
mMS ID: STTTN032

31 May 2000 14:59 CET

Int J STTT (2000) 3: 1–34 2000 Springer-Verlag

Using an inductionprover for verifying arithmetic circuits

Deepak Kapur1, M. Subramaniam2∗

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA; E-mail: kapur@cs.unm.edu
2Microprocessor Division, HAL Computer Systems, Fujitsu Inc., Campbell, CA 95014, USA; E-mail: subu@hal.com

Abstract. We show that existing theorem proving tech-
nology can be used effectively for mechanically verifying
a family of arithmetic circuits. A theorem prover imple-
menting: (i) a decision procedure for quantifier-free Pres-
burger arithmetic with uninterpreted function symbols;
(ii) conditional rewriting; and (iii) heuristics for care-
fully selecting induction schemes from terminating recur-
sive function definitions; and (iv) well integrated with
backtracking, can automatically verify number-theoretic
properties of parameterized and generic adders, multi-
pliers and division circuits. This is illustrated using our
theorem prover rewrite rule laboratory (RRL). To our
knowledge, this is the first such demonstration of the ca-
pabilities of a theorem prover mechanizing induction.

The above features of RRL are briefly discussed using
illustrations from the verification of adder, multiplier and
division circuits. Extensions to the prover likely to make
it even more effective for hardware verification are dis-
cussed. Furthermore, it is believed that these results are
scalable, and the proposed approach is likely to be effect-
ive for other arithmetic circuits as well.

Key words: CEa

1 Introduction

Ever since Intel admitted to a bug in the division algo-
rithm of its Pentium chip in November 1994, interest in
the use of formal methods and tools supporting them,
especially for enhancing the reliability of hardware cir-
cuits, has increased considerably both in the industry and

∗ Partially supported by the National Science Foundation Grant
no. CCR-9712366

in academia. In early 1995, we decided to try our theo-
rem prover rewrite rule laboratory (RRL) for verifying
properties of arithmetic circuits. We started with adder
circuits [29], then moved on to multiplier circuits [28].
Most of this work was completed in 1995. In late 1996 and
early 1997, we used RRL for the analysis of the SRT divi-
sion circuit. The invariant properties of the SRT division
circuit have been verified using RRL in three different
ways [24, 31, 34].

In this paper, we discuss our efforts, focusing on the
features of the theorem prover RRL found useful for this
application. The main goal of our investigations has been
to determine the extent to which a rewrite rule based
theorem prover can be used to automatically verify arith-
metic circuits, much like BDD-based software and the
related Boolean equivalence checkers frequently used in
the hardware design community. We propose some exten-
sions to and future work on theorem provers such as RRL
which would make them better suited for the application
of hardware design analysis and verification.

Three classes of commonly used arithmetic circuits
including adders, multipliers and divider circuits are de-
scribed in this paper. The adder circuits, being the sim-
plest, are used to illustrate the basic capabilities of RRL.
Then, we show how RRL can be used to give a common
specification and a fully automatic proof of an important
class of multiplier circuits including several commonly
used multipliers. The identification of such a class and ex-
hibiting their commonality is one of the contributions of
this paper. These circuits bring out the effectiveness of
the induction and lemma generation capabilities of RRL.
Finally, divider circuits illustrate the power of integration
of linear arithmetic decision procedure and contextual
rewriting implemented in RRL.

In the next section, we briefly outline the approach
taken for verifying properties of arithmetic circuits. In the

CE
a Please supply 5 key words.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

2 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

third section, we review RRL and its capabilities. In sub-
sequent sections, we discuss the main features of RRL
found useful for this application, using the case studies of
verification of properties of various arithmetic circuits.

1.1 Verification approach

Our verification attempts are quite modest and limited
in the sense that we never consider real circuits or their
descriptions in some well-known hardware description
language. Instead, circuits are described in a functional
equational language with simple data types acceptable
by RRL. This is much in the spirit of the earlier work
on CE

b hardware verification using Boyer and Moore’s
prover and ACL2, as well as PVS work, although the lan-
guage used by RRL is simpler in contrast to the powerful
specification language of PVS, which is based on higher-
order logic and syntax and allows parameterization and
dependent types.

