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Abstract

The transformation of normal cells into cancerous cells
is an evolutionary process. Populations of precancer-
ous cells reproduce, mutate, and compete for resources.
Some of these mutations eventually lead to cancer. We
calculate the probability of developing cancer under a
set of simplifying assumptions and then elaborate these
calculations, culminating in a simple simulation of the
cell dynamics. The agent-based model allows us to ex-
amine the interactions of neutral and selective muta-
tions, as well as mutations that raise the mutation rate
for the entire cell. The simulations suggest that there
must be at least two selectively neutral mutations neces-
sary for the development of cancer and that preventive
treatments will be most e�ective when they increase this
number.

Cancer

Cancer is an evolutionary problem. This is the basis for
both its virulence and our diÆculties in treating it. The
dynamics of cancer cells demonstrate the suÆcient con-
ditions for natural selection: heritable variation in the
population and di�erential reproduction based on that
variation. The variation in the population of precancer-
ous cells (Fujii et al., 1996; Barrett et al., 1999) arises
from the normal process of somatic mutations as well
as the dramatic rise in mutation rates that is charac-
teristic of the progression to cancer (Paulovich et al.,
1997). Di�erential reproduction of the mutants is ac-
complished through phenomena such as the subversion
of check points in the cell cycles of the mutants (Sherr,
1996). Nowell, 1976, argued for the importance of evo-
lution in cancer more than two decades ago. Any muta-
tions that redirect more of the body's resources to the
cancer cells will be selected. This includes the invasion
of new tissues and metastasis. The fact that the popula-
tion of cells includes signi�cant heterogeneity means that
most treatments will not eradicate all the cells, leaving
some resistant cells. Furthermore, since each patient's
cells evolve through an independent set of mutations and
selective environments, the resulting population of can-
cer cells in each patient is likely to be unique. This
suggests that general treatments that will work for all,

or even most, patients will be diÆcult to �nd. The fact
that evolution within a tumor works against us in cancer
means that not only is cancer an evolutionary problem,
but that it will only be solved as an evolutionary prob-
lem.
Arti�cial life provides approaches that are ideal for

addressing such evolutionary problems. The �eld of
arti�cial life has grown up around evolutionary theory
(Collins and Je�erson, 1992; Maley, 1998; Levin et al.,
1997), and for good reason. When we try to represent
heterogeneous populations of individuals interacting in a
spatially structured environment, it is diÆcult to repre-
sent and analyze such systems with tractable mathemat-
ics. Computational models can help to extend analytical
theory to the dynamics of systems with heterogeneous
populations that are interacting and evolving. Compu-
tational models can help to test the simpli�cations neces-
sary to reduce the biological system to a mathematically
tractable formulation. At its best, arti�cial life models
applied to theoretical biology lead to testable hypothe-
ses.
This paper extends an analytical model of the risk of

developing cancer and derives testable hypotheses about
the genetic nature of the development of cancer from
these models. We focus on a type of esophageal cancer
known as esophageal adenocarcinoma, and its precancer-
ous state, which is known as Barrett's esophagus (Reid,
1991; Neshat et al., 1994; Barrett et al., 1999).

Estimating Cancer Risks

Two dominant characteristics of cancer cells are their ge-
netic instability (Lengauer et al., 1998) and uncontrolled
proliferation (Kastan, 1997). The most commonly mu-
tated tumor suppressor gene across all cancers is p53
(Smith and Fornace, 1995). The loss of this gene re-
sults in genetic instabilities (increased mutation rate),
often with the loss or duplication of entire chromosomes
(Smith and Fornace, 1995). The appearance of such ane-
uploid cells in Barrett's Esophagus is one of our most
reliable indicators of a poor prognosis (Neshat et al.,
1994). In contrast, p16 (a.k.a. CDKN2A and INK4a) is
a gene thought to be responsible for shifting a cell from



a proliferative state to a quiescent state (G0) (Sherr,
1996). Loss of a p16 allele is associated with the spread
of cells with that mutation throughout the Barrett's re-
gion. But, at least in Barrett's Esophagus, mutations
in both p53 and p16 are not suÆcient to cause cancer
(Barrett et al., 1999). How many other genes are in-
volved and what are their roles?
There is a body of mathematical modeling work which

