to B phase is 1 h�1. We convert this rate to the
probability that A phase cells will transition to B phase
in a time step in the manner described in Section 3.3 and
draw from the binomial distribution to determine how
many cells performed the transition. Because T cells
with different specificities seem to expand at the same
rate in vivo (Busch et al., 1998b), all cells in the model
share the same cell cycle parameters. When a death rate
of dE=0.6 day

�1 is included (Veiga-Fernandes et al.,
2000), the cell population grows at a rate of 0.092 h�1, or
about 9-fold per day. T cells divide for about 5 days
(Lehmann-Grube, 1988), which implies that a single
na.ıve T cell can generate 60,000 effector cells, which
agrees with experiment (Welsh and Selin, 2002). If we
assume that a T cell cannot divide more than 100 times,
there could to be up to 3100 subpopulations of effector
cells per T cell clone, or 100 A phase subpopulations
and 3000 B phase subpopulations. These 3100 sub-
populations efficiently represent the approximately
600,000 cells (i.e., 10 na.ıve cells per clone (Casrouge
et al., 2000) and 60,000 effectors from each na.ıve cell)
that can originate from a single clone in an immune
response.
After their programmed divisions, the cells stop

dividing (Badovinac et al., 2002). We assume that
during the entire lifetime of the activated T cell, they
are subject to the same high death rate dE : Thus, cell
populations that have stopped dividing are subject to
rapid population decline.

3.7. Memory

In our model, effector cells have a 2% per day chance
of becoming memory cells after 5 cell divisions (Oehen
and Brduscha-Riem, 1998; Opferman et al., 1999),
which results in a final memory pool that is about 5%
of the peak response (De Boer et al., 2001). Memory
cells are dormant until antigenic stimulation. We assume
that they have the same sensitivity to antigen as na.ıve
cells, but they enter cell cycle only one hour after
antigenic stimulation. Memory-derived effectors have a
lower death rate than na.ıve-derived effectors (Grayson
et al., 2002), and we set this rate to be dEm=0.4 day

�1

(Veiga-Fernandes et al., 2000).
4. Results

Our model reproduces population-level phenomena
seen experimentally in laboratory mice, and we describe
some of these results below. We begin with experiments
that illustrate the basic differences between primary and
secondary responses and the dynamics of CTL of
different affinities, then proceed to describe simulation
runs that replicate results found in mouse experiments.

4.1. Primary and secondary immune responses

We simulated the primary and secondary responses to
an acute infection (Fig. 5). For this trial, we were not
attempting to match our results to a particular
laboratory experiment but were instead interested in
testing the overall dynamics of the T cell response in the
model. We simulated the injection of 500 virus particles
into a mouse with a single high-affinity T cell clone of 50
cells. The primary response began after approximately 1
day. The response peaked at day 9 then declined to form
a stable memory pool. At day 28, an identical injection
was administered, and the secondary response was faster
and larger than the primary (Fig. 5). The secondary
response began soon after secondary exposure to the
virus, and the lower death rate of memory-derived
effectors caused the T cell population to increase more
rapidly. The secondary response also created a larger
pool of stable memory cells. Therefore, the simulated
mouse’s immune memory could be ‘‘boosted’’ by
multiple exposures to the same antigen, making future
responses to it even more effective.

4.2. High- and low-avidity responses

To study the clonal composition of the T cell
response, we ran the model with a virus with a single
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Fig. 6. High- and low-avidity responses. The high-avidity clone (solid

line) peaks about 2 days earlier than the low-avidity clone (dotted line).

The dashed line represents the simulated viral load.

Fig. 7. Simultaneous responses of a large number of clones. The

dashed line represents the simulated viral load, and the solid lines

represent the responses of T cells from the 29 clones that survived

thymic selection.
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epitope and two T cell clones with different avidities for
this epitope, a high-avidity one (K=7.8� 103) and a low
avidity one (K=4.5� 107). We assumed both clones
initially contained 50 na.ıve cells each. The peak of the
high-avidity clone’s response is over one log greater than
and over 1 day earlier than the low avidity one (Fig. 6).
One of the strengths of our model is that we can

create a large repertoire of CTL with different avidities
to various antigens. Perhaps 20T cell clones respond to
a single epitope (Maryanski et al., 1996; Blattman et al.,
2002). These clones have affinities not only for the
epitope in question, but for all possible epitopes. In
a system subjected to heterologous infections, memory
cells that cross-react to multiple antigens might be an
essential part of our immune responses (Welsh and
Selin, 2002). Our digit string implementation, which
implicitly defines an affinity between a TCR and any
epitope, allows us to model the effect of infections over
an organism’s lifetime.
We simulated the response of a mouse with a realistic-

sized repertoire to a viral infection. We used the xor
distance rule with an alphabet size of 128 and set the
MHC string length to be 4 digits and the peptide string
length to be 6 digits. The simulated mouse had
2.5� 108 T cell specificities before thymic selection, but
only 235 of these specificities were explicitly generated,
the remaining clones falling outside the cross-reactive
cutoff of the antigen. After thymic selection against
30,000 randomly generated self peptides, 29 of the 235
clones survived to join the na.ıve repertoire. Fig. 7 shows
the dynamics of these clones when exposed to the
infection.

