
Interpolation for Data Structures∗

Deepak Kapur
University of New Mexico
kapur@cs.unm.edu

Rupak Majumdar
UC Los Angeles

rupak@cs.ucla.edu

Calogero G. Zarba
Universität des Saarlandes
zarba@alan.cs.uni-sb.de

ABSTRACT
Interpolation based automatic abstraction is a powerful and ro-
bust technique for the automated analysis of hardware and soft-
ware systems. Its use has however been limited to control-
dominated applications because of a lack of algorithms for com-
puting interpolants for data structures used in software programs.
We present efficient procedures to construct interpolants for the
theories of arrays, sets, and multisets using the reduction ap-
proach for obtaining decision procedures for complex data struc-
tures. The approach taken is that of reducing the theories of such
data structures to the theories of equality and linear arithmetic
for which efficient interpolating decision procedures exist. This
enables interpolation based techniques to be applied to proving
properties of programs that manipulate these data structures.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification.
General Terms: Languages, Verification, Reliability.
Keywords: Interpolation, data structure verification, CE-
GAR.

1. INTRODUCTION
Counterexample-guided abstraction refinement (CEGAR)

[5, 2, 15] with interpolation based abstraction refinement
[14, 17, 26, 18] has recently received a lot of attention as a
robust technique for abstract static analysis of systems. In
CEGAR, one attempts to prove a safety property starting
with a crude abstraction on system states. If a counterex-
ample is discovered in an attempt to do a proof, it is checked
if the counterexample is indeed realized in the system. If so,
the method has found a bug. Otherwise, if the counterex-
ample is spurious, that is, it arises because the abstraction
is too crude, the abstraction is refined and the analysis is
repeated using this refined abstraction. The refinement of
a spurious counterexample uses an interpolant, that is, an

∗This research was funded in part by the NSF grants CCR-
0113611, CCR-0098114, CCR-0203051, CCF-0427202 and
CNS-0541606.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ..$5.00

over-approximation of the set of states reachable by execut-
ing a prefix of the counterexample (i) which can be described
using the variables live at the end of the prefix, and (ii)
which is enough to determine the infeasibility of executing
the suffix of the counterexample.

Similarly, in hardware verification, interpolants have been
used [25] as a substitute for the expensive post-image com-
putation to construct invariants: one finds a set (an inter-
polant) between the set of states Sk reachable in k-steps
(constructed using bounded model checking) and the set of
error states E that can be expressed as a formula over the
common variables between Sk and E. This interpolant is
tried as an invariant. By providing a property-guided ab-
straction, the interpolant precludes the need to compute the
strongest inductive invariant for the system. In infinite-state
verification, a similar algorithm is used, where the logic is
first-order, together with certain interpreted theories.

Formally, an interpolant ψ between two formulas α and β
whose conjunction is unsatisfiable is a formula over the com-
mon variables of α and β that is implied by α and whose
conjunction with β is unsatisfiable. Most applications of in-
terpolants have so far been restricted to propositional logic,
and the theories of equality with uninterpreted functions
together with linear arithmetic [25, 26, 14, 17, 18]. This
severely restricts the kind of programs and properties that
have been studied in the software model checking literature,
which have so far been restricted to niche control-dominated
applications such as device drivers [2, 15] and low level state
machine properties such as correct usage of locks or files [15].
In particular, model checking programs that use data struc-
tures and properties that depend on the correct use of data
structures has not been possible.

Until recently, the automatic model checking of impera-
tive programs manipulating data structures has mainly been
limited to correctness properties of the implementation of
data structures [33, 27], for example, to check that a list
reverse routine does reverse an acyclic list. While an impor-
tant area of research, this captures only half the problem. In
this paper, we concentrate on the other half, automatically
checking properties of applications that use these data struc-
tures, given a correct implementation of the data structure.
In practice, programmers use well-tested (and reasonably
bug-free) library implementations of common data struc-
tures such as lists, sets, or multisets (e.g., from C++ STL
or Java system classes), so checking client programs assum-
ing correct implementations of the libraries is an important
problem.

Using module-level abstractions is a fundamental soft-
ware engineering principle to handle complexity [31], and
we decompose our correctness proofs at module boundaries.
This is not a new idea: Hoare [16] suggested a modular
proof decomposition for data structures into checking the
implementation w.r.t. an abstract specification, and check-
ing separately the use of the implementation assuming the
abstract specification. We show how modular verification
and counterexample-guided abstraction refinement can be
combined using interpolants for theories of data structures.
Our technical contribution is to provide powerful abstrac-
tion capabilities provided by interpolants in order to make
much of this reasoning automatic.

First, we show that (not necessarily quantifier-free) inter-
polants always exist for unsatisfiable formulas in any recur-
sively enumerable theory and quantifier elimination in the
theory is a necessary and sufficient condition for the exis-
tence of quantifier-free interpolants. Using this character-
ization, one immediately gets the existence of interpolants
for many theories (such as (real and Presburger) arithmetic,
arrays, lists, sets, and multisets). Together with quantifier
elimination, this guarantees the existence of quantifier-free
interpolants for linear arithmetic, lists, and sets with cardi-
nality constraints (for arrays and multisets, this shows in-
terpolants need not be quantifier-free).

Second, we provide a reduction technique to efficiently
compute interpolants in many theories of practical inter-
est that can use existing interpolating theorem provers as
black boxes. In particular, using the reduction approach for
compiling various quantifier-free theories for complex data
structures to the combination theory of equality with unin-
terpreted functions and the theory of linear arithmetic pro-
posed in [19], we show that from an interpolant in the re-
duced theory, one can construct an interpolant in the origi-
nal theory. This is particularly attractive since very efficient
implementations of these combined theories exist [7, 35, 20]
and are already interpolant producing [26]. In our expe-
rience, developing efficient implementation and integration
of new theories into decision procedures (including carefully
tuned heuristics) is an nontrivial and difficult effort. Our
compilation algorithm sidesteps this by providing an easy
access to already developed tools through a simple and syn-
tactic compilation step. Thus, our techniques provide prac-
tical interpolating decision procedures whenever such reduc-
tions exist. In particular, we get practical interpolating de-
cision procedures for the quantifier-free theories of arrays,
sets, and multisets.

We have implemented such interpolating decision proce-
dures for the quantifier-free theories of arrays, sets, and mul-
tisets on top of the Foci interpolating decision procedure for
linear arithmetic with uninterpreted functions [26]. This
was used in the software model checker Blast [15]. By using
more general reasoning about data structures, Blast is able
to prove interesting properties of programs that manipulate
data structures.

The organization of the paper reflects our attempts both
to informally review how our results can be used in CEGAR-
based software verification (Section 2) and to rigorously pro-
vide the technical details of our interpolant construction
(Sections 3,4,5). Section 2 provides an informal overview
of software verification based on counterexample-guided ab-
straction refinement with an emphasis on the role of inter-
polants for refinement and the reduction technique. In Sec-

tion 3, we formalize the notion of reductions of a (more
complex) theory to another simpler theory. Reductions are
applied in Section 4 to obtain interpolants for several theo-
ries of practical interest, which can be implemented on top
of existing interpolating theorem provers (Section 5).

Other Related Work. There has been a lot of work on
modular construction and verification of software since the
early papers [31] and [16], and the fundamental studies in
abstract data types [23, 13]. Recent attempts for automatic
modular verification of software using verification condition
generation, explicit pre- and post-conditions, and decision
procedures include [10, 22]. Our work is similar in spirit
to these efforts. However, instead of building the most pre-
cise verification condition up front, we use counterexample-
guided refinement to incrementally build up invariants to
the required precision [5, 2, 15, 3]. The paper [3] performs
modular verification, but does not handle data structures.

Orthogonal work in separation logic also attempts system
verification in the presence of data structures [28, 30], how-
ever, the notion of automatic abstractions has so far been
less central. Work on shape analysis and related techniques
[33, 27] complement our work by proving that data structure
implementations are correct w.r.t. abstract specifications.

2. MOTIVATING EXAMPLE
The motivation for our work is the automatic verification

of programs that manipulate data structures through a set of
interface functions. We now demonstrate how interpolants
for data structures enable automatic predicate discovery in
software model checking based on counterexample-guided
abstraction refinement (CEGAR) through a simple program
that manipulates sets.

2.1 Programs and Data Types
We describe our technique on programs in a simple im-

perative programming language with typed variables and
with the following basic operations: (1) assignments x :=
e, that set the value of the expression e to the variable x,
(2) assume predicates assume[p], that represent a boolean
condition p that must be true for the operation to be exe-
cuted, and (3) function calls y := f(x) that call a function
f with the actual arguments x and writes the return value
into y. We assume that control flow is represented explicitly,
e.g., through a control flow graph.