argues that the development of cancer is best under-
stood as a sequence of two or more stages (Moolgavkar
and Luebeck, 1990; Moolgavkar, 1999; Little, 1995;
Luebeck and Moolgavkar, 1994; Sherman and Portier,
1996). The two stages might be called \precancerous"
and \malignant." The two-stage model involves at least
6 rate parameters: the rate of cells changing from a nor-
mal state to the precancerous state, the rate of reproduc-
tion of precancerous cells, the rate of loss of precancerous
cells, the rate of cells changing from the precancerous to
the malignant state, and the rates of reproduction and
loss of the malignant cells. These parameters appear
to be suÆcient to �t the model to most epidemiologi-
cal data on the incidence of cancer. Moolgavkar, 1999
argues \without ancillary biological information there is
little point to �tting models postulating more than two
stages to tumor incidence data." It has been shown that
models which fail to include the stochastic birth and
death dynamics of cells in the stages give di�erent re-
sults than those models which do include those dynamics
(Luebeck and Moolgavkar, 1994). These stage models,
also promoted by experimentalists (Fearon and Vogel-
stein, 1990), abstract away the evolutionary dynamics
of cancer. Progression to cancer is seen as a progres-
sion through a linear sequence of stages, rather than a
diversi�cation into a phylogeny of cell lines. There are
no interactions between cells in these models, such as
competition for resources.
Theoretical work could potentially help guide research

into this fundamental area of cancer genetics. For exam-
ple, we could ask, if cancer requires 2 (or more) selective
mutations in genes such as p16, what is the chance of
developing cancer? Or, if a mutation in a gene such as
p53 boosts the mutation rate, how would this a�ect the
probability of getting cancer? Since we have good epi-
demiological data on the probability of getting cancer,
we can then make guesses as to the number and kind of
mutations that are necessary for its development. We
will begin with some simple analytical calculations and
incrementally elaborate them until we are forced to move
to a simulation-based model of the evolution of cancer.

Loeb's Paradox

In 1991 Loeb formulated the following paradoxically
calculation for the incidence of cancer. From the lit-
erature on human cell cultures he takes a per base
pair, per cell division mutation rate of 10�10 (Oller
et al., 1989; Monnat Jr., 1989; Fukuchi et al., 1989;

Seshadri et al., 1987). He estimates that there are ap-
proximately 1016 cell divisions in a human lifetime. Fi-
nally, there are on the order of 109 base pairs in the
human genome. Putting this together, we should expect
10�10 � 1016 � 109 = 1015 mutations in our cells during
a human lifetime. If we are interested in the incidence
of cells with two mutations at any loci, then this should
occur 10�10 � 10�10 � 1016 � 109 = 105 times in a hu-
man lifetime. However, if a genetic disease requires 3
mutations to occur in the same cell, this should happen
only once in 105 people. The chance of incurring 4 mu-
tations is astronomically small. If these mutations must
occur in speci�c loci, such as the coding regions of tumor
suppressor genes and oncogenes, then the probability of
developing cancer would be even smaller. Yet we be-
lieve that cancer requires a whole series of mutations
(Armitage and Doll, 1954; Renan, 1993; Stein, 1991;
Renan, 1993), and cancer is a frequent event during hu-
man lifespans.

Mutator Phenotype

One explanation for this paradox, o�ered in Loeb, 1998,
is the idea of a \mutator" phenotype. Loeb's calculation
changes if an early mutation, perhaps in p53, increases
the mutation rate in the rest of the cell. Let us assume
that the �rst event in this progression is a mutation that
raises the mutation rate by cm. Let � be the mutation
rate per locus per cell generation, km the number of crit-
ical genes necessary and suÆcient to cause cancer, lc the
number of loci in a critical gene vulnerable to a can-
cer causing mutation, and let nb be the number of cells
in a human lifetime. To be generous, we will estimate
that there are 100 di�erent genes which, if they mutated,
might raise the mutation rate. The expected number of
cells that will independently develop cancer should be:

E[Tumors] = nb
�
1� (1� �)lc100

� �
1� (1� cm�)

lc
�km
(1)

