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1 Introduction

Almost one hundred years have passed since J. Mark Baldwin proposed [1] that learned or
acquired characteristics could become part of the genetic makeup of succeeding generations
without Lamarckian inheritance. Individuals that learn or acquire useful characteristics
during their lifetimes tend to survive, and, Baldwin claimed, this would cause succeeding
generations to have a higher probability of acquiring the same characteristics, even though
the characteristics themselves were not genetically propagated. Baldwin called this “a new
factor in evolution,” and it has come to be known as the Baldwin effect.

In recent years the Baldwin effect has been shown to exist in several experiments involving
the simulated evolution of learning systems (for example, [2] [3]). These simulations have
typically used the genetic algorithm (GA) to act the part of evolution and neural networks
to play the role of the learning mechanism. The nervous system, however, is not the only
part of an organism that is capable of learning. This paper discusses the Baldwin effect
with respect to the immune system—a learning mechanism that rivals the complexity and
computational power of the nervous system.

In previous work we used a binary model of the immune system to study the effects of
evolution on the genetic representation of antibodies [4]. Here we have extended this model
to include “clonal selection,” which is the learning process used by the immune system. Once
this learning mechanism was incorporated into the model it became possible to observe the
Baldwin effect in the evolution of our binary immune system. We found that the Baldwin
effect is not a universal relationship between evolution and learning, and that the strength
of the effect is sensitive to the shape of the fitness landscape.

2 The Immune System and Clonal Selection

The human immune system is responsible for recognizing, and defending against, pathogens,
toxins and other foreign molecules, collectively called antigens. The immune system produces
special molecules, antibodies, which bind to antigen and thereby lead to their elimination.
Antigen recognition is essentially a form of template matching—when the shape and charge



of the antibody and antigen molecules match, in a complementary fashion, the molecules can
bind and the antigen is recognized. The closer the match is between antibody and antigen,
the stronger the molecular binding and the better the recognition.

Antibodies are produced by the B cells of the immune system. Each B cell produces a specific
type of antibody that can recognize only specific types of antigen. The antibodies produced
by a B cell are expressed on the surface of the cell as receptors. When the antibody receptors
of a B cell recognize an antigen, that B cell is stimulated to reproduce. In the presence of
antigen, the daughter cells of a stimulated B cell will also become stimulated and reproduce.
Thus, the presence of antigen will cause the proliferation of those B cells best suited to
recognizing that antigen. This process is called clonal selection.

The stimulated proliferation of B cells activates a mechanism called somatic hypermutation
[5]. Somatic hypermutation affects the genes that encode for the antibody molecule (in
particular the portion of the antibody that binds to antigen, called the variable region).
The daughter cells of a stimulated B cell, therefore, exhibit wide variation in their ability to
recognize antigen.

Due to competition for binding antigen, the better B cells with higher affinity antibodies
will be stimulated by the antigen and will grow at the expense of B cells expressing “poorer”
or lower affinity antibodies. By repeating this process of mutation and selection a number
of times, the immune system “learns” to produce higher affinity antibodies for the antigen
stimulating the system?! .

Learned characteristics in the immune system are not passed directly to offspring. The DNA
in a B cell that is modified during the learning process cannot be spliced into the DNA of an
egg or sperm cell, and so this DNA cannot be passed on genetically to the next generation.
Any contribution that clonal selection and somatic hypermutation have on the evolutionary
process must occur via the Baldwin effect.

3 The Binary Immune System

Antigen: 1100100101101001101010000100001111010011001010101001010100110101
Anti body: 1011010101001010010111000101011101011011100011001100100100100111
XOR: 11111 1 111111 1 11 1 1 11 11 1 111 1 1

Figure 1: Computing the match score between binary molecules.

Our model of the immune system uses bitstrings, with a length of 64 bits, to represent
the shape of antibody and antigen molecules. In this bitstring universe, molecular binding
takes place when an antibody bitstring and an antigen bitstring “match” each other in a
complementary fashion. The match score between an antibody bitstring and an antigen

It is interesting to note that somatic hypermutation and clonal selection behave like an internal version
of evolution that operates within an individual’s body.
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Figure 2: Relation of binding value to match score.
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Figure 3: Probability of learning, with G = 25 guesses and genetic component of 32.

bitstring is the number of complementary bits. As shown in Figure 1, the match score
can be computed by applying the exclusive-or operator (XOR). The expected match score
between two randomly chosen bitstrings is 32 (half the length of the 64-bit strings).