A library Lib = (Σ, C) consists of (1) a set Σ of typed func-
tions that represents the externally callable function names,
and (2) a map from functions f ∈ Σ to their implementa-
tions. We write ΣLib for the signature of a library Lib. We
assume that for a function f of type σ1 × . . . × σn → σ,
the implementation has n input variables of the appropriate
types, and the return value is of type σ. A client for a library
Lib is a program that calls only the functions in the set ΣLib.
We assume all function calls in the client are type correct.
A closed program (Lib, Client) consists of a library Lib and
a client Client of the library Lib. While we have assumed
that the client only interacts with one library and only calls
functions in the library Lib, these are for ease of exposition,
and our techniques work when the client has other function
calls, or when it uses several libraries.

Example 1. Instead of giving a formal definition, we intro-
duce clients and libraries through an example. Figure 1(A)
shows a client program Example that uses a library imple-

Example() {
01 x := emptyset();
02 while (*) {
03 t := *;
04 if(t->tag==0)
05 x := add(x,t);
06 }
07 q := choose(x);
08 if (q$=0 && q->tag != 0)
09 error();

}

type element
type set
emptyset : void → set
add : set× element → set
choose : set → element

Figure 1: (A) Simple client (B) set signature

menting a set data structure whose signature is shown in
Figure 1(B). The program is motivated from the scheduler
code in an OS kernel, where the set corresponds to tasks
that are runnable: tasks are added to the run queue, and
later, when they are removed, the kernel checks that any
task from the run queue is runnable.

The client starts with an empty set (line 01), and in a
while loop, adds elements to the set provided the tag field
of the element is 0 (lines 02 to 06). Then it chooses an
element q from the set (line 07), and checks that the both q is
non-null and the tag field of q is not 0 (line 08). If the check
succeeds, it means that an element whose tag is not zero has
been returned from the set, and an error occurs (line 09).
The library set provides the interface functions emptyset()
to produce an empty set, add() to add an element to a set,
and a function choose() that returns an arbitrary element
from a set if the set is not empty and 0 otherwise. We omit
the implementation of these functions. The client Example
and the set library together form a closed program. !

Safety Verification Problem. Let V be the set of vari-
ables of a program. A data state is a type-preserving map-
ping of variables in V to values in their domain. A state (%, s)
of the program consists of a program location % and a data
state s. A region is a set of states. We shall use first-order
formulas over the program location and program variables
to represent regions. The operations of the program define a
binary transition relation on states which specifies the new
state of the program that results when an operation op is
performed from the current state. The transition relation is
lifted to regions in the natural way.

Let (Lib, Client) be a closed program. A state (%, s) of the
program is reachable if there is some sequence of program
operations (allowed by the control flow of the program) that
takes the program from some initial state to (%, s). A pro-
gram location % is reachable if some state (%, s) is reachable.
For a closed program (Lib, Client) and a location % of Client,
the safety verification problem asks if % is not reachable in
the program (Lib, Client). We say (Lib, Client) satisfies the
safety property associated with %, written Lib||Client |= %,
if % is not reachable in (Lib, Client). It is known that any
safety property can be reduced to checking (un)reachability
of some location %.

Example 2. In the example of Figure 1, we want to check
that the condition q → tag $= 0 at line 08 never holds, so that
line 09 is unreachable. Informally, the program satisfies this
property, since the set x starts of empty, and any element y
in the set x added in the while loop in lines 02 to 06 satisfies
y → tag = 0, so that an arbitrary element q chosen from the
set satisfies q → tag = 0. !

For a closed program (Lib, Client) and a program location
%, one way to solve the safety verification problem is to com-
pute an over-approximation of the set of all reachable states
of the program and check if some state (%, s) is in this set. If
not, then % is not reachable. However, if % is reachable in this
over-approximation, it may or may not be reachable in the
original program. In this case, counterexample-guided ab-
straction refinement techniques [5, 2, 15] automatically find
either (a) a concrete program execution to % or (b) a new
and more precise over-approximation of the set of reachable
states; this process is repeated until either the location %
is proved to be unreachable, or a concrete counterexample
trace to % is obtained.

There are two pragmatic issues, however, that arise in
safety verification problem. First, when both the client and
the library are large programs, the construction of the reach-
able set of states is expensive and most techniques do not
scale. Second, most automatic and scalable program anal-
ysis tools do not precisely reason about complex data and
pointer manipulation. Hence, if the actual implementation
of the library involves manipulation of heap data structures,
these tools result in false alarms. Indeed, we were unable
to verify the example in Figure 1 using the software model
checker Blast [15] when we analyzed the client together with
the implementation of the set library. This was because
Blast was unable to reason precisely about the pointer ma-
nipulations in the set implementation. Therefore, we turn
to modular verification.

2.2 Modular Verification
Instead of checking the full implementation of (Lib, Client),

we decompose the proof obligation in the following way.
First, we construct an abstraction A of Lib (i.e., a program
with at least as many behaviors as Lib), and separately check
that (1) the closed program (A, Client) satisfies the safety
property associated with % and (2) A is indeed an abstrac-
tion of Lib. We use abstract datatype definitions (ADTs) as
abstractions of a library Lib.

An ADT A = (T, µ) for a library Lib with signature ΣLib,
written Lib % A, consists of a first order theory T (i.e., a set
of first order logic sentences closed under deductions) whose
signature contains ΣLib as well as a map µ associating with
each function f ∈ ΣLib of type σt × . . .σn → σ a formula
µ(f)(x1, . . . , xn, y′) with free variables x1, . . ., xn, and y′ of
sorts σ1, . . ., σn, σ respectively.

The formula µ(f) is intended to replace the actual im-
plementation of the function f in the library with a declar-
ative specification of its transition relation. That is, for
every values ci ∈ σi (for i = 1, . . . , n) and d ∈ σ, we have
d = f(c1, . . . , cn) iff µ(f)(c1, . . . , cn, d), and if the theory T
entails µ(f)(x1, . . . , xn, y) ⇒ ψ(x1, . . . , xn, y), then it entails
ψ(c1, . . . , cn, d) as well. Formally, we use the proof rule [16]

Client||A |= % Lib % A

Client||Lib |= %
ADT

(1)

The rule breaks the verification effort into two parts: first,
the implementation of the library is verified in isolation
against an abstract logical specification, and second, the
client code is verified using the abstract logical specification
of the library. Here, we focus on the verification problem

C||A |= % (2)

There are other orthogonal, approaches to prove the second
obligation Lib % A [33, 10].

Example 3. An ADT for the set library in Figure 1(B)
consists of the theory of sets together with the following
mapping from functions in the library to formulas in first
order logic over the signature of sets:

y := emptyset() y = ∅
y := add(x, t) y = x ∪ {t}
y := choose(x) (y = 0 ∧ x = ∅) ∨ (y $= 0 ∧ y ∈ x)

These formulas declaratively specify the intent of each func-
tion in the interface. In our application of modular verifi-
cation, we shall verify that the assertions in the client are
satisfied assuming the library conforms to this ADT. The
closed program (Lib, Client) is correct if in addition, we prove
Lib indeed conforms to this ADT.1 !

2.3 CEGAR
We now show how a counterexample-guided abstraction

refinement algorithm using interpolant based predicate dis-
covery [14] can solve the safety verification problem. We (1)
briefly describe the main steps of the CEGAR loop, illus-
trating the steps on the Example code, and (2) point out the
role of interpolation and reduction in the different phases.

Algorithm 1 shows the overall algorithm to check whether
a set of states is reachable. The algorithm takes as input
a client program Client using a library Lib, an ADT A such
that Lib % A, a set of predicates Π0 over the program state,
and a location % of the program. It returns “reachable” if
some execution reaches the location %, and “safe” otherwise.
The algorithm maintains a current abstraction Π, which is
a set of first order predicates over the program state.

The algorithm has three main steps. The first (Step 1)
is a forward search phase Reach that constructs an over-
approximation of the reachable states using the current ab-
straction. This phase constructs a tree G representing an
unfolding of the control flow automaton. Each edge of the
tree is labeled with a program operation, and each node
is labeled with a program location l as well as a formula
ϕ over the predicates in the current abstraction. The for-
mula ϕ represents a superset of the set of states that can
reach the program location l by executing the program op-
erations along the path from the root of the tree to the
node. Since we only restrict attention to the predicates in
the current abstraction, the tree represents, in general, an
over-approximation of the actual reachable states [11, 15].

The second (Step 2) checks if the location % is reachable
in the forward search tree. If not, the algorithm returns
“safe”. This is sound since the forward search tree is an
over-approximation of the set of reachable states. However,
if % is reachable in the tree, the path to % may (a) either
represent a real bug, (b) or be a spurious counterexample
in that % is abstractly reachable because we have lost too
much information by restricting to the current abstraction.
This step performs a symbolic execution over a (possibly
spurious) path to % in the tree. If the symbolic constraints
1One issue is that in a language like C, even when an object
is placed in a list, the programmer can still update the state
of the object outside the list (e.g., through a pointer to the
object). This generates a third proof obligation that we
ignore for simplicity of exposition. This proof obligation can
be discharged, e.g., using ownership type systems [4] that
ensure data is not modified while inside a data structure.

