
Dual-domain Hierarchical Classification of Phonetic
Time Series

Hossein Hamooni
Department of Computer Science

University of New Mexico
hamooni@cs.unm.edu

Abdullah Mueen
Department of Computer Science

University of New Mexico
mueen@cs.unm.edu

Abstract— Phonemes are the smallest units of sound produced
by a human being. Automatic classification of phonemes is a
well-researched topic in linguistics due to its potential for robust
speech recognition. With the recent advancement of phonetic
segmentation algorithms, it is now possible to generate datasets
of millions of phonemes automatically. Phoneme classification on
such datasets is a challenging data mining task because of the
large number of classes (over a hundred) and complexities of the
existing methods.

In this paper, we introduce the phoneme classification problem
as a data mining task. We propose a dual-domain (time and
frequency) hierarchical classification algorithm. Our method uses
a Dynamic Time Warping (DTW) based classifier in the top
layers and time-frequency features in the lower layer. We cross-
validate our method on phonemes from three online dictionaries
and achieved up to 35% improvement in classification compared
to existing techniques. We provide case studies on classifying
accented phonemes and speaker invariant phoneme classification.

I. INTRODUCTION

Phonemes are the smallest units of intelligible sound and
phonetic spelling is the sequence of phonemes that a word
comprises. For example, the word boss has two phonetic
spellings for British (/bAs/) and American (/ba:s/) accents. In
Figure 1, two versions of boss are shown with the phonemes
labeled.
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British : bǢsAmerican : bǡəs

bbbb ǡəǡəǡəǡə ssss bbbb ǢǢǢǢ ssss

Fig. 1: Two waveforms of the word boss pronounced by
American and British accented speakers. The American accent
has a prolonged vowel, while the British accent does not. The
British accent places less stress on the ending “s.” The perfect
segmentation of the phonemes produced by Forced Aligner
[25] is shown in color.

In this paper, we consider the problem of automatic
phoneme classification that can be used for robust speech
recognition, accent/dialect detection, speech quality scoring,

etc. Phoneme classification is inherently complex for two
reasons. First, the number of possible phonemes is at least 107,
based on the international phonetic alphabet (IPA). Therefore,
this problem is a many class classification task for time series
data. Second, phonemes suffer from variability in speakers,
dialects, accents, noise in the environment, and errors in
automatic segmentation.

There have been a plethora of works on phoneme classi-
fication in the signal processing and linguistics communities.
Most of the works over the last twenty years are based on
the classic TIMIT [11] dataset using statistical machine learn-
ing techniques. TIMIT is specifically designed for speaker-
invariant phoneme classification. However, to build a robust
phoneme classifier that can work in public environments with
all kinds of variations, the classifier needs to learn from
heterogeneous sources of data covering a large number of
people, languages, age groups, etc. Therefore, we have taken a
data-driven approach, which illustrates the phenomenon where
a large amount of data can solve this complex problems with
a simple and intuitive algorithm.

In this work, we have created a dataset of 370,000 phonemes
automatically segmented from three online dictionaries cover-
ing the entire corpus of English words. We use a hierarchy of
nearest neighbor classifiers using time and frequency domain
features. We use a Dynamic Time Warping (DTW) based
classifier in the top levels and frequency features in the lower
layer. We adopt recent optimization techniques of time series
similarity search for widely varying phoneme lengths. Our
method performs 35% more accurately than other hierarchical
classification techniques. We show case studies on the appli-
cability of our classifier for accented phoneme recognition and
speaker-invariant phoneme recognition.

The rest of this paper is organized to provide some back-
ground on phoneme classification in the beginning. We de-
scribe our data cleaning process to set more context in Section
III. We move to describing our algorithmic techniques in
Section IV and V. The last two Sections VI and VII discuss
the experimental findings and case studies on related problems.

II. BACKGROUND AND RELATED WORK

The number of phonemes in a language varies with the
dialects of that language. The complete set of phonemes
and their hierarchical organization have been made by the
International Phonetic Association. There are 107 letters, 52



diacritics, and four prosodic marks in the International Pho-
netic Alphabet (IPA) covering various languages [2]. There
exists an extension of IPA for speech pathologists that contains
even more phonemes.