The binding value, derived from the match score, represents how well two molecules bind.
In reality, two molecules must match each other over a sufficiently large surface area before
a stable bond can form. In our bitstring universe this is emulated by requiring the match
score to exceed a certain threshold before binding takes place. The curve in Figure 2 shows
the relationship of binding value to match score. For match scores below the threshold (in
these experiments the threshold was equal to 45 bits) the binding value is essentially zero.
For match scores above the threshold, the binding value is one. Note that the binding value
function makes a soft transition on either side of the threshold, rather than an abrupt shift
from zero to one.

We chose a non-linear binding value function for two reasons. First, it is a more accurate
description of the actual molecular binding process. Second, it appears to be a necessary



condition for the Baldwin effect to occur (as will be discussed later).

In our original model of the immune system [4] no learning (somatic hypermutation) took
place during fitness evaluation, and the match score was determined entirely by the genes.
Here we extend that model and assume that the match score of an antibody has both a
genetic component and a learned component, as shown in Figure 2. The genetic compo-
nent of the match score is computed by comparing an antibody bitstring to the antigen
before any learning occurs. The antibody is then allowed to make G guesses in an at-
tempt to improve its score. (This learning-as-guessing process follows that used by Hin-
ton and Nowlan [2].) Each guess has a 50% probability of being correct, so the proba-
bility distribution for the learned component is a binomial distribution, with a mean of
Genetic Component + (Allowed Guesses)/2. Comparing Figure 2 and Figure 3, we see that
if the genetic component is insufficient to produce a strong binding value, a small amount
of learning may push the match score above the necessary threshold.

4 The Experiment

The experiment described in this paper tests for a modified statement of the Baldwin effect.
Instead of testing whether “learning guides evolution,” the experiment tests whether “learn-

" The approach is to vary the learning rate—the number, G, of

ing accelerates evolution.’
allowed guesses—and to measure the corresponding amount of evolutionary progress after a
fixed amount of time has passed. This is more similar to the experiments of Keesing and

Stork [3] than the Hinton and Nowlan experiment [2].

Before looking at the results, we detail the genetic algorithm portion of the experiment.
Grefenstette’s GENESIS [6] was used as the genetic algorithm, with default settings for mu-
tation and crossover probabilities. The population size was set at fifty. The GA experiments
all ran for exactly one thousand generations. Individuals are initially set to all zero bits for
the first generation?.

An individual in the population was represented as a genome of 512 bits. Using a compres-
sion technique found in the real immune system, these 512 bits encode for a total of 4096
antibodies, each of length 64-bits. The details of this genetic representation can be found in

[4].

The fitness of an individual, as used by the GA, is found by testing all 4096 antibodies
against a small number, K, of randomly chosen antigens (here K = 8). The K antigen
bitstrings are randomly selected from a larger set of bitstrings called the antigen universe.
For the experiments described here the antigen universe contained 32 randomly generated
antigen bitstrings.

Individual fitness is calculated as follows. For each of the eight antigens, the individual being
evaluated selects the single antibody that best matches the antigen. The match score of this

?Initializing the population to all zeros increases the difficult of the learning task. There is also some bio-
logical justification: the genes encoding for antibodies probably arose through a process of gene duplication,
so the DNA would have had a high degree of self-similarity early in its evolutionary history.



antibody with the antigen is the genetic component of the score. The chosen antibody then
undergoes the learning process and makes (¢ guesses to determine the learned component of
the match score. The genetic component and the learned component are added (see Figure
3), and used to find the corresponding binding value (using the function shown in Figure 2).
Thus a binding value is found for each of the K = 8 antigens. The fitness of the individual
is the average binding value, averaged over the eight randomly chosen antigen. This fitness
is used by the GA to determined which individuals will survive into the next generation.

No Lamarckian inheritance is performed in these experiments. The learning that takes
place does not modify the genetic character of the individual being evaluated. Therefore
the offspring of an individual inherit no direct information about the results of the learning
process.

5 The Results

48 ¢
(7]
cC
S
©
S 44
=~
20
Qo
£ 8
o
c g
AL 40}
cg) q
[&)
z>
o
D c
c O
b8 36¢
S
o
(@]
o
324 5 10 15 20 25 30

Learning Rate (number of guesses)

Figure 4: The Baldwin effect and the mastery effect. The population average match score
at generation = 1000. 30 experiments per data point. Population size = 50.