Algorithm 1 Safety Verification

Input: client program Client using ADT A
Input: initial abstraction Π0, program location %
Output: “reachable” if location % is reachable,
Output: “safe” otherwise
1: Π := Π0

2: Step 1: G := Reach(Client, A,Π)
3: Step 2:
4: if % is unreachable in G then
5: return “safe”
6: else
7: pick an abstract trace t from G that reaches %
8: if t can be concretely simulated then
9: return “reachable”

10: else
11: Step 3: Π := Π ∪ Refine(t); goto Step 1:
12: end if
13: end if

generated are satisfiable, then the path represents a real
bug and the algorithm returns “reachable.” Otherwise, we
proceed to Step 3.

In case Step 2 finds the current path is spurious, a refine-
ment step (Step 3) is used to refine the current abstraction
by adding new predicates derived from analyzing t.

Theorem 4. [5, 2, 15] If Algorithm 1 returns “safe” for
a client program Client, an ADT A, a set of initial predi-
cates Π0, and a location %, then Client||A |= %. If it returns
“reachable” then % is reachable in Client||A. !

We now describe each step of the algorithm in more detail.

2.4 Forward Search
We now describe the first phase: forward search. We start

with some preliminary definitions.
Abstract Postconditions. The basic step in the forward
reach is the abstract post condition computation, that takes
a formula ϕ over the current abstraction and a program
operation op, and produces a new formula that represents
a superset of the set of states that can be reached from the
states in ϕ by executing the op.

Let Client be a client program, and let Lib be a library that
conforms to the ADT A = (T, µ). Let V be the set of vari-
ables in a program and let V ′ be the set of variables where
each variable in V is primed (i.e., a variable x is renamed x′).
Intuitively, s denotes the valuation at the “current state”
and s′ denotes the valuation at the “next state.” For every
operation op, we define the transition relation T (op, V, V ′)
as follows:

T (x := e, V, V ′) = y′:y′ #=x′ y′ = y ∧ x′ = e
T (assume(p), V, V ′) = p ∧ y′∈V ′ y′ = y
T (x := f(z̄), V, V ′) = y′:y′ #=x′ y′ = y ∧ µ(f)(z̄, x′)

The transition relation T (op, V, V ′) relates the values of the
current (unprimed) variables with the (primed) variables in
the next state after the operation op is executed. Notice
that we do not expand the function calls to the library, but
instead we translate the effect of the function to its logical
specification given by the ADT.

Let Π be a set of predicates over the program variables
V . We write Π′ to denote the set where each predicate in
Π is primed. For any op, the predicate abstraction of the

transition relation T (op, V, V ′), written TΠ(op, V, V ′), is the
smallest boolean formula (in the implication order) over the
atomic predicates Π ∪ Π′ that contains T (op, V, V ′). The
computation of TΠ makes calls to a decision procedure for
the theory over which the predicates in Π are interpreted
[11]. In a later subsection below, we informally discuss the
reduction approach for generating decision procedures for
quantifier-free theories over data structures including sets,
arrays, and multisets.

Example 5. Let Π = {q ∈ x}. Then TΠ(x := ∅, V, V ′) is
the abstract transition relation ¬(q ∈ x)′ which states that
after the operation, q ∈ x becomes false. Similarly, TΠ(y :=
choose(x), V, V ′) is the relation (q ∈ x) ⇒ (q ∈ x)′ that says
q ∈ x is true afterward only if it was true before. !

Abstract Reachability. Given the abstract post compu-
tation, the forward search algorithm starts with the initial
location of the program and the formula true and computes
the forward search tree by expanding (using the abstract
post computation) each outgoing operation of every reached
location [11, 15]. The algorithm uses a worklist to maintain
the set of reached nodes (labeled with a location and a re-
gion) that have yet to be explored, and in each step, picks a
node from the worklist and expands it by applying the ab-
stract transition relation for every outgoing operation from
the location in the CFA. If the abstract successor is not al-
ready in the tree, it is added to the worklist to be processed
later. Formally, we compute the least fixpoint of the ab-
stract transition relation starting with the initial location.
The approximation of the reachable state space consists of
the set of node labelings of the forward search tree. The
structure of the tree is used to construct counterexample
traces.

For example, the approximation of the reachable states
for the predicates Π = {x = ∅, q = 0} is given by the set

{〈01, true〉,
〈02, x = ∅〉, 〈02, x $= ∅〉, 〈03, x = ∅〉, 〈03, x $= ∅〉,
〈04, x = ∅〉, 〈04, x $= ∅〉, 〈05, x = ∅〉, 〈05, x $= ∅〉,
〈06, x = ∅〉, 〈06, x $= ∅〉, 〈07, x = ∅〉, 〈07, x $= ∅〉,
〈08, x = ∅ ∧ q = 0〉, 〈08, x $= ∅ ∧ q $= 0〉,
〈09, x $= ∅ ∧ q $= 0〉}

The location 09 is abstractly reachable. This is expected,
since we are not tracking the state q → tag of the elements
in the set.

2.5 Refinement
If the forward search tree contains a path t from the root

node to a node with label %, the refinement phase performs a
symbolic execution to determine whether (a) t is feasible in
the concrete system (and hence a bug), or (b) t is spurious,
and in this case, refine the current abstraction to rule out
this trace.

The refinement procedure constructs a trace formula from
the trace [14]. The trace formula is a conjunction of con-
straints, one per instruction in the trace. Each constraint
is the application of the transition relation to the current
operation, where we give new names to each variable on
each assignment. The original trace is feasible iff the trace
formula is satisfiable [14].

To check the satisfiability of a trace formula which ex-
presses a property of operations of a complex data structure,
the reduction approach is used to reduce the formula to an

equisatisfiable formula in the theory of uninterpreted sym-
bols (and Presburger arithmetic in certain cases). This is
followed by a decision procedure call to check if the reduced
trace formula is satisfiable. If so, the current trace is a valid
counterexample. If not, we go to the refinement step.

Given an unsatisfiable trace formula, the refinement pro-
cedure finds out predicates at each point of the trace such
that if the abstract transition relation tracks these pred-
icates at these points, the current spurious trace is ruled
out. And, this is done using interpolants.

Let ϕ1 ∧ . . .ϕi . . . ∧ ϕn be an infeasible trace formula,
and consider finding predicates for the point i. Partition
the trace formula into ϕ− = ϕ1 ∧ . . .ϕi and ϕ+ = ϕi+1 ∧
. . . ∧ ϕn into the portion of the trace before (respectively
after) the point i. Now, an interpolant ψi between ϕ− and
ϕ+ (see the definition in the next section) has the property
that (1) ϕ− implies ψi, that is, the predicate ψi holds after
the prefix of the trace up to i is executed, (2) ψi ∧ ϕ+ is
unsatisfiable, that is, the predicate ψi at location i is enough
to show infeasibility of the suffix of the trace, and (3) ψi is
over the common variables between ϕ− and ϕ+, that is,
over the live variables. If at each point i, we then track
the predicate ψi (where we rename variables back to their
original names), then we have enough information to rule
out the trace.2 In this way, the refinement step reduces to
interpolant computation.

2.6 Reduction and Interpolation
We now give an informal overview of how interpolants

for theories over complex data structures including arrays,
sets, multisets, etc., can be computed. A more technical
discussion is given in Section 3.

Reduction. Abstract post condition computation involves
checking satisfiability of formulas constructed syntactically
from the current set of predicates and the program oper-
ation. This requires a decision procedure for the theory
over which the formula is interpreted. So if a program uses
container data structures including sets (as in the exam-
ple above), multisets, arrays, lists, etc., formulas expressing
their properties will involves operations on these data struc-
tures. When checking programs using an ADT (T, µ), one
has to additionally implement a decision procedure for the
theory T . Engineering a fast and scalable decision procedure
is a difficult and nontrivial task, in general. For the the-
ory of equality with uninterpreted functions and the theory
of Presburger arithmetic, there are fast implementations [7,
35] that are used by software model checkers such as SLAM,
Blast, or Magic to discharge the satisfiability checks.

In [19], we proposed a reduction approach, which compiles
a query made in the theory T to an equisatisfiable query
made in the theory of equality (and Presburger arithmetic),
for which we already have fast decision procedures. This
enables us to re-use existing efficient implementations by
writing the (much simpler) compilation code for the new
theory. For example, for the query (q ∈ x∧x′ = ∅) ⇒ q $∈ x′

made during predicate abstraction, we reduce the query to

(q ∈ x ∧ (∀e.e $∈ x′)) ⇒ q $∈ x′,

in which ∈ is treated as an uninterpreted predicate sym-
bol. It is easy to see that the above formula is valid in the

2One technical point: as shown in [14], the interpolants must
be generated from the same proof of unsatisfiability.

theory of equality with uninterpreted functions (by instan-
tiating the quantifier with q) and so by the correctness of
the reduction, the original formula is valid in the theory of
sets.