In this paper, we focus on English phonemes. English is
spoken by more than a billion people and is therefore the
most variable language. We focus on a standard set [13] of 39
phonemes in American English; 22 consonants and 17 vowels.
These phonemes can be organized in a taxonomy as shown in
Figure 2. Articulation of phonemes vary based on context,
person, age, health condition, etc. For example, the phoneme
/L/ can be pronounced by folding the tongue inside and also
by extending the tongue out.

Phoneme segmentation, classification, and recognition are
the three main tasks for automated phonotactic processing.
Segmentation finds the phoneme boundaries inside a speech
sequence. Classification identifies each individual phoneme,
and recognition decodes the sequence of phonemes in the
presence of segmentation and classification errors. These three
tasks are sequential and interdependent. A great classifier that
works only on human segmented phonemes should not be the
goal to build applications using this pipeline. Similarly, we
should not train recognizers that work on human classified
phonemes only. To the best of our knowledge, our work is
the first attempt to do phoneme classification on automatically
segmented data.

Segmenting phonemes from speech audio is a challenging
task. The primary reason is that the phonemes often convolve
with each other and become unintelligible without context. The
Forced Aligner tool aligns the speech to the known transcript
and produces a segmentation that is as good as a human
would do [25]. Automated segmentation allows us to create
massive archives of phonemes and move to applications-based
on phonemes such as language detector, accent detector, robust
speech recognizer and so on.

Although phonemes are units of sounds, they are not used
in recognition tasks to their full potential because of the vari-
ations and segmentation problems described above. Current
speech recognizers work on fixed window MFCC features and
ignore phoneme boundaries. In contrast, if a good phoneme
classifier was present, the speech or phoneme recognizers
would work on a discrete sequence of phonemes instead of
raw signals and windowed features, which would make the
recognizer more powerful and robust. A good example of a
phoneme recognizer using the Viterbi algorithm can be found
in [22].

Most of the existing works on phoneme classification are
based on the manually labeled dataset from the Linguistic Data
Consortium named TIMIT [11]. This dataset is specially made
for phoneme classification, containing samples from more than
600 speakers. There is a long chain of works on the TIMIT
dataset that use a variety of techniques and report classification
performance on the standard test set in the corpus. Carla
et al. [6] have presented a nice survey on all the existing
works on TIMIT dataset. A pick on the algorithms can be
Neural network [23], Deep Belief network [17], SVM [8][20],

Boltzmann machine [14], HMM [13], etc. The best accuracy
reported on the TIMIT dataset so far is 79.8% [17].

Until now, there was no attempt to cross-validate these
methods on other datasets. We identify this as a loop-hole
because we do not know if these methods are overfitted
towards the TIMIT dataset. Our experiments show that there
exists tremendous source bias which produces high accuracy
when training and test data are both from the same source (see
Experiments section). When a new test data is tested on these
models, the accuracy drops significantly. Source bias is not
desirable in publicly deployable applications. We are the first
to report accuracies across several sources and our proposed
data-driven method shows less bias across the sources.

III. DATA COLLECTION AND CLEANING

We have collected English words from three sources with
their audio files. These consist of 30,000 words from Google
Translate, 3,000 words from oxforddictionaries.com and 45000
words from the Merrriam-Webster online dictionary. Each of
these sources have different features. Audio files collected
from Google translate, Oxford, and Merrriam-Webster dic-
tionaries are recorded at 22050, 44100 and 11025 smaples
per second respectively. All of them have male and female
speakers in different ratios. The Oxford dictionary includes
British and American accent pronunciation for each word. The
variation among the sources needs attention when cleaning the
data.

After data collection, we segment waveforms of the words
to generate phonemes. We use the Forced Aligner tool from
the Penn Phonetics Laboratory [11], which segments a word
based on its phonetic spelling in the dictionary. Figure 1
shows a segmentation of the word boss produced by the
tool. Forced Aligner produces very good segmentation even
in the presence of noise. However, the phoneme boundaries
may include some portions of the adjacent phonemes (See
Figure 3 for an example). Such alignment error will make the
phonemes inherently noisy in addition to the variations due to
words and speakers.

The segmentation process generated 370,000 phonemes in
39 classes covering the entire dictionary. The number of
phonemes in each class is shown in Figure 4. The distribution
of phonemes in our dataset is very close to the distribution of
phonemes in the English language shown in [9]. The phonemes
vary in lengths. Figure 4 shows the distribution of the lengths.