4.3. The programmed response

One of the implications of the programmed T cell
response is that the immune response is initiated
by antigen but its outcome is antigen-independent.
If this is true, then removing antigen after the start
of a response should not affect it. This was tested in
mice infected by L. monocytogenes (Mercado et al.,
2000; Badovinac et al., 2002). Antibiotics were adminis-
tered to eliminate the infection 24 h after inoculation,
which quickly removed all antigen. The peak of
the T cell response occurred at the same time in
the antibiotic-treated mice and in the non-treated mice.
The elimination of the infectious agent only caused a
small reduction in the magnitude of the response.
Therefore, the elimination of antigen did not signifi-
cantly affect the timing or the magnitude of the T cell
response.
In our model, we obtained qualitatively similar results

in an LCMV system (Fig. 8). Since antibiotics do not act
instantly and do not directly remove bacteria in mice
infected with L. monocytogenes, we chose to eliminate all
LCMV at 36 h post-infection instead of 24. Eliminating
the infection caused the peak of the response to occur 1
day earlier and decrease only slightly in magnitude. The
reduced response in our model was due to the shortened
recruitment time for na.ıve cells.
Incorporating the programmed response might be

essential to modeling the efficacy of vaccinations.
Vaccines often use attenuated strains of pathogens that
have diminished or no reproductive capacity and are
rapidly cleared from the system.
Since the object of vaccination is to induce a large

response in order to build a large pool of specific
memory cells, then a large dose of an attenuated virus
might be effective even if the virus level drops rapidly. If
the T cell response were totally antigen-dependent, short
periods of antigenic stimulation would not stimulate an
adequate response.
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Fig. 8. T cell response to an infection interrupted by treatment. The

starting dose of the antigen (dashed line) was 10,000 virus particles.

The antigen was removed from the system after 36 h. The T cell

response (solid line) is almost unaffected by the removal of antigen.

For simplicity, only a single T cell specificity and a single antigenic

epitope were used. The antigen and T cell levels of the control case, in

which the antigen is not removed, are plotted for comparison (fine

dotted lines).

Fig. 9. The effect of increasing the number of na.ıve cells. One model

run was initialized with 50 na.ıve cells (solid line) and 500 viruses

(dashed line). The other model run started with 50,000 na.ıve cells

(dotted line) and the same virus load (dash–dot line).
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4.4. Na.ıve population size effects

The size of the initial na.ıve cell population can affect
the outcome of an infection. Presumably, increasing the
number of na.ıve cells can result in an earlier and larger
response to infection. This hypothesis was tested
experimentally in mice (Ehl et al., 1998). The number
of na.ıve cells in mice was experimentally increased
before infection in order to determine how the number
of responding na.ıve cells affects the T cell response to an
acute infection. It was estimated that about 50 na.ıve
cells respond to LCMV in a normal mouse (Ehl et al.,
1998), and the number was raised to 50,000 by adoptive
transfer. Increasing the number of na.ıve cells by 1000-
fold moved the peak of the infection between 1 and 2
days earlier and reduced the viral load by about 2 logs.
In other words, the infection was smaller and eliminated
sooner. Our model’s results are in agreement with these
experiments; after increasing the number of na.ıve cells
from 50 to 50,000, the peak virus load was 1 day earlier
and about 2 logs smaller than in the control case
(Fig. 9).

4.5. Software

We have released the software for the T cell model
used to generate the results presented in this paper
(available at http://www.cs.unm.edu/Bdlchao). The
code is licensed under the GNU General Public License
(GPL), which allows anyone to modify and freely
distribute the code. The software is written in Java so
that it can be run on a wide variety of platforms. On a
typical x86 processor running at 1GHz, the program
takes less than a minute to run for a month of simulated
time with one antigen and a realistic number of T cell
clones (about 20).
5. Conclusion

We have presented a stochastic stage-structured
model of the CTL response to viral infections that
features realistic behavior on the level of the individual
cells yet is more efficient than standard agent-based
approaches to modeling. Our model incorporates
antigen- and affinity- dependent stimulation of na.ıve
cells as well as an antigen- independent programmed
proliferative response and differentiation into effector
cells as suggested by recent experiments. A benefit of our
approach is that it allows one to examine the simulated
response at many levels, from the total T cell count to
the number of responding cells in each clone. Our model
takes into consideration cross-reactivity as well as the
effects of affinity and peptide-MHC density on the
kinetics and clonal composition of the response. Our
model can be used to gain qualitative as well as
quantitative insights into cellular immune responses.
For example, we used the model to analyse the effects of
increasing na.ıve cell frequency and elimination of
antigen by drug therapy.
The creation of detailed cellular-level models tests the

intuition of immunologists. When the mechanisms of
the immune response are studied in isolation, it is easy to
lose sight of the system as a whole. Our model integrates
the knowledge gained from studying small populations
of T cells to form a coherent system that simulates
an organism’s immune response to a pathogen. This

http://www.cs.unm.edu/dlchao
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approach bridges the gap between cellular-level and
whole organism studies, and in the future may be useful
in designing therapies or in gaining insights into how to
modulate the immune response to provide greater
protection from disease.
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