The main idea of the reduction approach is to define the
operations on a data structure using a small subset of op-
erations, the equality predicate, and in certain cases, op-
erations such as + and ≤ on numbers. This small set of
operations are then treated as uninterpreted symbols. The
reduction has the property that it preserves satisfiability,
i.e., a formula in the original theory is equisatisfiable with
the reduced formula in the theory of uninterpreted symbols
(and Presburger arithmetic). For example, any formula in
the theory of arrays can be reduced to an equisatisfiable for-
mula expressed only using the read operation; similarly, any
formula in the theory of sets can be reduced to an equisatis-
fiable formula expressed using the ∈ predicate. In the case of
multisets, in addition to ∈, we need a function count and ad-
dition on natural numbers. While the theories of arrays and
sets can be reduced to the theory of uninterpreted symbols
and equality, the theory of multisets is reduced to the combi-
nation of the theory of uninterpreted symbols with equality
and Presburger arithmetic. In Section 4, we provide the for-
mal compilation algorithms for the theory of arrays, sets,
and multisets, which are commonly used data structures.

There is another technicality however. The predicates
used in predicate abstraction need not be quantifier-free.
For many theories, including the theories of arrays and mul-
tisets, the quantifier-free fragment has a decision procedure
to answer the satisfiability queries while the full theory may
be undecidable; Thus, quantifier-free predicates are of par-
ticular interest. Unfortunately, as we show later, our predi-
cate discovery technique may produce predicates with quan-
tifiers. In practice, theorem provers like Simplify [7] have ex-
cellent heuristics to instantiate quantifiers, and despite their
incompleteness, one can still perform predicate abstraction
soundly, losing information where the theorem prover is un-
able to decide a particular query.

Interpolation. Given a trace formula expressed in terms
of operations on complex data structures such as sets (and
other data structures), the reduction technique can be used
for computing interpolants as well. Here, we give a brief
informal overview of the approach.

Using the reduction approach, a trace formula is first re-
duced to an equisatisfiable formula in the theory of uninter-
preted symbols with equality (and Presburger arithmetic).
Algorithms for computing interpolants for the theory of
equality with uninterpreted functions and arithmetic are
known and efficient implementations exist; see [26] for de-
tails. An interpolant can thus be constructed for the reduced
trace formula expressed in the theory of uninterpreted sym-
bols with equality (and Presburger arithmetic) using these
algorithms. The interpolant is then mapped back to the
original theories (see Figure 4 for an outline). In Section
3, we prove that if a theory T reduces to another theory R
whose signature is a subset of T , then an interpolating deci-
sion procedure for R can be used to compute an interpolant
in T .

In the process, quantifiers may get introduced. If the the-
ory admits quantifier elimination, it is then possible to get
rid of these quantifiers and get quantifier-free interpolants.
More often, though, the interpolants will have quantifiers.

x := emptyset() x0 = ∅ x = ∅
assume(true) true x = ∅
q := choose(x) (q0 = 0 ∧ x0 = ∅)

∨(q0 $= 0 ∧ q0 ∈ x0) q = 0
assume(q! = 0&& q0 $= 0∧ false

q → tag! = 0) q0 → tag $= 0

Figure 2: Trace, trace formula, and interpolants

Example 6. Suppose in Figure 1, we started with no pred-
icates. In that case, the forward search returns the trace
in Figure 2 reaches line 09. This corresponds to the pro-
gram execution where the while block is not executed, and
the then branch is taken. The middle column shows the
constraints in the trace formula. Our reduction algorithm
replaces each occurrence of x0 = ∅ in the trace formula with
∀e.e $∈ x0. Our interpolation procedure now constructs the
interpolants shown (after simplification) in the right column
at each program point. Notice, for example, that the first
two constraints in the trace imply x0 = ∅, and this predicate
is enough to show unsatisfiability of the rest of the trace. Fi-
nally, the only variable x0 is live at this point (it is used in
the future). These predicates are enough to show that this
trace is infeasible. !

In Section 4, we prove using compactness that inter-
polants exist for any recursively axiomatizable theory. In
general, such an interpolant may have quantifiers. If a the-
ory admits quantifier-elimination, then a quantifier-free in-
terpolant can be generated also. The reduction approach
is then used to generate interpolating decision procedures
for quantifier-free theories for complex data structures by
compiling formulas in these theories to formulas in the the-
ory of uninterpreted symbols with equality (and Presburger
arithmetic if needed). In general, the interpolants so pro-
duced may have quantifiers. We show that this is inevitable:
quantifier-free interpolants may not exist even if the original
formulas are quantifier-free.

2.7 Putting It All Together
We now illustrate the whole working of the algorithm on

the example from Figure 1. We start with an empty ini-
tial set of predicates. The forward search returns the trace
shown in Figure 2, and the refinement process adds the pred-
icates x = ∅ and q = 0.

We add this predicate, and perform the forward search
again. This time, the previous counterexample is ruled out,
since after executing the operations x = emptyset() and
true , we have that x = ∅ ∧ q = 0, and the branch is not
taken. However, there is a second counterexample, shown
in Figure 3. The middle column again shows the reduced
trace formula, and the third column shows the interpolants
at each program point. When these predicates are added to
the current abstraction, the forward search can prove that
the location 09 is not reachable.

We have implemented support for reduction based inter-
polation for the theories of arrays, sets, and multisets in the
Blast software model checker. In our preliminary experi-
ence, Blast, together with this added interpolation support,
is able to prove properties of programs using data structures
when the data structures are represented as ADTs. For the
same programs, the reachability returns a false positive if the

x := emptyset(); ∀e.e $∈ x0 x = ∅
true ; true x = ∅
t := ∗; t0 = ∗ x = ∅
assume(t → tag = 0); t0 → tag = 0 x = ∅ ∧ t → tag = 0
x := add(x, t); ∀e.e ∈ x1 ⇔ (e ∈ x0 ∨ e = t) x $= ∅ ∧ ∀e.(e ∈ x ⇒ e → tag = 0)
q := choose(x); (q0 = 0 ∧ ∀e.e $∈ x1) ∨ (q0 $= 0 ∧ q0 ∈ x1) q $= 0 ∧ q → tag $= 0
assume(q! = 0&&q → tag $= 0) q0 $= 0 ∧ q0 → tag $= 0 false

Figure 3: (a) Counterexample, (b) reduced trace formula, (c) interpolants

actual implementation of the data structures are included.
This is because the simple pointer analysis used by Blast to
distinguish memory cells usually cannot distinguish between
the different cells within the data structure implementation.

3. INTERPOLATION AND REDUCTION
This section is a rigorous technical presentation of inter-

polation and reduction, and it provides characterizations for
the existence of interpolants. We prove two main results.
The first (Theorem 8) shows that every recursively enumer-
able theory admits interpolation, although the interpolant
may not be quantifier-free. A quantifier-free interpolant is
guaranteed to exist if and only if in addition, the theory ad-
mits quantifier elimination. The second result (Theorem 11)
provides a compilation technique that reduces the problem
of computing interpolants for quantifier-free formulas in a
theory T to computing interpolants in a different theory R
through the compilation process. This enables us to use
already implemented techniques for computing interpolants
in R to compute interpolants in T . Again, the interpolants
may not be quantifier-free. On the positive side, we give con-
ditions under which we do get quantifier free interpolants,
and show, e.g., that the theory of sets with cardinality con-
straints satisfy these conditions. On the negative side, we
show that for the theories of arrays and multisets, these con-
ditions are not satisfied, and we do not get quantifier-free
interpolants.

3.1 Many Sorted Logics
Syntax. A signature Σ = (S, F, P) consists of a set S of
sorts, a set F of function symbols, and a set P of predicate
symbols, where the arities of the symbols in F and P are
constructed using the sorts in S (i.e., we consider the arity
of a function or a predicate to be built-in the function or
predicate symbol). A constant is a function of arity zero.
For a signature Σ, we write ΣS (respectively, ΣF , ΣP) for
S (respectively F , P). For signatures Σ1 and Σ2, we write
Σ1 ⊆ Σ2 if ΣS

1 ⊆ ΣS
2 , ΣF

1 ⊆ ΣF
2 , and ΣP

1 ⊆ ΣP
2 . The union

and intersection of signatures is defined as the pointwise
union and intersection of their component sets. For each
sort σ, we fix a set Xσ of free constant symbols of sort σ
which are disjoint from the function symbols ΣF . We also
fix a set Xbool of free propositional symbols.

For a signature Σ, the set of Σ-terms is the smallest set
such that (1) each free constant symbol u ∈ Xσ is a Σ-term
of sort σ for all σ ∈ ΣS , (2) each constant symbol u ∈ ΣF

of sort σ is a Σ-term of sort σ, and (3) f(t1, . . . , tn) is a
Σ-term of sort σ, given f ∈ ΣF is a function symbol of arity
σ1×. . .×σn → σ and ti is a Σ-term of sort σi for i = 1, . . . , n.