Figure 4 shows the results of these experiments for a number of different learning rates, G,
between 0 and 30. Each point is an average over thirty GA runs. The vertical axis shows the



genetic component of the match score, averaged for the entire population (and the thirty GA
runs). This average genetic match score is essentially the “fitness at birth,” before learning
takes place, and shows the genetic goodness of the population. The data curve shows that
the highest average match scores (around 43 bits) were found by the genetic algorithm when
the learning rate was between 8 and 12 guesses per lifetime.

Two things should be pointed out about the scaling of this plot. First, the match score
between a randomly chosen antibody and a randomly chosen antigen has an expected value
of 32 bits (half the length of the 64-bit strings), and this determined the minimum coordinate
for the graph. Second, the binding value for all match scores above 48 is 1.0, so there is
no selection pressure for the population to exceed a score of 48. Hence 48 was used as the
maximum coordinate of this plot. The plot is scaled between the minimum and maximum
obtainable values.

The upward slope on the left side of the curve is due to the Baldwin effect. It shows that
increased learning leads to an increase in evolutionary progress during the course of one
thousand generations. The explanation for this acceleration of evolution is that learning
rewards those individuals that are nearer to the threshold in the binding value function.
Without learning, individuals near the threshold have essentially the same poor fitness of
those further away. This is similar to the situation described by Hinton and Nowlan [2] in
their experiment where learning put “shoulders” around the single solution, providing fitness
information to the GA that would not have been available otherwise.

The ramp on the right side of the curve shows, what we call the mastery effect. The antigen
recognition task has only a finite difficulty, so it is possible for an individual to completely
master the task. Given a sufficient amount of learning, even the worst members of the popu-
lation can learn the correct solution in 1000 generations, which effectively hides their genetic
disabilities from the GA. This reduction in information slows the progress of evolution, and
the slowing appears to occur linearly with an increase of learning rate. Presumably, an in-
finite amount of learning would absolutely halt evolution, given a task with finite difficulty.
Keesing and Stork [3] demonstrated a similar effect with a neural network model.

A small modification to this experiment removed the Baldwin effect completely. Figure 2
shows a binding value function that is non-linear with respect to the match score. When the
binding value function is made to be a linear function of match score, then changes in the
learning rate G do not improve evolutionary progress. With a linear binding value function
there is no Baldwin effect, and only the mastery effect remains. This makes good sense with
respect to Hinton and Nowlan’s “shoulders” explanation. Without the non-linearity, there
is nothing for learning to put shoulders around, and therefore no evolutionary advantage to
learning.

6 Discussion

We have taken an existing model of the immune system and shown the presence of the
Baldwin effect. The explanation of the effect is that learning allows the population to perform
local search of the fitness landscape during evolution. As noted by Hinton and Nowlan, this



is like putting shoulders around the solution. In these experiments the “shoulders” are put
around the non-linearity in the binding value function. Learning allows evolution to discover
which individuals are nearest to the threshold of success.

The Baldwin effect is not a universal relation between evolution and learning, and appears
to be sensitive to the shape of the fitness landscape. As we discovered, the Baldwin effect
disappears when the non-linearity in the binding value function is removed. Without the
non-linearity, there is nothing for learning to put shoulders around, so local search (learning)
offers no evolutionary advantage. This observation was never made explicit in Hinton and
Nowlan’s explanation of the Baldwin effect.

Our experiment combines aspects of the work by Hinton and Nowlan and the work by
Keesing and Stork. As with the Hinton and Nowlan, our genetic representation is binary
and learning is implemented as a process of bit guessing. The experiment itself, however,
follows the “learning accelerates evolution” model of Keesing and Stork, and the resulting
curve has a shape similar to their experimental results.

The immune system experiment differs, however, in the representational correctness of our
model. Learning and evolution operate on the same genetic representation, and this is true
for both our model immune system and the real immune system. Contrast this with the
nervous system models. Hinton and Nowlan used genes to represent neural connections.
Keesing and Stork used genes to represent weights on neural connections. In real nervous
systems, there is no direct genetic representation for either weights or connections. Weights
and connections derive from a complicated process of growth and development. The point
is that evolution and learning operate on different levels of representation for real nervous
systems, but in the simulated models, evolution and learning operate on the same thing.
This may be an important distinction when we begin looking for the specific conditions that
promote or inhibit the Baldwin effect.
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