Where (1 � �)lc100 is the chance that a cell avoids a
mutation in all lc100 loci that would produce the mu-
tator phenotype. Thus 1 � (1 � �)lc100 is the proba-
bility that a cell has a mutation in at least one of the
100 genes that lead to the mutator phenotype. Here
cm� is the increased mutation rate. Loeb estimated
nb = 1016 and � = 10�10. There are approximately
103 loci in a human gene at which point a deletion, in-
sertion, or substitution is likely to a�ect the polypeptide
which that gene encodes. So we will consider lc = 103.
Comparison of normal and malignant cell cultures has
estimated a change in mutation rate due to malignancy
of 1 to 3 orders of magnitude (Seshadri et al., 1987).
If we assume that cancer requires the initial mutation
in the mutator gene and then 3 more mutations, a total
number of mutations that was astronomically unlikely in
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Figure 1: The expected number of cancerous cells that
will develop during a person's lifetime. Two parameters
are examined. The �rst parameter cm is the increase in
the mutation rate � due to an initial mutation creating a
mutator phenotype. This was calculated over the range
of 101 to 1010. The second parameter km is the number
of mutations that are necessary and suÆcient to cause
cancer once the mutator phenotype has appeared, from
1 to 10. The expected number of cancerous cells has
been truncated at 1.

Loeb's original estimation, and we assume that the mu-
tator phenotype increases the mutation rate by 3 orders
of magnitude, cm = 103, then cancer should develop in
1016[1� (1��)10

3102 ](1� (1�10�10103)10
3

)3 � 0:1 cells
in a human's lifetime. Figure 1 shows the log10 expected
number of cancer cells dependent on km the number of
mutations required and cm the increase in the mutation
rate due to the mutator phenotype. We have truncated
the data at an expected single tumor because we are in-
terested in the probability of developing cancer at least
once.
Figure 1 shows that there is only a narrow window

of mutation rate and number of suÆcient mutations to
develop cancer that result in realistic probabilities for
developing cancer. In the United States, the chance of
developing cancer during one's entire lifetime is approxi-
mately 40% (Ries et al., 1998). Figure 2 shows a view of
the isocline where the probability of developing cancer is
40%. From this we can predict the relationship between
the change in the mutation rate due to the emergence
of the mutator phenotype and the number of mutations
that are suÆcient to cause cancer. For example, Fig-
ure 2 suggests that if the development of cancer requires
6 or more mutations after the initial rise in the mutation
rate, then that initial increase must raise the mutation
rate by at least 5 orders of magnitude.

Clonal Expansion

Loeb notes that Nowell, 1976, proposes another solution
to his paradox. Some mutations can have selective e�ects
and so increase the population of cells with that muta-
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Figure 2: The predicted relationship between the in-
crease in mutation rate of a \mutator phenotype" versus
the number of mutations necessary to cause cancer af-
ter the appearance of the mutator phenotype. This an
isocline calculated from Figure 1. This �gure assumes
a 0.4 probability of developing cancer during a lifetime.
If the development of cancer requires many mutations,
then the mutator phenotype would have to raise the mu-
tation rate by at least 5 orders of magnitude.

tion (Nowell, 1976). We can elaborate Loeb's calcula-
tions with the assumption that the necessary mutations
along the progression to cancer all have selective e�ects.
Thus, if a cell incurs such a mutation, it will increase
in frequency to some number nt which is approximately
equal to the number of cells in a tumor. Again � is the
mutation rate, km the number of critical genes, lc the
number of loci in a critical gene vulnerable to a cancer
causing mutation, and nb is the number of cells in a hu-
man lifetime. We will assume that the mutations can
occur in any order.
The chance of the �rst mutation occurring is 1 minus

the chance that it doesn't occur:

Pr[�rst mutation] = 1� (1� �)lckmnb (2)

This will cause the cell with that mutation to expand
to nt cells. >From then on, each new mutation has nt
chances of occurring in a background of cells carrying
all the previous mutations. The probability that the
remaining km � 1 mutations occur is then:

Pr[other mutations] =
�
1� (1� �)lcnt

�km�1
(3)

Let us make some reasonable assumptions for the val-
ues of lc; nt and km. To estimate nt we will consider
Barrett's Esophagus, a precancerous condition of the
esophagus studied by the Reid lab at the Fred Hutchin-
son Cancer Research Center. Biopsies collected from
the neoplastic tissue of the patients typically include 106

cells in a 2mm by 5mm section of epithelium. The entire
Barrett's region averages approximately a surface area
of 50mm by 60mm, or 10 biopsies by 30 biopsies. So
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Figure 3: The probability of developing cancer during
a person's lifetime. Two parameters are examined. The
cell population size to which a selected mutant grows has
been calculated over the range of 103 to 1010. The sec-
ond parameter is the number of selected mutations that
are necessary and suÆcient to cause cancer, from 1 to 10.
These calculations estimate that if the selected popula-
tion size is below 106 there is little chance of developing
cancer. If it is 108 or above, a person is guaranteed to
develop cancer during their lifetime.