A. Silence Removal
The first and the last phonemes of a word typically have a

silence period before and after them respectively (Figure 3).
We process those phonemes to remove the silence parts. As
we have only words in the dictionaries, we z-normalize the
signals and trim the consecutive beginning and ending values
that are less than a threshold 0.05. This process is sufficient
for our purpose and produces very accurate results.

B. Generating MFCC
Mel-frequency cepstrum coefficients (MFCC) features have

been used for phoneme classification for many years and our



Phoneme

Obstruent

Aspirate Fricative Affricate Stop

Sonorants

Nasal Vowel Semi-vowel Liquid

D G

T

M N W Y L R

P

HH DH

TH

F

V Z

S SH

ZH

CH JH B

K

NG AA

EH

AO

IH

AE

IY

AH UW

UH

OY

OW

ER

AW

EY

AY

Fig. 2: The hierarchy of phonemes in English language. This is the most commonly used hierarchy for phoneme classification
[8][13].

experiments also show their applicability in large scale classi-
fication. MFCC features convert the spectrum of an audio to
the mel-scale that contains equally spaced pitches. We generate
the MFCCs from the phonemes using standard 25 ms window
slid by 10 ms. We use standard hamming window in the
process. The coefficients are then averaged over all windows to
produce the feature vectors of each phoneme. We normalize
the individual coefficients across all the phonemes using z-
normalization. We generate different number of coefficients
for each phoneme. The number of features that are actually
used for classification is 26 and justified in the experiments
section.

C. Resampling Waveforms

As we mentioned before, source bias is an unavoidable
problem when multiple datasets are being used. Our data
sources have different sampling frequencies. This variation
can make the same phonemes with the same temporal du-
rations have different lengths. To solve this problem, we do
a resampling of the words to have all phoneme waveforms
at 22050 sample per seconds. Resampling at the word level
(not in the phoneme level) makes the same words roughly the
same length. For example there are three different instances
of the word target in the dataset. The lengths of the signals
sampled at the original sampling rate are 12400, 20750 and
5100 points in Google, Oxford and Merriam-Webster datasets
respectively. Comparing signals that vary exponentially in
length is not desirable for similarity based techniques. We
perform resampling and the lengths become 12400, 10375 and
10200 which are very close to one-another.

D. Forced Aligning Waveforms

Forced Aligner tool segments the words and generates indi-
vidual phonemes. The tool uses the phonetic transcription of
a speech to extract the phonemes. For phonetic transcription,
we use the CMU pronunciation dictionary [1] that contains
approximately 125,000 words with their phonetic spellings.
The algorithm of Forced Aligner finds the boundaries of the
phonemes as well as any silent part in the speech. It is capable
of segmenting long speech while we find the accuracies are

better for shorter speech samples. That is exactly the reason
why we use dictionary of words instead of long ebooks.

As hinted before, boundaries of phonemes detected by
Forced Aligner may not be perfect always. An example is in
Figure 3 where the word talk is misaligned. The phoneme /t/
is completely missed as silence and the vowel /O:/ is segmented
into /t/ and /O/. The true number of such erroneous cases is not
possible to determine on our dataset, however, the authors of
[25] have mentioned in the original paper that Forced Aligner
aligns perfectly and has very negligible difference with manual
aligning.

Another limitation of Forced Aligner is the use of the
pronunciation dictionary. Currently, we can segment 125,000
words which contains most of the words in English. However,
there exist some proper nouns and compound words that are
absent in the dictionary such as Quakerism, Donatist etc.
This limitation is not limiting our classification algorithm as
we can append the phonetic spellings of these words over time.
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Fig. 3: Two segmentations of the word “talk” produced manu-
ally and by Forced Aligner. The later misaligned the phoneme
/t/.

IV. DTW BASED PHONEME CLASSIFICATION

We use K nearest neighbor algorithm (K-NN) for classifi-
cation using Dynamic Time Warping (DTW) distance. There
exist number of studies that find DTW as the most competitive
distance measure for time series data [10]. For completeness,
we provide the definition of DTW here. Let us define two
signals x = x1, x2, . . . , xn and y = y1, y2, . . . , ym of length
n and m where n > m without losing generality.
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Fig. 4: The numbers of all the phonemes in our dataset in blue (top). The mean and standard deviation of the lengths of the
signals after resampling in red (bottom).