Adder and multiplier circuits in this paper are de-
scribed algorithmically using recursive definitions on bit
vectors (which are represented as lists of bits). Prop-
erties of these circuits are typically expressed in terms
of number-theoretic properties. In the case of SRT divi-
sion, we have followed the approach taken in [13], where
the algorithm is given using numbers instead of bit vec-
tors. Writing such a specification in terms of bit vectors
should not add significantly to the complexity of verifica-
tion process.

2 Related work

Different approaches have been proposed in the literature
for verifying arithmetic circuits. These can be classi-
fied into the following three main techniques: state-based
techniques using BDDs and their variants and model
checkers [8, 11]; induction-based techniques adapted from
software verification [7, 21]; and techniques based on
modeling hardware circuits using higher-order logics [12,
14]. The latter two approaches have often collectively
been referred to as theorem proving based approaches.
Papers on these approaches have appeared in recent con-
ferences such as CAV and FMCAD.

These approaches have traditionally been compared
and contrasted in terms of their automation capabil-
ity and their expressiveness. The state-based approaches
have been espoused as the most automated of the three
approaches. Induction-based approaches provide some
degree of automation aided by several built-in heuristics
in theorem proving tools. Finally, the approaches based
on higher-order logic tend to be highly interactive. State-
based approaches are typically applicable only over finite
domains whereas induction-based approaches are appli-
cable to both finite as well as unbounded domains. The
approaches based on higher-order logics are the most ex-
pressive of the three.

State-based approaches based on symbolic manipula-
tion of Boolean functions using binary decision diagrams
BDDs [8] as canonical representations for Boolean func-
tions are perhaps the most popular for verifying hardware
circuits of fixed word size. A hardware circuit is specified
using a Boolean function that can be succinctly repre-
sented using a BDD. BDDs provide a fast mechanism for
comparing Boolean functions. Since the size of a Boolean
function and hence the associated BDD is dependent on
the word size, these approaches are well-suited for veri-
fying non-parametric circuits. Even for linear circuits, in
which the output is a linear function of the inputs, this
approach has two major limitations: (i) it is unclear how
circuits of arbitrary word size can be verified; and (ii) ver-
ification is limited to showing that a circuit implements
a Boolean function, and not a function on numbers.

Verification of parametric (generic) descriptions of
circuits has been typically carried out using theorem-
proving approaches. Not only is it possible to prove equiv-
alence of Boolean functions of arbitrary word sizes, but
more importantly, it is possible to verify that a Boolean
function indeed implements a given number-theoretic
function. Another advantage of these approaches is that
a single proof suffices to establish the behavioral cor-
rectness of a generic circuit which stands for a family
of circuits of different word sizes. A major criticism of
the theorem proving approaches is that they are semi-
automatic based on heuristics, and often require expert
user guidance. This is especially so for the approaches
based on higher-order logics that primarily support an
interactive mode of operation.

The approach used in this paper is in the spirit of
Hunt’s work [21], in which circuits are described as recur-
sive functions, and their properties proved using a theo-
rem prover mechanizing induction. Our goal in this pa-
per, however, has been to demonstrate how the induction-
based approach can achieve a degree of automation com-
parable to state-based approaches for arithmetic circuit
verification. We have shown how the existing rewriting
technology along with induction techniques implemented
in RRL can automatically discharge correctness proofs
of arithmetic circuits while retaining all the advantages
provided by the general framework underlying theorem
provers.

The case studies performed in RRL are described in
Table 1. All of these case studies were done on a Sparc-5
workstation with 32 Mb of memory.

We briefly review the literature on verification of
adders, multipliers and division circuits in the rest of this
section.