The set of Σ-atoms is the smallest set such that (1) each
propositional symbol u ∈ Xbool is a Σ-atom, (2) s ≈ t is
a Σ-atom if s and t are Σ-terms of the same sort, and (3)

p(t1, . . . , tn) is a Σ-atom given that p ∈ ΣP is a predicate
symbol of arity σ1 × . . . × σn and ti is a Σ-term of sort σi

for i = 1, . . . , n.
The set of quantifier-free Σ-formulas is the smallest set

such that (1) each Σ-atom is a Σ-formula, (2) if ϕ,ψ,χ are
Σ-formulas, so are ¬ϕ, ϕ ∧ ψ. The set of Σ-formulas is the
smallest set such that (1) every quantifier-free Σ-formula
is a Σ-formula, and (2) if ϕ is a Σ-formula and x ∈ Xσ a
free constant symbol, then ∀x : Xσ.ϕ and ∃x : Xσ.ϕ are
Σ-formulas. We shall use the usual derived formulas ϕ ∨ ψ,
ϕ → ψ, ϕ ↔ ψ. We use the shorthand s $≈ t for ¬(s ≈ t).
We write vars(ϕ) for the free constant symbols in ϕ. We
omit the prefix Σ- when it is clear from the context.

Semantics. For a signature Σ = (S, F, P) and a set X of
free symbols over sorts in S, a Σ-structure A over X is a
map which interprets

1. each sort σ ∈ S as a non-empty domain Aσ,
2. each free constant symbol u ∈ Xσ as an element uA ∈

Aσ,
3. each free propositional symbol u ∈ Xbool as a truth

value in {true , false},
4. each function symbol f ∈ F of arity σ1 × . . .×σn → σ

as a function fA : Aσ1 × . . . × Aσn → Aσ,
5. each predicate symbol p ∈ P of arity σ1 × . . . × σn as

a relation pA ⊆ Aσ1 × . . . × Aσn .
For a Σ-formula ϕ with free constants X0 ⊆ X, we denote
by ϕA, the evaluation of ϕ under A (defined in the usual
way). For a formula ϕ, we write A |= ϕ if ϕA = true . A
formula ϕ is satisfiable if A |= ϕ for some structure A over
vars(ϕ).

3.2 Theories
A Σ-theory is a set of Σ-sentences closed under logical

deduction.3 A theory is recursively enumerable if the set of
sentences in the theory is a recursively enumerable set. Two
formulas ϕ and ψ are T -equivalent for a theory T if ϕ ↔ ψ is
in T . If Σ is a signature, TΣ

≈ denotes the theory of equality
over Σ, that is, TΣ

≈ is the set of all valid Σ-sentences.
Given a Σ-theory T , a T -model is a Σ-structure that sat-

isfies all sentences in T . A Σ-formula ϕ over a set V of free
constant symbols is T -valid if it is satisfied by all T -models
over V , is T -satisfiable if it is satisfied by some T -model over
V , and is T -unsatisfiable if it is not T -satisfiable. The satis-
fiability problem of a Σ-theory T is the problem of deciding,
for every Σ-formula ϕ, whether or not ϕ is T -satisfiable. The
quantifier-free satisfiability problem of a Σ-theory T is the
problem of deciding, for every quantifier-free Σ-formula ϕ,
whether or not ϕ is T -satisfiable. For every signature Σ, the

3A set T of Σ-sentences is closed under logical deduction if
ψ ∈ T whenever ϕ ∈ T and ϕ → ψ is valid.

satisfiability problem of TΣ
≈ is undecidable [38], whereas the

quantifier-free satisfiability problem of TΣ
≈ is decidable [1].

A Σ-theory T eliminates quantifiers if for every Σ-formula
ϕ it is possible to effectively compute a quantifier-free Σ-
formula ψ such that ϕ and ψ are T -equivalent and vars(ψ) ⊆
vars(ϕ). Examples of theories that eliminate quantifiers in-
clude the theory Tint of linear integer arithmetic [32], the
theory Trat of linear rational arithmetic [39], the theory Treal

of real arithmetic [37], the theory Tdata of recursively defined
data structures [29], and the theory Tset of sets [21].

The theory of equality TΣ
≈ over Σ does not eliminate quan-

tifiers. Assume by contradiction that TΣ
≈ eliminates quanti-

fiers. Given any Σ-formula ϕ, a quantifier free Σ-formula ψ
can be effectively computed such that ϕ and ψ are equivalent
(hence, equisatisfiable). Since the quantifier-free satisfiabil-
ity problem of TΣ

≈ is decidable, we can effectively decide
whether ϕ is satisfiable. But this implies that the satisfi-
ability problem of TΣ

≈ is decidable, a contradiction. Using
similar arguments, we will prove in the next section that
theories that do not eliminate quantifiers also include the
theory Tarray of arrays and the theory Tbag of multisets.

3.3 Interpolation
Let T be a Σ-theory, and let ϕ and ψ be Σ-formulas

such that ϕ ∧ ψ is T -unsatisfiable. A Σ-formula α is a T -
interpolant of (ϕ,ψ) if the following three conditions hold:

1. ϕ → α is T -valid.
2. α ∧ ψ is T -unsatisfiable.
3. vars(α) ⊆ vars(ϕ) ∩ vars(ψ).

A Σ-theory T is interpolating if, for all Σ-formulas ϕ,ψ
such that ϕ ∧ ψ is T -unsatisfiable, it is possible to effec-
tively compute a T -interpolant α of (ϕ,ψ). A Σ-theory T is
quantifier-free interpolating if, for all Σ-formulas ϕ,ψ such
that ϕ∧ψ is T -unsatisfiable, it is possible to effectively com-
pute a quantifier-free T -interpolant α of (ϕ,ψ).

For every signature Σ, the theory of equality TΣ
≈ over Σ

is interpolating [6]. In particular, if ϕ and ψ are Σ-formulas
such that ϕ ∧ ψ is unsatisfiable, then a TΣ

≈ -interpolant α
of (ϕ,ψ) can be extracted from any first-order proof Π of
the unsatisfiability of ϕ ∧ ψ in time linear in the size of
the proof Π. Methods for extracting TΣ

≈ -interpolants from
first-order proofs exist for Gentzen-like calculi [36], resolu-
tion, and tableaux [9]. We now extend these results to any
recursively enumerable theory T .

We start with a simple normalization that simplifies the
syntax of formulas in the following. A quantifier-free formula
is flat if all atoms occurring in it are of the form x ≈ y,
x ≈ f(x1, . . . , xn), or p(x1, . . . , xn), where x, y, x1, . . . , xn

are variables. It is easy to see that every formula ϕ can be
converted to an equivalent flat formula ϕ′ (by introducing
new variables). This flat formula ϕ′ is called the flat form
of ϕ. Further, since the conjunction or disjunction of flat
formulas is also flat, we shall write, e.g., ϕ′ ∧ ψ′ to denote
the flat form of ϕ ∧ ψ where ϕ′ is the flat form of ϕ and ψ′

the flat form of ψ.

Proposition 7. Let ϕ ∧ ψ be a quantifier-free T -
unsatisfiable Σ-formula. A T -interpolant of (ϕ,ψ) can be
computed from a flat form ϕ′ ∧ ψ′ of ϕ ∧ ψ. !

We characterize (quantifier-free) T -interpolating theories.
Our main result shows that every recursively enumerable
theory T is T -interpolating, and additionally T is quantifier-
free interpolating iff additionally T eliminates quantifiers.

Theorem 8. 1. Every recursively enumerable theory is
interpolating.

2. Every recursively enumerable theory that eliminates
quantifiers is quantifier-free interpolating.

3. Every quantifier-free interpolating theory eliminates
quantifiers. !

Proof. Let T be a recursively enumerable Σ-theory, and let
ϕ and ψ be Σ-formulas such that ϕ ∧ ψ is T -unsatisfiable.
We want to effectively compute a T -interpolant α of (ϕ,ψ).

By compactness, and since T is recursively enumerable,
one can effectively construct a finite subset T0 ⊆ T such
that ϕ ∧ ψ is T0-unsatisfiable. Moreover, one can also con-
struct a first-order proof Π of the T0-unsatisfiability of ϕ∧ψ.
From Π, one can effectively extract a TΣ

≈ -interpolant α of
(T0 ∧ ϕ, T0 ∧ ψ). (We write T0 for the conjunction
of the finitely many formulas in T0.) Clearly, α is also a
T -interpolant of (ϕ,ψ).

For part (2), let T be a recursively enumerable Σ-theory,
and let ϕ and ψ be Σ-formulas such that ϕ ∧ ψ is T -
unsatisfiable. By Part (1), one can effectively construct a
T -interpolant α of (ϕ,ψ). Since T eliminates quantifiers,
one can effectively compute a quantifier-free Σ-formula β
such that α and β are T -equivalent and vars(β) ⊆ vars(α).
Clearly, β is a quantifier-free T -interpolant of (ϕ,ψ).