DTW (x, y) = D(n,m)

D(i, j) = (xi − yj)
2 +min

 D(i− 1, j)
D(i, j − 1)
D(i− 1, j − 1)

D(0, 0) = 0,∀ijD(i, 0) = D(0, j) =∞

We intentionally skip taking the square root of D(n,m) as it
does not change the neighbors ordering while makes it efficient
for speedup techniques. DTW is originally defined for signals
of unequal lengths and computing DTW distance is quadratic
in time complexity because it requires populating the entire
n × m matrix. Constrained DTW distance populates only a
portion of the matrix around the diagonal. Typically constraints
are expressed by a window size (w) (readers can find details
about DTW in any online resource and also in [12]). When
two signals are quite different in lengths/durations, there are
two approaches to compute constrained DTW distance. First,
by resampling one of the signals to the size of the other and
thus, making them equal in size. This approach works with
arbitrary size of the window because D is a square matrix.
Note that, constraining the warping path between [−w,w] of
the diagonal of a rectangular matrix has the same effect of
resampling/interpolating the shorter signal to the size of the
longer one. The second approach is to impose a condition
w ≥ |x − m| on the window size and compute the matrix
as defined above. This approach does not resample any of the
signals. Both the approaches have quadratic time complexities.

There are dozens of papers that describe speeding up
techniques for DTW based similarity search. Lower bounding

technique [12], early abandoning technique [18], hardware
acceleration technique [21], summarization technique [16],
anticipatory pruning [5], etc. All of these works use the
resampling approach mentioned above and take benefit of the
LB Keogh bound for efficiency and effectiveness in similar-
ity search. For completeness, we describe LB Keogh here.
LB Keogh generates two envelopes (U and L) of a candidate
and compares them with the query to produce the lower bound.
LB Keogh takes linear time for computation and insignificant
off-line preprocessing for the envelopes. Figure 6(left) shows a
toy signal in blue and its envelopes in red for different window
sizes. The formula to compute U , L and LB Keogh where w
is the constraint window is given below.

∀iUi = max(x(i− w : i+ w))

∀iLi = min(x(i− w : i+ w))

LB Keogh =

n∑
i=1

 (yi − Ui)
2 if yi > Ui

(yi − Li)
2 if yi < Li

0 otherwise

LB Keogh and many other recent optimization techniques
for DTW based similarity search are only defined for equi-
length signals after resampling and shown to be successful
in many application areas. However, phonemes are variable
in lengths because of the speaker variations. Moreover, errors
from Forced Aligner make the lengths even more variable.
Figure 4 shows the length distribution of the phonemes in
our dataset which demonstrates a wide variance in each of
the phonemes in English. To adopt the existing techniques



for fast similarity search, we cannot resample the signals to
a fixed length. Resampling can have detrimental impact on
time domain techniques such as computing DTW distance
on phonemes. Figure 5(left) shows an example of resampling
error for phonemes where a subsequence (green/bottom) of
a larger phoneme (blue/middle) generates more distance than
it does to some random phoneme (red/top). To get a better
picture, we calculate 5000 DTW distances with and without
resampling and create a scatter plot. Figure 5(right) circles
the pairs of signals that could be near neighbors of each other
under regular DTW but, are moved far when resampled to
equal lengths.
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Fig. 5: (left) An example of erroneous association caused by
DTW distances on resampled equi-length signals. (right) The
scatter plot shows there exist numerous other cases of similar
signals being measured as dissimilar by equi-length DTW.

The original constrained DTW distance for signals with
unequal lengths is computationally expensive. We want to use
lower bounding technique to speed up the search. Although
commonly used bounds, LB Kim, LB Yi and LB Keogh, are
defined for equi-length signals, we can adopt each of them
by using the prefix of the longer signal. Surprisingly, such
intuitive property of these bounds was not used previously
probably because there was no such need where different
lengths of signals are classified using DTW. For example,
Figure 6(right) shows the prefixed LB Keogh or in short,
PLB Keogh computation that ignores all the xi, i = m +
1, . . . , n. Recall, the prefix LB Keogh is a bound only under
the condition w ≥ |n − m|. The proof follows the same
reasoning as the original proof for LB Keogh [12] and is
omitted here.