the entire surface area can be sectioned into 300 biopsies
of 106 cells, for a total of 3 � 108 cells. Since mutant
clones are often observed to have expanded over the en-
tire Barrett's region of a patient, it seems reasonable to
set nt = 108. Let us consider the case where km = 4
mutations are necessary to cause cancer. Recall that
Loeb calculates the chance of 4 mutations occurring in
the same cell to be astronomically small. Then,

Pr[�rst mutation] = 1� (1� 10�10)4�10
19

� 1 (4)

This number is so close to 1 that most computers cannot
represent it as anything other than 1. So many cells are
generated in a human lifetime that there are probably
many cells that carry a mutation at any given locus.
The interesting dynamics lie in the sequence of mutations
that follow the �rst one:

Pr[other mutations] =
h
1� (1� 10�10)10

11
i3

= 0:99986

(5)

Given our assumptions, we estimate that 4 speci�c se-
lected mutations are almost certain to occur in the life-
time of an individual. Of course, our estimates may be
o�. Figure 3 shows the probability of su�ering cancer as
a function of the number of cells to which selected mu-
tant expands (nt) and the number of selective mutations
necessary and suÆcient to cause cancer (km).
Figure 3 shows a precipitous drop in the probability

of experiencing cancer as we reduce our estimate of the
number of cells in a tumor from 108 to 106. The SEER

report from the National Cancer Institute (Ries et al.,
1998) estimates the lifetime probability of being diag-
nosed with cancer in the US is 45% for men and 38%
for women (for all races and cancer sites combined). To
match this estimate, our rough calculations suggest that
in general cancers would require 3 selected mutations
and those mutant clones would tend to spread to pop-
ulations of 107 cells. Of course, this is an extremely
simpli�ed model of the incidence of cancer. We have not
accounted for any environmental e�ects, genetic predis-
positions, or indeed any mutations that are necessary
but do not spread through selection. Nevertheless, the
elaboration to Loeb's calculations shows that Nowell's
insight resolves the paradox. We develop cancer because
the cells in the neoplastic tissues are evolving.

Both Mutator and Selective E�ects

The two elaborations of Loeb's calculations consider se-
lective and mutator mutations separately. A more real-
istic view of the development of cancer would likely con-
sider both selective mutations and mutations that raise
the mutation rate, and their interactions. In addition,
there may be \neutral" mutations which have no e�ect
on cell proliferation rates or mutation rates.
Consider the case in which a mutator or neutral mu-

tation arises in a cell of the tumor. There is no reason
to believe that this mutation would spread rapidly in
the tumor. Without a selective advantage, such a mu-
tation would be unlikely to grow to dominate the entire
tumor. Meanwhile, if a selective mutation occurred in a
cell which lacked the mutator or neutral mutation, the
selective mutation would tend to expand throughout the
tumor and thereby displace the mutant population with
the mutator or neutral mutation. Thus, it is important
to keep track of both the cells with the mutator or neu-
tral mutations, as well as the cells that are free of those
mutations but may yet su�er selective mutations. Each
subpopulation can be characterized by the number of se-
lective, mutator, and neutral mutations it has su�ered,
along with its population size. A set of di�erence equa-
tions can describe the growth dynamics of these subpop-
ulations, as well as mutations that move cells from one
subpopulation to another. But what growth dynamics
should we use? The fundamental dynamic of biological
reproduction is exponential. Is this a reasonable repre-
sentation of tumor dynamics in humans?
In the esophagus, as in most of the digestive tract,

cells along the lining (epithelium) are constantly being
sloughed o� and destroyed. These losses are replenished
by the division of cells in the lining. In the case of Bar-
rett's Esophagus, these cells are precancerous and hyper-
proliferative. The estimated turnover time is about once
a week (Madara, 1995). As the cells are spatially struc-
tured as a two-dimensional layer (lining of a cylinder),
there are severe spatial constraints restricting exponen-
tial growth. Further, cell division (mitosis) is a local



process, and so most new cells must compete for space
with their immediate ancestors. The easiest way to rep-
resent a heterogeneous population of cells growing in a
two-dimensional environment is with a two-dimensional
model resembling a cellular automaton.