2.1 Adder and multiplier circuits

A linearly specified ripple carry adder where an adder
of size n is recursively specified in terms of an adder of
size CEc n - 1 has been verified by a number of theorem

CE
b Please add ref cite after ’Boyer and Moore’s’ below.

CE
c Please change hyphen in line below to minus sign.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 3

Table 1. Arithmetic circuit case studies in RRL

Circuits Definitions Lemmas Time(Secs)

Ripplecarry-Carrylookahead Adders (numeric repres.) 15 2 14.00
Ripplecarry(linear)-Ripplecarry (div.& conq.)Adders (numeric repres.) 23 3 17.73
Ripplecarry(linear)-Ripplecarry (div.& conq.)Adders (bit repres.) 21 3 14.40
Ripplecarry(linear) Adder (numeric repres.) 11 0 10.25
Ripplecarry(linear) Adder (bit repres.) 9 0 7.73
CarrySave Adder (bit repres.) 7 0 6.25
Linear Array Multiplier 12 0 2.48
Wallace Tree Multiplier 12 0 2.45
7-3 Multiplier 12 0 6.22
Radix 4 SRT Divider (abstract table) 0 0 900
Radix 4 SRT Divider (explicit table) 12 0 60

proving systems including PVS, Nqthm, HOL, SPIKE-
AC, Clam-Oyster. However, verification efforts for the
ripple-carry adder with a divide-and-conquer representa-
tion and the carry-lookahead adder have been very few,
perhaps because these circuits are complex. Most verifi-
cation efforts involving the carry-lookahead adder have
been done in the context of verifying different forms of
ALUs and processors. In [49] and [1], the verification
of a parameterized ALU is reported using Nqthm and
the HOL system respectively. The correctness proof de-
scribed in [49] requires around 22 user-suggested interme-
diate lemmas to establish the correctness of the ALUwith
respect to addition.

In [7], Brock et al., describe the use of Nqthm for
a comprehensive case study on the verification of the
FM9001 microprocessor that includes a proof estab-
lishing the equivalence of a carry-lookahead adder and
a ripple-carry adder. The proof is rather involved, using
a number of built-in library functions and requires signifi-
cant user intervention. In many of these proofs, the user
has to explicitly provide the induction scheme.

In [29] we discussed the correctness proofs of several
adder circuits including ripple-carry and carry-lookahead
adders using RRL. As described in the table above, the
correctness proof of the ripple-carry adder can be estab-
lished automatically in RRL. The correctness of a carry-
lookahead adder is done by exhibiting its equivalence to
a ripple-carry adder. This requires only two intermediate
lemmas. The carry-lookahead scheme used by us [29] is
regular and is similar to the lookahead scheme propagate-
generate scheme reported in [7].

Fixed size adder circuits are easily verified using BDD-
based techniques. This is typically done by specifying
both the behavior of the adders and the circuit in terms
of Boolean functions and checking for the equivalence of
these functions.

Unlike adder circuits, verification efforts involving
multiplier circuits have been relatively few. It is well
known that BDD-based techniques do not work well for
multiplier circuits. Bryant and Chen introduced a new
data structure multiplicative binary moment diagram
(BMD) for modeling the functionality of circuits in terms

of data at the word level [9]. Using this approach, a num-
ber of integer multiplier designs with word sizes up to 256
bits have been verified. However, such verifications are
not fully automatic as stated in [9].

Our approach for verifying multiplier circuits is simi-
lar to the one suggested using BMDs in the sense that
the circuit is decomposed into two components, and the
number-theoretic correctness of the individual compo-
nents is established. The overall proof then follows by
the composition of these two components. However, the
lemma generation heuristics in RRL automatically gen-
erate the required specification of these components, and
the composition is also automatically done based on the
circuit structure. Due to the generality afforded by theo-
rem provers like RRL, it was also possible to obtain
a common proof for a family of multiplier circuits of arbi-
trary size (parametric circuits) which would be infeasible
otherwise.

A linear array multiplier has also been verified using
the theorem prover PVS [42]. The proof is interactive and
requires user guidance.