In addition to PLB Keogh, we can use the early abandoning
DTW computation which abandons computation as soon as
the minimum value of a row in the DTW matrix is larger than
the minimum distance found so far. Since PLB Keogh is not
symmetric, we can switch the role of the query and candidate
to generate two bounds and use the larger. Note that a query
can be longer than some candidates and shorter than others
which does not prevent applying the techniques. However, we
cannot apply the early abandoning z-normalization technique
for phonemes because training phonemes are independent of
each other as opposed to overlapping subsequences of a long
signal. Table I shows a list of techniques from [18] and their
applicability in phoneme classification.

As we have a set of techniques applicable to our problem,
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Fig. 6: (left) Envelopes U and L for the candidate (blue)
sinusoid over different windows. (right) LB Keogh using the
prefix of the longer signal. (top) The query shown in black
is the shorter of the signals of length 2300. Note that, the
difference in length between the blue and the black signals is
equal to the window size 8% of the longer signal. (middle) the
query in black is of length 2000 where window size is 20%
of the longer. (bottom) the query in black is longer than the
blue candidate and only its first 2500 samples are used for the
bound.

TABLE I: Techniques Applicable for Phonemes

Techniques Applicability
Squared distance Yes
Lower bounding Yes

Early Abandoning of DTW Yes
Exploiting multicore Yes

Early abandoning z-normalization No
Reordering early abandoning Yes

Reversing roles of query and candidates Yes

there is one piece of puzzle that needs attention. The window
size w is a critical parameter. Previously, it was set to a fixed
value such as 30 samples or 30% of the fixed length. We
don’t have the luxury anymore as there is the condition w ≥
|n−m| which depends on the pairs of signal. There are two
options. First, we could trivially set w = |n−m|. This is both
inefficient and unnecessary because phonemes with significant
difference in length (e.g. 3000 vs. 500) are unlikely to be
neighbor of each other while their DTW distance computation
populates almost the entire matrix. Second, we can set w =
c ∗max(n,m) and ignore the pairs for which w < |n −m|.
We use c = 30% in our experiments and justify this choice in
the experiments section.

DTW distances computed from various pairs are not directly
usable in K-NN algorithm. Because shorter candidates will
have a bias. For example, a signal of length 1000 will be
more biased to match with signals of length 700 to 1000 than



Algorithm 1 PhonemeClassification(Train, Test, c,K)

Ensure: Return the labels for the signals of the Test
1: Preprocessing
2: for x← Traini , i = 1, 2, . . . , |Train| do
3: Calculate Ux and Lx using wx ← bc ∗ |x|c
4: end for
5:
6: Testing
7: dK ←∞
8: for y ← Testj , j = 1, 2, . . . , |Test| do
9: Calculate Uy and Ly using wy ← bc ∗ |y|c

10: for x← Traini , i = 1, 2, . . . , |Train| do
11: if |x| ≥ |y| and wx ≥ (|x| − |y|) then
12: LB ← PLB Keogh(x, y, Ux, Lx, wx)
13: w ← wx

14: else if |y| ≥ |x| and wy ≥ (|y| − |x|) then
15: LB ← PLB Keogh(y, x, Uy, Ly, wy)
16: w ← wy

17: end if
18: if LB < dK then
19: d← NormalizedDTW(x, y, w, dK)
20: if d < dK then
21: dK ← d, Save the neighbor x
22: end if
23: end if
24: end for
25: Use the K-NNs to find the phoneme class
26: end for

to signals of length 1000 to 1300 for c = 30%. It will not
be fare if we pick the nearest neighbor without a measure
for this. Some previous works [15] show a simple length
normalization technique for Euclidean distance. Similarly, we
normalize the DTW distances by dividing it with the lengths
of the shorter signals of the pairs, NormalizedDTW (x, y) =
DTW (x, y)/min(n,m). We show the classification process
in the Algorithm 1. The value of K is set to 7 for all our
experiments and is justified in the experiments section.

V. DUAL DOMAIN PHONEME CLASSIFICATION

DTW based classifier uses the temporal similarity of the
signals to classify the phonemes. Such use of temporal simi-
larity for phoneme classification is unprecedented. All of the
previous works perform classification on a set of features
dominated mostly by MFCC features and achieve competitive
accuracy. We investigate if combining both time and frequency
domain techniques along with similarity based classification
gives us better results than any of them individually.