For part (3), let T be a quantifier-free interpolating Σ-
theory, let ϕ be a Σ-formula, and let α be a quantifier-free
interpolant of (ϕ,¬ϕ). Clearly, ϕ and α are T -equivalent
and vars(α) ⊆ vars(ϕ).

From Theorem 8, it follows that examples of theories that
are interpolating, include the theory Tint of integer linear
arithmetic, the theory Trat of rational linear arithmetic, the
theory Treal of real arithmetic, the theory Tdata of recursively
defined data structures, the theory Tarray of arrays, the the-
ory Tset of sets, and the theory Tbag of multisets. Further,
except for the theory Tarray of arrays and the theory Tbag of
multisets, all other theories listed above are quantifier-free
interpolating.

Example 9. Arithmetic. The theory Tint of integer linear
arithmetic is the theory of the structure of integer numbers
〈 ,0, 1, +,≤,≡n〉. The theory Tint is recursively enumer-
able and eliminates quantifiers [32]. Consequently, by The-
orem 8, Tint is quantifier-free interpolating.

The theory Trat of rational linear arithmetic is the the-
ory of the structure of rational numbers 〈 , 0, 1, +,≤〉. The
theory Trat is recursively enumerable, and eliminates quanti-
fiers [39]. Consequently, by Theorem 8, Trat is quantifier-free
interpolating.

The theory Treal of real arithmetic is the theory of the
structure of real numbers 〈 , 0, 1, +,×,≤〉. The theory Treal

is recursively enumerable, and eliminates quantifiers [37].
Consequently Treal is quantifier-free interpolating. !

Example 10. Recursively defined data structures.
The theory Tdata of recursively defined data structures has
a signature Σdata containing one sort data, the binary func-
tion symbols cons, and the unary function symbols car and
cdr. The theory Tdata is axiomatized by

car(cons(x, y)) = x , cdr(cons(x, y)) = y ,

cons(car(x), cdr(x)) = x , x $≈ t(x) ,

where t is a term built up form x by using finitely many
applications of the unary function symbols car and cdr. The
theory Tdata is recursively enumerable, and eliminates quan-
tifiers [24]. Consequently, by Theorem 8, Tdata is quantifier-
free interpolating. !

3.4 Reduction of Interpolants
Theorem 8 provides a characterization of first order the-

ories that admit (quantifier-free) interpolation. In prac-
tice, however, producing efficient implementations of inter-
polating decision procedures for every individual theory is
a daunting engineering task. Further, the construction of
the interpolant in the proof of Theorem 8 used compactness
to construct a finite subset T0 of T , which may be algorith-
mically inefficient. Instead, we use a compilation or reduc-
tion approach [19], where the satisfiability and interpolation-
construction for a theory is proved by reducing to a different,
often simpler, theory for which efficient satisfiability and in-
terpolation procedures have already been implemented. In
particular, the target for our reduction functions is the com-
bination of the theory of equality with uninterpreted func-
tions and linear arithmetic, for which interpolating decision
procedures are available [26].

Let T be a Σ-theory, and let R be an Ω-theory such that
Ω ⊆ Σ, ΩS = ΣS, and R ⊆ T . As defined in [19], T reduces
to R if there is a computable map from flat Σ-atoms to Ω-
formulae such that, if we apply this map to a quantifier-free
flat Σ-formula ϕ, obtaining an Ω-formula ϕ∗, then

1. ϕ and ϕ∗ are T -equivalent.
2. If ϕ∗ is R-satisfiable then ϕ is T -satisfiable.
It is shown in [19] that the quantifier-free theories of ar-

rays, lists, sets and multisets can be reduced to quantifier-
free theories of uninterpreted symbols with equality, con-
structors and Presburger arithmetic. Some of these reduc-
tions will be reviewed in Section 4; for details, an interested
reader should consult [19]. The theorem below shows how
the reduction approach can also be used to generate inter-
polants using interpolating decision procedures for theories
of uninterpreted symbols and Presburger arithmetic.

Theorem 11. Let T be a Σ-theory, and let R be an Ω-
theory such that Ω ⊆ Σ and ΩS = ΣS, and R ⊆ T . If

(i) T reduces to R, and
(ii) It is possible to compute an R-interpolant of (ϕ,ψ)

whenever ϕ ∧ ψ is an R-unsatisfiable Ω-formula,
then it is possible to compute a T -interpolant of (ϕ,ψ) when-
ever ϕ ∧ ψ is a T -unsatisfiable quantifier-free Σ-formula. !

Proof. Without loss of generality, let ϕ ∧ ψ be a T -
unsatisfiable flat quantifier-free Σ-formula, and let us con-
struct (ϕ∗,ψ∗). Note that ϕ∗ ∧ψ∗ is R-unsatisfiable. Thus,
we can compute an R-interpolant α of (ϕ∗,ψ∗). We claim
that α is also a T -interpolant of (ϕ,ψ).

Since vars(α) ⊆ vars(ϕ∗)∩vars(ψ∗), vars(ϕ) ⊆ vars(ϕ∗),
and vars(ψ∗) ⊆ vars(ψ), it follows that vars(α) ⊆ vars(ϕ)∩
vars(ψ).

Next, let A |=T ϕ. Then A |=T ϕ∗, which implies that
AΩ,vars(ϕ∗) |=R ϕ∗, which implies AΩ,vars(ϕ∗) |=R α, which
implies A |=T α. Summing up, ϕ → α is T -valid.

Finally, assume by contradiction that α∧ψ is T -satisfiable.
Then there exists a Σ-interpretation A such that A |=T

α ∧ ψ. It follows that A |=T α ∧ ψ∗, which implies
AΩ,vars(ψ∗) |=R α ∧ ψ∗. But then, α ∧ ψ∗ is R-satisfiable, a
contradiction.

ϕ ∧ ψ

ϕ∗ ∧ ψ∗

α

β

reduction of T to R

computation of an R-interpolant

quantifier elimination

Figure 4: Computing quantifier-free T -interpolants
when T reduces to R, and either T or R eliminates
quantifiers. ϕ ∧ ψ is a T -unsatisfiable flat quantifier-
free Σ-formula. ϕ∗∧ψ∗ is an Ω-formula obtained from
ϕ ∧ ψ by a reduction function. α is an R-interpolant
of (ϕ,ψ), as well as a T -interpolant of (ϕ,ψ). β is ob-
tained by eliminating quantifiers from α in either the
theory T or the theory R. Finally, β is a quantifier-
free T -interpolant of (ϕ,ψ).

Note that in Theorem 11, if either one of the theories T
or R eliminates quantifiers, then T is quantifier-free inter-
polating and we can compute a quantifier-free T -interpolant
β of (ϕ,ψ). This process is depicted in Figure 4.

4. INTERPOLANTS VIA REDUCTION
We now apply Theorem 11 to obtain interpolants for the

theories of arrays, sets, and multisets.

4.1 Arrays
The theory Tarray of arrays has a signature Σarray containing

a sort elem for elements, a sort index for indices, and a sort
array of arrays, plus the function symbols read of arity array×
index → elem, and write of arity array× index×elem → array.
The theory Tarray is axiomatized by

read(write(a, i, e), i) ≈ e ,

i $≈ j → read(write(a, i, e), j) ≈ read(a, j) ,

(∀index i)(read(a, i) ≈ read(b, i)) → a ≈ b .

The theory Tarray is recursively enumerable. Consequently,
by Theorem 8, Tarray is interpolating. Tarray does have a de-
cidable quantifier-free satisfiability problem [34]. Below we
show that: (a) the satisfiability problem of Tarray is unde-
cidable, (b) the theory Tarray does not eliminate quantifiers,
and consequently, (c) the theory Tarray is not quantifier-free
interpolating.

Theorem 12. 1. The satisfiability problem of Tarray is
undecidable.

2. Tarray does not eliminate quantifiers. !

Proof (Sketch). Consider the theory T 2
array which is the

same as Tarray, but the sort elem and index are identified.
Clearly, the satisfiability problem of T 2

array is undecidable [12].
We want to reduce the satisfiability problem of T 2

array to the

satisfiability problem of Tarray. This can be done as follows.
Specify that a function h : index → elem is bijective with the
formulas

(∀index i, j)(read(h, i) ≈ read(h, j) → i ≈ j) ,

(∀elem e)(∃index i)(read(h, i) ≈ e) .

Then, whenever we want to express that e1 = f(e2), it suf-
fices to say that read(h, i) ≈ e2 ∧ read(f, i) ≈ e1.