2.2 Division circuits

Since Intel’s Pentium bug was reported in the media,
there has been a lot of interest in automated verification
of the SRT divider circuits [10, 13, 19, 36, 43].

For the SRT division circuit, Bryant [10] discussed
how BDDs can be used to perform a limited analysis of
some of the invariants. As reported in [43], Bryant had to
construct a checker-circuit much larger than the verified
circuit to capture the specification of the verified circuit.

Taylor’s description of the SRT division circuit has
been formalized by [13, 19] using the languages of Maple,
a computer algebra system, and Analytica, a prover built
over Mathematica, another commercially available com-
puter algebra system. A correctness proof of the SRT
divider circuit was then done using Analytica. The main
feature of the proof was an abstraction of the quotient
selection table using the six boundary value predicates.
This abstraction had to be manually provided. The proof

mMS ID: STTTN032

31 May 2000 14:59 CET

4 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

of invariants using this intensional representation of quo-
tient selection table involves reasoning about inequali-
ties, which can become quite tedious and involved. Even
though it is claimed in [13] that the proof is “fully auto-
matic” (p. 111 in [13]), the proof (especially, the proof of
the second invariant regarding the boundedness of partial
remainders) had to be decomposed manually and the two
assumptions had to be discharged manually.

Our first proof attempt of SRT division discussed
in [24] was essentially an exercise to determine how much
of the Analytica proof [13] could be done automatically
by RRL without having to use any symbolic computation
algorithms of computer algebra systems. We mimicked
the proof in [13] but by making data dependency of var-
ious circuit components explicit on different data paths,
as well as by identifying different assumptions made in
the proof reported in [13]. Much to our surprise, once
we succeeded in translating the Analytica specification
to RRL’s equational language (which, by the way, was
the most nontrivial part of this proof), RRL was able
to find proofs of all the formulas (the first invariant and
the second invariant with the assumptions, as well as the
discharging of assumptions) automatically, without any
interaction.

In [31], we gave another proof of the SRT division
circuit using an explicit representation of the quotient
digit selection table, thus getting rid of an aspect of the
specification development where human guidance is used
for abstracting table entries as predicates. Further, since
the abstract representation of the quotient selection table
using boundary value predicates in [13, 24] just consid-
ers the minimum and maximum values of a partial re-
mainder for every quotient digit, thus losing information
on other relations among entries, it is possible to certify
erroneous tables correctly. Even though the proof using
explicit table representation has nearly 1536 subcases in
contrast to 96 subcases in the proof in [24], the proof of
each subcase is much easier and a lot quicker to obtain,
as a subformula typically involves numeric constants that
can be easily simplified.

During the course of this proof, we observed that the
proofs of many of the subgoals share a common struc-
ture. We have described how this commonality can be
automatically exploited in the theorem prover RRL by
formalizing tables as a special data type and by exploiting
the sparsity of the quotient digit selection table in SRT
division. This leads to a compact proof with only 12 top-
level cases.

The proof reported in [36, 43] using the PVS system
is more general than the above proofs of the SRT divi-
sion circuit. It includes a general theory of SRT division
for arbitrary radix r and an arbitrary redundant quo-
tient digit range [−a, a]. The theory is instantiated for the
radix 4 SRT division. The specification is developed with
considerable human ingenuity, and the resulting proof is
manually driven, even though parts of the proof can be
done automatically using previously developed PVS tac-

tics. As reported in [43], the correctness proof of the table
implementation itself took 3 h of cpu time, with the whole
proof taking much longer even with user’s help.

Miner and Leathrum’s work [36] generalizes the proof
in [43] to IEEE floating point numbers and establishes
the correctness of an IEEE compliant SRT division al-
gorithm. Moore et al. [35] reported a proof of correct-
ness of the kernel of a microcoded floating point division
algorithm implemented in AMD’s 5K86 processor. The
proof is done CE

d using ACL2, a descendant of Boyer
and Moore’s prover. No claim is made about making the
proof automatic, but rather the main emphasis is on for-
malizing the IEEE floating point arithmetic to verify the
division algorithm based on Newton-Raphson’s method.