To use multiple domains, we resort to the hierarchy of the
phonemes shown in Figure 2. We classify the first two layers
by our DTW based K-NN classifier and the final layer is
classified using K-NN algorithm with MFCC features. The top
two layers construct an eight class problem and the bottom
layer constructs as large as 15 class problem for vowels.
Training a classifier using the phoneme hierarchy has been

done previously [8] using MFCC features. Using multiple
classification techniques at different hierarchy has also been
done [7][23]. We introduce the dual-domain hierarchical clas-
sification for phonetic time series and use K-NN for the first
time on phonemes.

The intuition behind using both time domain and frequency
domain features is that both are important for phonemes.
For example, the same phoneme can be pronounced with
different durations. For instance, foot and food have short
and long “o” sounds which vary in temporal duration. In
contrast, vowels and consonants vary in their frequencies. The
intuition behind using DTW based technique ahead of MFCC
features is a bit counter intuitive specially if we consider the
potential gain in speed of a classifier that runs MFCC in the
top layer and DTW in the bottom. Since MFCC features are
compressing the information into small number of coefficients,
the loss in accuracy becomes detrimental. Yet, MFCC features
can capture the tiny differences between classes that are
washed away when DTW is computed on the raw signal.
The experimental validation of this intuition is provided in
the experiments section.

To describe the idea more clearly, we show two examples
in Figure 7. We can generate many of such examples where
hierarchical method can classify a phoneme correctly while
none of the MFCC or DTW based classification algorithms
can do it individually. Lets take the “SH” example. MFCC
features can match the query with a very dissimilar waveform
(CH) while DTW can find closely similar signal that suffi-
ciently identifies the general class (Fricative) of the phoneme,
although the specific class “S” is wrong. However, MFCC
works well finding the right label within the general class and
correctly lands at the “SH” node. Note that the source word
of the unknown sample and the source words of the matched
phonemes are completely different.

VI. EXPERIMENTS

We perform an extensive set of experiments to demon-
strate the effectiveness of our classification techniques. We
claim 100% reproducibility of our work. We have all of
our data, code, results, slides etc. uploaded to [4] and it’s
publicly available. Unlike others, we have also uploaded the
massive distance matrix of size 3000×370000 for interested
researchers.

As mentioned earlier, we have dictionary words from three
sources. We have 370,000 phonemes in total. For simplicity,
we use GG for the phonemes from Google Translate, OO for
Oxford and WW for Merriam-Webster. GG has approximately
200,000 phonemes, OO has 30,000 and WW has 140,000
phonemes. For most of our experiments we combine all three
sets in a large pool of phonemes unless otherwise specified.

Our method is implemented in Matlab for data input and
output and the core DTW function and lower bounds are im-
plemented in C and compiled using mex compiler to integrate
with Matlab. All the experiments have been done on a desktop
machine running Ubuntu 12.04 with Intel Core i7 processor
and 32 GB of memory. All reported accuracies are calculated
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Fig. 7: Two examples. Each tree shows the unknown phoneme, its waveform and the source word at the root. The three leaf
nodes of a tree show the three classes the algorithms produce. In each of the leaf nodes, the nearest neighbor phoneme, its
waveform and the source word are shown.

using 10-fold cross validation using 100 random phonemes as
test set at each fold. The number of neighbors and the size of
the window are 7 and 30% respectively.

a) Competitor Algorithms: There exists a varieties of
algorithms that have been reported on the TIMIT dataset. The
only known algorithm for phoneme classification that uses the
phoneme hierarchy is presented in [8]. It is an online algorithm
that reads the phonemes once and update the model iteratively
after each phoneme is processed. The algorithm can be used in
batch mode and we have implemented the algorithm in Matlab
to test on our dataset. The code is available in [4]. We use the
abbreviation of the title of the paper, OAHPC, as the name of
the algorithm in the subsequent sections.

The PhoneRec [3] is a complete tool that takes in a speech
file and outputs the sequence of phonemes. However, we find
that the tool is severely erroneous on our datasets when we use
the pre-trained models. For example, the word egocentric
is converted to the phoneme sequence /iy d ih l er s ih m t
ih g k t/. Another example, the word greasy is converted to
the phoneme sequence /hh uw iy z iy t/. We use a set of 200
phonemes and the accuracy is less than 10%. We don’t think
it would be a fare comparison as we assume the phonemes
are already segmented while PhoneRec tool combines all the
three steps (segmentation, classification and recognition) in a
single tool.