The Model We represented the the states of all the
precancerous cells in the lining of the Barrett's region of
an esophagus. We instantiated this as a two-dimensional
discrete-event simulation in the shape of a column with
\wrap-around" boundaries on the left and right sides,
but not on the top and bottom. The state of a cell in
this grid has four components: the number of selective
mutations it has su�ered (0-4), the number of neutral
mutations it has su�ered (0-4), whether or not it has
su�ered a mutation that increases its mutation rate (a
\mutator" mutation), and its age (0-16). The popu-
lation of cells is updated serially in a time step which
represents approximately half a day. The time until the
next reproduction (mitotic) event for each cell is drawn
from a normal probability distribution with a mean of
8 times steps and a standard deviation of 2 time steps.
Each selective mutation has the e�ect of doubling the
replication rate of the cell. Thus a cell that has incurred
2 selective mutations reproduces 4 times as fast as a nor-
mal cell. When a cell divides, the new cell has a 50%
chance of displacing one of the 9 cells, selected with uni-
form probability, in the 3 by 3 cell neighborhood cen-
tered on the parental cell. A run of the model began
with all cells at age 0 with no mutations. With each
time step representing 12 hours, we ran the model for
54,000 time steps (approximately 74 years), or a human
lifetime. This put practical limitations on the number
of cells we could model, with a maximum of 256 by 256
(65,536) cells. In the future we hope to model more re-
alistic tumor sizes with approximately 108 cells.
We model the mutation rate as a Bernoulli process.

The probability of a cell changing state is

Pr[mutation] = 1� (1� �)(S+N+M)lcnp = P (6)

Where � = 10�10 is the mutation rate per base pair per
cell generation, S;N; and M are the numbers of selec-
tive, neutral, and mutator genes suÆcient and necessary
to cause cancer if mutated, lc = 103 is the number of
critical base pairs (loci) in each gene at which a mu-
tation could have a carcinogenic e�ect. In most cases,
we assume that these mutations \knock out" the gene
by either turning it o� or destroying the functional ef-
fects of the normal protein produced by the unmutated
gene. The last parameter, np = 2, is the number of inde-
pendent pathways to cancer. This is an estimate of the
number of genes in which a mutation will have the same
carcinogenic e�ect. If a cell had at least one mutator
gene mutated then � increased by 103. This parame-
ter for the increase in the mutation rate was called cm
in our earlier calculations. We primarily experimented

with parameters S;N; and M , with some exploration of
�; lc and the degree of increase in � due to the mutator
phenotype. A cell was called malignant if it had S selec-
tive mutations and N neutral mutations. We assumed
that the mutator phenotype was not necessary for ma-
lignancy but only played a facilitating role through the
increase in the mutation rate of the selective and neutral
genes.
A Bernoulli process can be simulated by calculating

the interarrival time for the next success. That is, in-
stead of 
ipping a biased coin with probability of suc-
cess P for each trial of the Bernoulli process, we can
ask when the next success will happen. The probability
mass function for the interarrival time k, the number of
trials up to and including the next success, of a Bernoulli
process is the geometric distribution:

Pr[k] = P (1� P )k�1 (7)

for k = 1; 2; : : : . The expected value of k is E[k] = 1=P .
When P is very small, as it is for most mutation rates,
this function very gradually drops o�. In this case, for
the purposes of eÆciency, it is reasonable to approximate
Pr[k] as a uniform distribution from 0 to 2=P , which
has the same expected value E[k] = 1=P although a
smaller variance. We calculated this with a single call to
the pseudorandom number generator, using a version of
Knuth's subtractive method (Knuth, 1981, pp. 171{172)
to generate the pseudorandom numbers. We assume that
the processes of DNA synthesis and cell division are the
primary causes of mutations. Thus, in our model muta-
tions only occur at cell division (Paulovich et al., 1997;
Zheng et al., 1993). Mutations have an equal probability
of occurring in the new or parental cell.
At the end of a run we measured the proportion of

cells that su�ered enough mutations to cause cancer (S
and N). We ran the model at least 50 times for each
parameter setting. A grey-scale picture of the model in
the midst of a run is shown in Figure 4.