3 Rewrite rule laboratory

The theorem prover rewrite rule laboratory (RRL) sup-
ports equational and inductive reasoning using rewrite
techniques. The specification language of RRL is equa-
tional, with support for defining abstract data types using
constructors. RRL transforms its input into equations
and conditional equations to be universally quantified.
For instance, circuits and their behavioral specifications
are transformed as equations and conditional equations.
Definitions are distinguished from properties (lemmas)
using := for definitions and == for properties to stand for
the equality symbol. The correctness of circuit descrip-
tions is established by proving various properties about
these descriptions, and showing that they meet the be-
havioral specifications.

RRL is different in its design philosophy from most
proof checkers such as PVS, HOL, Isabelle, NUPRL, LP,
in the sense it attempts to perform most inferences auto-
matically without user guidance. In this sense, it is closer
in spirit to the Otter and EQP provers developed at Ar-
gonne National Laboratory. Many proofs in RRL can be
generated automatically; RRL can be used in such cases
as a push-button theorem prover. In fact, that is how
we typically use RRL for finding proofs, starting without
having any clue about how a proof can be done by hand.

RRL has built-in heuristics for:

1. Orienting equations into terminating rewrite rules
2. Identifying the next rewrite rule to apply for simplifi-

cation, and for that, determining the instantiation of
the free variables, and discharging conditions, if any,
of the rewrite rule

3. Invoking decision procedures for numbers (quantifier-
free Presburger arithmetic), bits, data types with free
constructors, and propositional logic

4. Selecting the next inference rule
5. Automatic generation of case analysis
6. Choosing induction schemes based on the definitions

of function symbols appearing in a conjecture and in-
teraction among these definitions

CE
d Ref cite for Boyer and Moore.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 5

7. Generating intermediate lemmas needed
8. Automatic backtracking to try an alternative proof at-

tempt when one proof attempt fails.

Much like Boyer andMoore’s theorem proverNqthm [5]
all the heuristics are applied in the same order using the
same strategy in RRL.

The user is thus relieved of the task of having to de-
termine the sequence in which rewrite rules should be ap-
plied, when decision procedures should be invoked, how
rewrite rules should be instantiated, when induction is
performed, variables to be used for induction, and what
induction scheme should be used. Below, we briefly re-
view some of these heuristics.

Each rewrite rule used by RRL must be terminating,
which is ensured by an algorithm implementing a well-
founded reduction ordering, called lexicographic recur-
sive path ordering, for comparing terms based on prece-
dence relations among function symbols [16]. It is possible
to override this feature of RRL but then there is no guar-
antee that simplification using manually-oriented rules
terminates. Terminating rewrite rules are automatically
used for simplification as well as for constructing induc-
tion schemes for mechanizing proofs by induction.

Simplification with respect to a context (called con-
textual rewriting) is the main inference mechanism used
by RRL. The simplification algorithm in RRL automat-
ically determines the applicable rewrite rule on a given
conjecture. This is done by first determining the possible
instantiation for the variables in the rewrite rule, and
then ensuring that the conditions in the rewrite rule, if
any, are satisfied. Discharging of conditions is done taking
into account the context of the formula being simplified
and using other rewrite rules and the decision procedures
which are tightly integrated with rewriting.

RRL attempts to prove a conjecture by normalizing
its two sides using contextual rewriting and the decision
procedures for discharging any hypotheses, if any, and
checking whether the normal forms of the two sides of
the conjecture are identical. If it succeeds, then the proof
is said to have been obtained using equational reasoning
and decision procedures.