We have made effort to reproduce the best reported algo-
rithm for TIMIT dataset [17]. We were unable to reproduce
from the paper and there was no code and documentation
available from the authors. Recall TIMIT [11] is a manually
labeled data and it costs at least $250 to obtain license for the
data.

b) Classification in the Top Two Layers: Our first experi-
ment is to find the best classifier for the top two layers which is
essentially an eight class problem (See Figure 2). We use DTW
based K-NN classifier and MFCC based K-NN classifier using
Euclidean distance. We also test OAHPC on these layers. We
experiment on three test sets separately. In each experiment,

we start with a training set of 10,000 phonemes and add 20,000
phonemes to it iteratively. The results are shown in Figure
8. The accuracy increases as we add more and more data.
We observe DTW is better in classifying the top layers than
MFCC as described before. The performance of OAHPC is
not promising to use in these two layers.

c) Hierarchical Phoneme Classification: We experiment
to measure accuracy in classifying 39 phonemes at the leaves
of the hierarchy. We perform the experiments using five
different methods. We use DTW and MFCC individually for
K-NN algorithms. We test dual-domain classifiers by using
DTW first, MFCC next and vice versa. We also test the
OAHPC algorithm. Incremental accuracies are reported on
the whole of 370,000 phonemes. The results are shown in
Figure 9. We find DTW+MFCC as a better combination than
MFCC+DTW. K-NN classifiers, in general, work better than
OAHPC.

The differences in accuracies for the three test sets are
significant because of the unbalanced contributions from each
of the sources. The most important point in this experiment
is the trends of the curves. As we increase the number of
phonemes in the training set, the accuracies are increasing.
Although the rate is diminishing, this is promising because it
can be the basis of applications that index speech samples of
all the people of the earth.

d) Parameter Sensitivity: Our hierarchical classification
method has exactly two parameters, the number of neighbors
(K) that vote for the class and the window size (c). We perform
experiments to find the most suitable value for each of these
parameters. We keep one of them fixed to K = 15 or c =
35% and vary the other over a range. We measure the mean
accuracy over a random test set. The results are shown in
Figure 10. We tested on randomly chosen 60,000 phonemes
from our dataset.

We observe a clear peak at K = 7 and therefore, we use
7-NN methods in all our experiments. While varying c, we
observe a small increase upto 30% and more than that, there
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Fig. 8: Incremental accuracy of the algorithms in the top two layers of the hierarchy on three test sets. (left) GG (middle) OO
and (right) WW.
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layers.

is no impact on accuracy. Therefore, we use 30% as window
size for all of our experiments.

e) Sliding DTW Based Phoneme Recognition: In this
work, we have tested another algorithm for phoneme classifi-
cation which we describe very briefly here. The motivation of
the algorithm is to avoid the segmentation process completely
by using the Spring [19] method of finding the matching

location of a pattern inside a long signal under warping dis-
tance. The algorithm, in a nutshell, searches for the K words
where an unknown phoneme matches best at any location.
The matching locations inside the K words vote to produce a
phoneme for the unknown sample. For example, for K = 3,
an unknown phoneme may match with cross, saturn and
cell at their starting locations. Since all of these locations
vote for “s”, the algorithm produces “s” as the class label.

We test the above algorithm against our proposed hierarchi-
cal algorithm. The results show a superiority of the hierarchical
method. The biggest drawback of the above algorithm is that a
phoneme can match in between two phonemes in a word. This
added confusion hurts the accuracy significantly and thus, it
supports the use of Forced Aligner for segmentation before
doing the phoneme classification.

f) Scalability: We adopt all the techniques from [18]
and perform scalability experiment on 200,000 phonemes. We
randomly pick 20 phonemes and run the similarity search al-
gorithm over 200,000 phonemes. The window size is 30%. We
achieve around 2 times speedup over the original implemen-
tation without any optimization. Figure 11 shows the speedup
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Fig. 11: (left) Speedups achieved using the techniques in
the Table I (right) Comparison between Spring [19] based
classifier with global DTW based K-NN classifier. The former
requires no segmentation and the later uses Forced Aligner.