Results A run of the model was considered to have
led to cancer if the �nal population had at least 1 cell
with number of mutations required for malignancy (S
and N). Figures 5 and 6 show the resulting probability
of developing cancer as a function of the number of se-
lective mutations S and neutral mutations N necessary
and suÆcient for developing cancer. Figure 5 shows the
probabilities when there is no mutator gene to raise the
background mutation rate. Figure 6 shows the results of
the same parameter con�gurations when there is a mu-
tator gene that may also mutate and thereby raise the
mutation rate by 3 orders of magnitude.
Figure 7 is an extraction of a single curve from Fig-

ures 5 and 6 where N = 1. Figure 7 also shows the
90% con�dence intervals around these curves calculated
by treating the probability of developing cancer as a
Bernoulli process. When there is no mutator gene in the



Figure 4: A view of the model running. The cells are
color coded by lineage. The lighter grey lineages share an
ancestor that su�ered a selective mutation. This mutant
clone is in the process of sweeping through the entire
tissue.

system, the probability of developing cancer decreases
with the number of selective mutations that are required.
This seems reasonable in light of our earlier calculations.
However, in the presence of a mutator gene that can raise
the mutation rate at any time, the probability of devel-
oping cancer actually increases with the number of nec-
essary selective mutations. This is because a selective
mutation generates a large number of new cells, each
cell representing a potential new mutation. When the
mutation rate is high enough, this forms a positive feed-
back system in which one selective mutation generates
the next selective mutation and so on until the system
reaches malignancy.
Our explorations of other parameters in the system

all show a relationship between the parameters and the
probability of developing cancer that is either linear or
sub-linear. In all of these cases we assume that 1 neutral
and 2 selective mutations is necessary and suÆcient for
the development of cancer. .The exponents for these re-
lationships were derived from the slope of the line that
was �t to the log transformation of the data. It should
be noted that in all cases the line was �t with only 3 or
4 data points, and so the results should be taken only as
a qualitative indication of the dynamics of the system.
Figures 8 and 10 are log-log plots of the relationship of
the parameter to the probability of developing cancer.
Figures 9 and 11 had to be plotted as a log-linear plots
due to the calculated 0 probability of developing cancer
in some instances. Figure 8 shows that the probability
of developing cancer increases as a square root (in the
presence of a mutator gene) or linear function (in the
absence of a mutator gene) of the number of cells pro-
duced by a selective mutation. Figure 9 shows that the
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Figure 5: A plot of the probability of developing can-
cer as a function of the number of selective and neutral
mutations necessary and suÆcient to cause the disease.
These probabilities have been calculated in the absences
of a mutator gene. The probabilities are dominated by
the number of neutral mutations that are necessary. The
probabilities were calculated by at least 50 runs of the
agent-based model with only 4096 cells.

probability of developing cancer increases in proportion
to the square root of the mutation rate. Figure 10 shows
that this probability also increases in proportion to cube
root of the change in mutation rate caused by a muta-
tion in the mutator gene, i.e., the di�erence between the
normal and the mutator phenotype. Finally, Figure 11
shows that the probability of developing cancer increases
roughly in proportion to the number of base pairs in the
genes at which a mutation can have a carcinogenic ef-
fect. Of course, since probabilities are bounded at 0 and
1, these relationships may break down as they near those
boundaries.

Discussion

Other researchers have studied the relative merits of the
two solutions to Loeb's paradox (Tomlinson and Bod-
mer, 1995; Tomlinson et al., 1996). Tomlinson et al.,
1996 concluded that selective mutations alone are suf-
�cient to explain the mutations observed in cancer. In
their investigation of the mutator phenotype, they inves-
tigated the case where either 2 or 6 neutral mutations
were necessary to cause cancer (Tomlinson et al., 1996).
They assumed the mutator phenotype raised the mu-
tation rate from 10�8 to 10�4. They found that in the
case of requiring 2 neutral mutations, cancer often devel-
oped before the mutator phenotype appeared, but with
6 required mutations, the mutator phenotype would ap-
pear before cancer. They argue that the importance of
a mutator cell will be wiped out if any of the other mu-
tations have selective e�ects. Our results do not support
this. The presence of a few selective mutations amongst
many neutral mutations has little e�ect. However, the
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Figure 6: A plot of the probability of developing can-
cer as a function of the number of selective and neutral
mutations necessary and suÆcient to cause the disease.
These probabilities have been calculated in the presence
of a mutator gene that raises the background mutation
rate from 10�10 to 10�7 when it is mutated. The mu-
tator gene has the same probability of mutation as the
other genes, and thus the background mutation rate may
change at any time during the run of the model. This
contrasts with Figure 1 in which we assumed that the
mutator gene had been mutated before the other genes.
Note that the probability of developing cancer rises with
the number of selective mutations involved irrespective
of the number of necessary neutral mutations.

combination of selective and mutator mutations dramat-
ically increases the probability of developing cancer, as
is shown in Figure 7.