For part (2), assume by contradiction that Tarray eliminates
quantifiers, and let ϕ be a Σarray-formula. Then it is possible
to effectively compute a quantifier free Σarray-formula ψ such
that ϕ and ψ are Tarray-equivalent. It follows that ϕ and ψ
are Tarray-equisatisfiable. Since the quantifier-free satisfiabil-
ity problem of Tarray is decidable, we can effectively decide
whether ϕ is Tarray-satisfiable. But this implies that the sat-
isfiability problem of Tarray is decidable, a contradiction.

By Theorem 8 and Theorem 12, we get the following.

Corollary 13. The theory Tarray of arrays is not quantifier-
free interpolating. !

In fact, even if ϕ and ψ are quantifier-free, their in-
terpolant may require quantification. Consider h′ ≈
write(h, i, e) and (a $= b) ∧ (read(h, a) $≈ read(h′, a)) ∧
(read(h, b) $≈ read(h′, b)) whose conjunction is unsatisfiable,
but there is no quantifier-free interpolant over the com-
mon variables h and h′. The interpolant for this case is:
∃j((read(h, j) $≈ read(h′, j)) ∧ ∀k(k $= j =⇒ read(h, k) ≈
read(h′, k))).

It is shown in [19] that Tarray reduces to TΩ
≈ , where ΩS =

{elem, index, array}, ΩF = {read}, and ΩP = ∅. Every lit-
eral a ≈array b is mapped to (∀index i)(read(a, i) ≈ read(b, i)),
and every atom a ≈ write(b, i, e) is mapped to read(a, i) ≈
e ∧ (∀index j)(j $≈ i → read(a, j) ≈ read(b, j)). Literals
not mentioned are left unchanged. Consequently, by Theo-
rem 11, and provided that ϕ∧ψ is quantifier-free, we can re-
duce the problem of computing Tarray-interpolants4 of (ϕ,ψ)
to the problem of computing TΩ

≈ -interpolants.

4.2 Sets
The theory Tset of sets with finite cardinality constraints

has a signature Σset containing one sort elem for elements
and one sort set for sets of elements. The operations allowed
include the constant symbols ∅ (empty set) and 11 (full set)5,
the binary function symbols ∪ (union), ∩ (intersection), and
\ (difference), of arity set × set → set, the unary function
symbol {·} (singleton), of arity elem → set, and the binary
predicate symbol ∈, of arity elem × set, with the standard
semantics. In addition, for each natural number k, the unary
predicate symbols | · | ≥ k and | · | ≈ k, both of arity set. The
element domain is assumed to be finite. The theory Tset

is the set of all Σset-sentences that are true in all standard
set-structures.

The theory Tset is recursively enumerable, and eliminates
quantifiers [21, Fact 1, page 7]. Consequently, by Theo-
rem 8, Tset is quantifier-free interpolating. Further, it has a
decidable satisfiability problem [21].

As shown in [19], Tset reduces to TΩ
≈ , where ΩS =

{elem, set}, ΩF = ∅, and ΩP = {∈}. Figure 5 shows the

4Since Tarray is not quantifier-free interpolating, these inter-
polants are, in general, not quantifier-free.
5introduced for technical reasons; see [41] for details.

reduction function from flat Σset-literals to Ω-formulas (lit-
erals not mentioned are left unchanged). Consequently, by
Theorem 11, and provided that ϕ ∧ ψ is quantifier-free, we
can reduce the problem of computing quantifier-free Tset-
interpolants of (ϕ,ψ) to the problem of computing TΩ

≈ -
interpolants.

Example 14. Let ϕ : x ≈ {a} , and ψ : x ≈ {b, c} ∧ b $≈
c . After performing the reduction, we get

ϕ∗ : a ∈ x ∧ (∀elem e)(e ∈ x → e ≈ a) ,

ψ∗ : b ∈ x ∧ c ∈ x ∧ (∀elem e)(e ∈ x → (e ≈ b ∨ e ≈ c)) ∧ b $≈ c .

A Gentzen-style proof yields the interpolant

(∀elem e1, e2)(e1 /∈ x ∨ e2 /∈ x ∨ e1 ≈ e2) ,

which is Tset-equivalent to the quantifier-free formula

|x| ≈ 0 ∨ |x| ≈ 1 . !

Unfortunately, the requirement in Theorem 11 that the
original T -formula is quantifier-free cannot be relaxed. Take
ϕ to be a Tset-unsatisfiable formula that says that there are
exactly 3 sets:

(∃setx, y, z)(x $≈ y∧y $≈ z∧x $≈ z∧(∀setw)(w ≈ x∨w ≈ y∨w ≈ z))

When reduced to the theory of equality, the resulting for-
mula is satisfiable, because the theory of equality does not
know that the number of sets is 2n where n is the number
of elements.

4.3 Multisets
The theory Tbag of multisets has a signature Σbag extend-

ing Σint with a sort elem for elements, and a sort bag for mul-
tisets, plus the following symbols: the constant symbol [[]], of
sort bag; the function symbols:[[·]](·) , of sort elem×int → bag;
8, 9, and :, of sort bag × bag → bag; count, of sort
elem × bag → int. The theory Tbag is the set of all Σbag-
sentences that are true in all standard bag-structures.

The theory Tbag is recursively enumerable. Consequently,
by Theorem 8, Tbag is interpolating. Even though the
quantifier-free satisfiability problem of Tbag is decidable [40],
we show that: (a) the satisfiability problem of the full Tbag

is undecidable, (b) the theory Tbag does not eliminate quan-
tifiers, and (c) the theory Tbag is not quantifier-free interpo-
lating.

Theorem 15. 1. The satisfiability problem of Tbag is un-
decidable.

2. Tbag does not eliminate quantifiers. !

Proof (Sketch). Consider the theory T 2
bag which is the

same as Tbag, but the sort elem and int are identified. Clearly,
the satisfiability problem of T 2

bag is undecidable [8]. To re-
duce the satisfiability problem of T 2

bag to the satisfiability
problem of Tbag, specify that a function h : elem → int is
bijective with the formulas

(∀elem a, b)(count(h, a) ≈ count(h, b) → a ≈ b) ,

(∀int u)(∃elem a)(count(h, a) ≈ u) .

Then, whenever we want to express that u = f(v), it suffices
to say that count(h, a) ≈ v ∧ count(f, a) ≈ u.

For part (2), assume by contradiction that Tbag eliminates
quantifiers, and let ϕ be a Σbag-formula. Then it is possible

x ≈set y =⇒ (∀elem e)((e ∈ x ∧ e ∈ y) ∨ (e /∈ x ∧ e /∈ y))

x ≈ ∅ =⇒ (∀elem e)(e /∈ x)

x ≈ 11 =⇒ (∀elem e)(e ∈ x)

x ≈ y ∪ z =⇒ (∀elem e)(e ∈ x ↔ (e ∈ y ∨ e ∈ z))

x ≈ y ∩ z =⇒ (∀elem e)(e ∈ x ↔ (e ∈ y ∧ e ∈ z))

x ≈ y \ z =⇒ (∀elem e)(e ∈ x ↔ (e ∈ y ∧ e /∈ z))

x ≈ {e0} =⇒ e0 ∈ x ∧ (∀elem e)(e ∈ x → e ≈ e0)

|x| ≥ k =⇒ (∃elem e1, . . . , ek)
k

i=1

ei ∈ x ∧
1≤i<j≤k

(ei $≈ ej)

|x| ≈ k =⇒ (∃elem e1, . . . , ek)
k

i=1

ei ∈ x ∧
1≤i<j≤k

(ei $≈ ej) ∧ (∀elem e)(e ∈ x →
n

i=1

e ≈ ei)

Figure 5: Reduction function for sets

to effectively compute a quantifier free Σbag-formula ψ such
that ϕ and ψ are Tbag-equivalent. It follows that ϕ and ψ
are Tbag-equisatisfiable. Since the quantifier-free satisfiabil-
ity problem of Tbag is decidable, we can effectively decide
whether ϕ is Tbag-satisfiable. But this implies that the sat-
isfiability problem of Tbag is decidable, a contradiction.

Corollary 16. The theory Tbag of multisets is not
quantifier-free interpolating. !

In fact, even if ϕ and ψ are quantifier-free, their inter-
polant may require quantification. Consider h ≈ [[e]](1) and
(a $= b) ∧ (count(a, h) $≈ 0 ∧ (count(b, h) $≈ 0 whose conjunc-
tion is unsatisfiable, and whose interpolant is

∃x.count(x, h) ≈ 1 ∧ ∀y.(y $≈ x ⇒ count(y, h) ≈ 0)

However, there is no quantifier-free interpolant over the com-
mon variables h and h′.

In [19], it is proved that Tbag reduces to Tint ∪ TΩ
≈ , where

ΩS = {elem, int, bag}, ΩF = {count}, and ΩP = ∅. Figure 6
shows the reduction function from flat Σarray-literals to (Σint∪
Ω)-formulas (literals not mentioned are left unchanged).