curve. We achieve the best speedup from early abandoning
technique. All the other techniques contribute equally. The
reason why we cannot achieve the dramatic speedup as [18] is
explainable. Since we cannot resample, the window size has to
be larger than the length difference. As shown in Figure 4, the
standard deviations of lengths are quite large, therefore, most
of the DTW computations are done for a large sized window.
A large window essentially converts PLB Keogh to LB Yi [24]
which is a very weak bound. Figure 12 shows the visual proof
of PLB Keogh working for 40,000 pairs of signals of different
lengths where there is no counter example found.
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Fig. 12: (left) Visual proof for PLB Keogh bound. (right)
Sensitivity of the number of MFCC coefficients used for the
classifiers.

g) Number of MFCC Coefficients: We experiment to find
the best number of MFCC coefficients. We run the K-NN
classifier for all the phonemes in the GG dataset using first
13, 26, 64 and 128 MFCC coefficients. The results are shown
in Figure 12(right). We see insignificant difference among 26,
64 and 128. Although most of the previous work use 13 MFCC
coefficients we see 13 coefficients perform less accurate. Based
on the results we use 26 features for all of our experiments.

VII. CASE STUDIES

A. Accented Phoneme Classification

Accent is a type of variation in the spoken form of a
language. In this case study, we investigate if our method can
classify accented phonemes. We have collected approximately

30,000 phonemes from the oxforddictionaries.com with close
to 50-50 distribution of British and American pronunciations.
Our first experiment is targeted to see the difference in
accuracies when we introduce accented phonemes in the test
set. Figure 13 shows the incremental accuracies of the two
test sets; British accented phonemes and American accented
phonemes. We see a reasonable drop (6%) in performance
for British accented phonemes. The reason is that all the
phonemes in GG and WW datasets are in American accent
and therefore, the training data is biased with around 95%
American accented phonemes. With such a massive bias in
the training data, 50% accuracy in a 39-class problem is a
considerable number.
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Fig. 13: (left) Accented phoneme classification accuracies
using the whole dataset. (right) Accent detection using K-NN
classifiers.

We further investigate if our classification strategy can
detect the accent based on the phonemes only. It is a hard task
even for humans as phonemes are only few milliseconds long
and sometimes it is hard to even identify the phoneme itself.
Since this is a 2-class problem, we cannot use the hierarchical
method. We use the DTW and MFCC based K-NN algorithms
for this task. We see MFCC performing extremely well.

B. Speaker Invariant Phoneme Classification

In previous experiments, training set contains phoneme from
all the three different datasets. Here we want to measure clas-
sification accuracy of our method when test set and training set
are from two different sources e.g. test set contains phoneme
of OO dataset and train set contains phonemes of WW and
GG datasets. This ensures that there is no common speaker
in the training and testing set. As there is source bias in the
datasets, we expect less accuracy when performing speaker
invariant detection of phonemes.

Table II and III show our results. We see that dual-domain
hierarchical classification gains significantly more accuracy
over OAHPC. Most importantly, dual-domain classifier shows
better accuracies when tested againts both of the remaining
datasets than accuracies of those datasets individually. OAHPC
does not show this behavior. This is an evidence that even
though we have around 40% accuracy for speaker invariant
phoneme detection, we can expect better performance as we
increase data from other sources.



TABLE II: Speaker Invariant Accuracy using Dual-domain
Hierarchy

Testset GG OO WW Except Testset
GG – 38.5 45.7 46.8
OO 30.5 – 37.5 39.3
WW 43 38.5 – 47.0

TABLE III: Speaker Invariant Accuracy using OAHPC

Testset GG OO WW Except Testset
GG – 14.2 19.0 19.9
OO 20.8 – 13 15.8
WW 24.9 15.8 – 18.6

VIII. CONCLUSION

In this paper, we present a dual-domain hierarchical classifi-
cation technique for phonetic time series data. This technique
has a significant application in classifying English phonemes
and is the first similarity based technique used for such prob-
lem. We use a novel dataset of 370,000 phonemes generated
from three online dictionaries. Our experiments show that
the data-driven phoneme classification method has promising
capabilities when training set grows with samples from het-
erogenous sources. This work is just an introduction of the
phoneme detection problem to the data mining community.
In future, we will work on phoneme recognition using our
classifier as well as introducing other types of variability such
as contextual and behavioral changes.
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