An important aspect of both the analysis of selective
and mutator mutations in cancer is that the parameters
of the predictions are observable and thus the predictions
are experimentally testable. Data is becoming available
on the population sizes of cells with selective mutations,
and it is becoming feasible to measure the mutation rate
in cells with mutator phenotypes, perhaps through the
loss of p53. Similarly, it should be possible to derive
accurate measurements of the number of critical loci in
any given gene relevant to the development of cancer. In
the model we assumed this number was about 103 for all
genes, an estimate that could be improved signi�cantly.
In the foreseeable future we will be able to reduce the
ranges of the signi�cant parameters in the model when
information about the number and kinds of mutations
that are suÆcient for the development of cancer is de-
termined.

Our simulation of the development of cancer is only
a toy model and as such it avoids many of the known
complexities of the biological system. We have implic-
itly assumed that each mutation is independent of the
others, and so can occur in any order. Further, we have
not explicitly represented the phenomenon of dominance
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Figure 7: The interaction of mutator and selective genes.
The solid lines show the probability of developing cancer
as a function of the number of necessary selective mu-
tations. In all cases 1 neutral mutation was required.
Both solid lines are surrounded by their 90% con�dence
intervals shown in dotted lines for the mutator case and
dashed lines for the case without a mutator gene. The
con�dence interval for the mutator case is shaded in grey.
There is a synergy between large numbers of necessary
selective genes and the mutator gene. In the presence
of a mutator gene, the probability of developing cancer
actually increases with the number of necessary selec-
tive genes. In this case the process of developing cancer
has a sort of positive feedback e�ect that quickly gener-
ates malignant cells. In the absence of a mutator gene
the probability of developing cancer goes down with the
number of necessary selective genes.

in which a recessive phenotype might require two muta-
tions before it appeared. However, this could be repre-
sented by the combination of a neutral mutation, which
occurs �rst, and a selective mutation, which would follow
the neutral mutation. We have also ignored the e�ects
of cell senescence. Most cells stop dividing after some
number of divisions have shortened the telomeres to the
point where they no longer protect the ends of the chro-
mosomes.

Only one type of selective e�ect has been modeled.
However, mutations can have strong selective e�ects
without changing the generation time of a cell. Mutants
that tend to compete successfully for space, either by dis-
placing their neighbors or by resisting displacement by
future competitors, would also spread in the population.
There are probably a variety of other genetic innovations
that would have bene�cial phenotypic e�ects. Most of
these could be represented and explored in an elaborated
model.

Our model of the mutator phenotype is probably inap-
propriate. We have modeled the mutator phenotype as
a dramatic boost in the background mutation rate. This
assumes that mutations occur independently throughout



4096 8192 16384 32768 65536
10

−3

10
−2

10
−1

10
0

Number of Cells

Pr
ob

ab
ili

ty
 o

f 
D

ev
el

op
in

g 
C

an
ce

r

The Effect of the Number of Pre−Cancerous Cells

Includes Mutator Gene
No Mutator Gene

Figure 8: The e�ect of running the simulation with more
cells. The values on the horizontal axis represent the
number of cells that is produced through the clonal ex-
pansion of a selective mutation, or roughly the number
of cells in the precancerous tissue. Again the 90% con�-
dence intervals are plotted around each solid line and the
interval with the mutator gene is shaded in grey. There
is some indication that as the number of cells in the sys-
tem rises, the e�ect of the mutator gene diminishes, but
the con�dence intervals generally overlap and so little of
signi�cance can be asserted. The slope of the best �t
line for the mutator case is 0.5, indicating that the prob-
ability of developing cancer is proportional to the square
root of the number of cells in a tumor. The slope for the
non-mutator case is 1.1, indicating that in the absence
of a mutator gene, the probability of developing cancer
rises in proportion to the number of cells in a tumor.

the genome. However, our archetypal candidate for a
mutator gene, p53, seems to cause the loss (and gain) of
whole chromosomes as well as prevent the repair of dam-
aged DNA. In the case of chromosome loss, mutations in
genes are not independent and tend to occur in massive
clusters. Furthermore, we have not modeled the e�ects
of deleterious mutations. We would expect an increase
in the background mutation rate to also increase the fre-
quency of deleterious mutations, which would result in
a selective disadvantage, and sometimes fatal, e�ect on
the host cell.