Consequently, by Theorem 11, and provided that ϕ ∧ ψ
is quantifier-free, we can reduce the problem of comput-
ing Tbag-interpolants of (ϕ,ψ) to the problem of computing
Tint ∪TΩ

≈ -interpolants. Since Tbag is not quantifier-free inter-
polating, these interpolants are, in general, not quantifier-
free.

5. IMPLEMENTATION USING FOCI
Foci [26] is an implementation of an interpolating deci-

sion procedure for the quantifier-free theory of equality and
arithmetic. We now sketch how Foci can be used to imple-
ment our reduction procedure for generating interpolants
for data structures even though the reduced formulas can
have quantifiers. Let ϕ∗ ∧ ψ∗ be an R-formula obtained by
the reduction algorithms presented above of a quantifier-
free T -formula φ ∧ ψ where T is the theory of arrays, sets,
or multisets, and R is the theory of equality, or the theory
of equality and arithmetic. Assume ϕ∗ ∧ψ∗ is a flat formula
in negation normal form (i.e., negations are only applied to
atomic formulas). Even though ϕ∗∧ψ∗ is not quantifier-free,

we can obtain an R-interpolant for ϕ∗ ∧ψ∗ using a decision
procedure for the quantifier-free fragment of these theories
as follows.

First, we replace each existentially quantified variable us-
ing a fresh Skolem constant and remove the existential quan-
tifiers. This works since in all three reductions above, the
existential quantifiers are not in the scope of any univer-
sal quantifiers. In the resulting formula (that may contain
universal quantifiers), we instantiate each universally quan-
tified variable with a constant that already appears in the
formula. It can be shown that this is complete to show
R-unsatisfiability for the theory T of arrays, sets, or mul-
tisets. The resulting formula (after these instantiations)
is quantifier-free, and we can use an Foci to compute a
(quantifier-free) interpolant. However, because of the quan-
tifier instantiations above, this interpolant will have Skolem
constants introduced for the existential quantifiers. The in-
terpolant for the theory T will have quantifiers that can be
added back to the output from Foci using, e.g., the tableau
based interpolant computation method in [9].

6. CONCLUSION
Interpolation based abstraction is a powerful technique for

approximate reachability (and safety) checking for systems.
We have extended the potential of the technique by demon-
strating how to compute interpolants for several theories
over complex data structures of interest in program verifi-
cation. Further, the reduction approach allows quick im-
plementations by allowing hooking into already-existing ef-
ficient implementations of interpolating decision procedures,
such as Foci.

There are several directions of future work. One main
limitation of the approach is that suitable predicates may
not be derivable by considering individual counterexamples.
For example, consider the program

for(i=0; i< n; i++) { a[i] := 0; }
for(i=0; i< n; i++) { assert(a[i] = 0); }

While correctness depends on the invariant ∀0 ≤ i <
n.a[i] = 0 after the first loop, the interpolant based tech-
nique can come up with infinitely many predicates of the
form a[0] = 0, a[1] = 0, We leave the problem of

x ≈bag y =⇒ (∀elem e)(count(x, e) ≈ count(y, e))

x ≈ [[]] =⇒ (∀elem e)(count(x, e) ≈ 0)

x ≈ y 8 z =⇒ (∀elem e)(count(e, x) ≈ max(count(e, y), count(e, z)))

x ≈ y : z =⇒ (∀elem e)(count(e, x) ≈ min(count(e, y), count(e, z)))

x ≈ y 9 z =⇒ (∀elem e)(count(e, x) ≈ count(e, y) + count(e, z))

x ≈ [[e0]]
(u) =⇒ count(e0, x) = max(0, u) ∧ (∀elem e)(e $≈ e0 → count(e, x) ≈ 0)

Figure 6: Reduction from Tbag

generalizing from particular counterexamples as an interest-
ing open problem. On the practical front, we are applying
the more powerful predicate generation capabilities to prove
larger programs using the Blast software model checker.

Acknowledgements. We thank Shriram Krishnamurthi
and Corina Pasareanu for many detailed comments.

7. REFERENCES
[1] W. Ackermann. Solvable Cases of the Decision Problem.

North-Holland, 1954.
[2] T. Ball and S.K. Rajamani. The SLAM project: debugging

system software via static analysis. In POPL 02, pages 1–3.
ACM, 2002.

[3] S. Chaki, E.M. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C. IEEE TSE,
30(6):388–402, 2004.

[4] D.G. Clarke, J. Noble, and J.M. Potter. Simple ownership
types for object containment. In ECOOP 01, pages 53–76.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV 00,
LNCS 1855, pages 154–169. Springer, 2000.

[6] W. Craig. Linear reasoning: A new form of the
Herbrand-Gentzen theorem. J. Symbolic Logic, 22(3):250–268,
1957.

[7] D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[8] P.J. Downey. Undeciability of Presburger arithmetic with a
single monadic predicate letter. Technical Report 18-72, Havard
University, 1972.

[9] M.C. Fitting. First-Order Logic and Automated Theorem
Proving. Springer, 1996.

[10] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In PLDI
02, pages 234–245. ACM, 2002.

[11] S. Graf and H. Säıdi. Construction of abstract state graphs with
PVS. In CAV 97, LNCS 1254, pages 72–83. Springer, 1997.

[12] Y. Gurevich. The decision problem for standard classes. J.
Symbolic Logic, 41(2), 1976.

[13] J. Guttag. The specification and applicatons to programming
of abstract data types. PhD thesis, University of Toronto, 1975.

[14] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan.
Abstractions from proofs. In POPL 04, pages 232–244. ACM,
2004.

[15] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL 02, pages 58–70. ACM, 2002.

[16] C.A.R. Hoare. Proof of correctness of data representations.
Acta Inf., 1:271–281, 1972.

[17] R. Jhala and K.L. McMillan. Interpolant-based transition
relation approximation. In CAV 05, LNCS 3576, pages 39–51.
Springer, 2005.

[18] R. Jhala and K.L. McMillan. A practical and complete
approach to predicate abstraction. In TACAS 06. Springer,
2006.

[19] D. Kapur and C.G. Zarba. A reduction approach to decision
procedures. 2005.

[20] D. Kapur and H. Zhang. An overview of rewrite rule laboratory
(RRL). J. Computer and Mathematics with applications,
14(2):91–114, 1995.

[21] V. Kuncak and M. Rinard. The first-order theory of sets with
cardinality constraints is decidable. Technical Report CSAIL
958, MIT, 2004.

[22] P. Lam, V. Kuncak, and M.C. Rinard. Hob: A tool for verifying
data structure consistency. In CC 05, pages 237–241, 2005.

[23] B. Liskov and S. Zilles. Programming with abstract data types.
In Symp. very high level programming languages. 1974.

[24] A. Mal’cev. Axiomatizable classes of locally free algebras of
certain types. Sibirsk. Mat. Zh., 3:729–743, 1962.

[25] K.L. McMillan. Interpolation and SAT-based model checking.
In CAV 03, LNCS 2725, pages 1–13. Springer, 2003.

[26] K.L. McMillan. An interpolating theorem prover. Theoretical
Computer Science, 345:101–121, 2005.

[27] S. McPeak and G.C. Necula. Data structure specifications via
local equality axioms. In CAV 05, LNCS 3576, pages 476–490.
Springer, 2005.

[28] P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and
information hiding. In POPL 04. ACM, 2004.

[29] D.C. Oppen. Reasoning about recursively defined data
structures. J. ACM, 27(3):403–411, 1980.

[30] M. Parkinson and G. Bierman. Separation logic and
abstraction. In POPL 05. ACM, 2005.

[31] D.L. Parnas. The secret history of information hiding. In
Software pioneers: contributions to software engineering.
Springer, 2002.

[32] M. Presburger. Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchen die Addition als
einzige Operation hervortritt. In Comptes Rendus du Premier
Congrès des Mathématicienes des Pays Slaves, pages 92–101,
1929.

[33] S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM TOPLAS, 24(3):217–298,
2002.

[34] A. Stump, C.W. Barret, D.L. Dill, and J. Levitt. A decision
procedure for an extensional theory of arrays. In LICS 01,
pages 29–37. IEEE, 2001.

[35] A. Stump, C.W. Barrett, and D.L. Dill. Cvc: A cooperating
validity checker. In CAV 02, LNCS 2404, pages 500–504.
Springer, 2002.

[36] G. Takeuti. Proof Theory. North-Holland, 1987.
[37] A. Tarski. A Decision Method for Elementary Algebra and

Geometry. University of California Press, 1951.
[38] A.M. Turing. On computable numbers, with an application to

the Entscheidungsproblem. Proc. London Math. Society,
42:230–265, 1936.

[39] V. Weispfenning. The complexity of linear problems in fields. J.
Symbolic Computation, 5(1/2):3–27, 1988.

[40] C.G. Zarba. Combining multisets with integers. In CADE 02,
LNCS 2392, pages 363–376. Springer, 2002.

[41] C.G. Zarba. A quantifier elimination algorithm for a fragment
of set theory involving the cardinality operator. In
International Workshop on Unification, 2004.