Finally, we have completely ignored the immune re-
sponse. We know that the human immune system
sometimes attacks precancerous and cancerous cells
(Jantsche� et al., 1999), but the details of these dynam-
ics are still unknown. The immune system would clearly
have selective e�ects on the populations of cells. The im-
mune system could lower the probability of developing
cancer relative to our estimates.

The simpli�cations of our models and our ignorance of
realistic parameter values prevent us from making highly
focused experimental predictions. However, the qualita-
tive behaviors of the models do lead to two predictions:
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Figure 9: A log-linear plot with %90 con�dence inter-
vals of the e�ect of changing the background mutation
rate �. The increase in the chance of developing cancer
is roughly proportional to the increase in the mutation
rate. If we �t a line to the log-transform of the axes, ig-
noring the 0 value, the probability of developing cancer
is proportional to the square root of the mutation rate
(the slope = 0.5).

Prediction 1 The development of cancer requires at

least 2 selectively neutral mutations.

Our model of 216 cells with 1 neutral and 2 selective
mutations suÆcient for developing cancer, in the pres-
ence of a mutator gene, led to a cancer incidence of 35%.
With a more realistic number of cells in a tumor, perhaps
108, the simulated incidence of cancer would be unreal-
istically high. Requiring more selective mutations only
makes the incidence of cancer higher. Thus, cancer must
require more selectively neutral mutations.

Prediction 2 The development of cancer involves a

number of neutral mutations that is within the same or-

der of magnitude as the number of selective mutations.

The clonal expansion of a selective mutant produces a
large population of mutant cells and involves a large
number of cell divisions in which new mutations may
arise. The chance of a neutral mutation is greatly en-
hanced if it follows a selective mutation. However, if
more neutral than selective mutations are required for
the development of cancer, then the neutral mutations
form bottlenecks in path to cancer and make malignancy
more unlikely. This was at the heart of Loeb's paradox.
On the other hand, if few neutral mutations but many
selective mutations are required, and there exist muta-
tor genes in the system, then the mutator genes and the
selective genes form a positive feedback system that ac-
celerates the system towards cancer. Since mutations in
p53 are common across most forms of cancer (Smith and
Fornace, 1995), it is reasonable to suppose that there is
a mutator gene in the system. In this case, with few nec-
essary neutral mutations, the probability of developing
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Figure 10: A log-log plot with %90 con�dence intervals
of the results from adjusting the e�ect of the mutator
phenotype. The horizontal axis shows the change in the
background mutation rate caused by a mutation in the
mutator gene. The probability of developing cancer in-
creases in proportion to the cube root (exponent = 0.3)
of the change in the mutation rate due to the mutator
phenotype.

cancer is too high to be realistic. Thus, the number of
necessary neutral mutations must be close to the num-
ber of selective mutations. Our guess for the meaning of
\close" is the same order of magnitude.

What insights might we derive from these results for
the treatment or prevention of cancer? All of the analy-
ses suggest that neutral mutations are the bottleneck in
the development of cancer. This implies that an e�ective
prevention program would be one in which would add at
least one additional neutral mutation to the set of neces-
sary mutations for the development of cancer. In other
words, we should try to add bottlenecks to the develop-
ment of cancer. This might, for example, be achieved
by treatments for which the precancerous cells would
have to generate recessive mutations in order to escape
the treatment and to progress on towards cancer. If the
susceptible phenotype is completely dominant, then a
mutation in one of the two alleles of a homozygous dom-
inant cell will have no phenotypic e�ect and will thus be
selectively neutral. Similarly, cocktails of multiple drugs
(Hughes and Frenkel, 1997) that require mutations at
multiple sites in order to develop resistance to all of the
drugs in the cocktail might be particularly e�ective.
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Figure 11: A log-linear plot with %90 con�dence inter-
vals of the e�ect of varying the assumed number of base-
pairs or loci in a gene at which a mutation could have
a carcinogenic e�ect. In the case of a tumor suppressor
gene, this would correspond to the number of di�erent
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of getting cancer when each gene has 102 critical loci is
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we lack the resolution to distinguish probabilities this
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the line is 1. Thus, the probability of developing cancer
is roughly proportional to this number of critical loci in
a gene.
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