If an equation cannot be proved by simplification,
then a proof by induction is attempted. Variable(s) to
perform induction on CE

e the induction scheme are au-
tomatically selected using heuristics implemented to sup-
port the cover set method. The definitions of function
symbols appearing in a conjecture are analyzed. An in-
duction scheme is generated from the definition of one
(or more) function symbol(s) selected, based on well-
founded ordering used to establish termination of these
function definitions. This scheme is often successful in de-
termining the truth-value of the conjecture. The conjec-
ture would be split into many cases, each corresponding
to a subgoal to be proved in order to prove the original
conjecture. Each subgoal is then tried just like the ori-
ginal conjecture.

If a proof attempt based on a particular induction
scheme does not lead to a counter-example, but also does
not succeed, RRL automatically backtracks to pick an-
other induction scheme (and perhaps different induction
variables) for attempting the conjecture. Additional in-
ductions may be necessary to establish the induction sub-
goals. The depth of permissible inductions is provided as
a parameter inRRL that can be modified by the user. The
proof attempt of a subgoal fails once the number of in-
ductions exceed this depth. The number of inductions in
establishing a subgoal can be iteratively increased until
a diverging pattern and/or need for additional lemmas is
apparent.

RRL supports a variety of heuristics for automati-
cally generating intermediate lemmas based on formulas
generated during a proof attempt. We consider the in-
termediate lemma speculation research to be the most
critical for automating proofs by induction. RRL imple-
ments a simple heuristic for conjecture speculation by
abstracting common subexpressions appearing in a con-
jecture to new variables using certain criteria as well as
by weakening a condition in a conditional conjecture. An-
other heuristic found especially useful for proving proper-
ties of tail-recursive definitions (which is indeed the case
for arithmetic circuits including adders and multipliers)
is that of generating bridge lemmas which facilitate the
use of induction hypotheses in a proof attempt of an at-
tempted valid conjecture. A constraint-based approach
is CE

f developed to speculate about intermediate con-
jectures as well as guess instantiations for non-induction
variables in a conjecture [30, 46]. In verifying properties
of arithmetic circuits, some of the intermediate lemmas
needed can be generated from the circuit structure and
component specifications, as illustrated later for multi-
plier circuits.

Lemmas which cannot be generated automatically by
RRL must be provided by the user. This is where RRL
needs guidance from the user.

When a proof attempt fails and a proof cannot be
found automatically, the transcript is looked at, which
may reveal a variety of things. The conjecture may have
to be modified, a definition may have to be fixed, or per-
haps, an intermediate lemma needs to be proposed.

Below, we list the main features of RRL found useful
for hardware verification. These features are illustrated
in subsequent sections where different arithmetic circuits
are discussed in more detail.

3.1 Useful features of RRL for arithmetic circuit
verification

Four major features seemed to have contributed to RRL
being effective in our mechanization attempts in verifying
properties of arithmetic circuits:

1. Fast and automatic contextual rewriting and reason-
ing about equality

CE
e The word ’and’ eliminated in line below, OK?

CE
f The word ’about’ added in line below, OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

6 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

2. Decision procedures for numbers and freely built re-
cursive data structures such as lists and sequences,
and their effective integration with contextual re-
writing

3. The cover set method for mechanization of proofs by
induction, and its integration with contextual rewrit-
ing and decision procedures

4. Intermediate lemma speculation.

In Sect. 4 we review contextual rewriting, its inter-
action with decision procedures for equality on ground
terms and quantifier-free theory of numbers, as well as
the cover set method for mechanizing proofs by induction.
A ripple-carry adder is used for illustrations.

Section 5 focuses on specification and verification of
a family of multiplier circuits. It discusses how a theorem
prover such as RRL can be used for generic verification
of a family of multipliers of arbitrary width, implement-
ing the same generic algorithm but using components of
different numbers of signals (adding a partial sum vs 3
partial sums vs 7 partial sums), and using different com-
ponents realizing the same behavior.

Section 6 provides details about intermediate lemma
speculation heuristics using examples from adder and
multiplier circuits.

Section 7 is concerned with the handling of large ta-
bles and theextensive case analysis often needed in ver-
ifying circuits including radix-4 SRT division circuits,
that use tables implemented as PLAs (programmable
logic arrays).

4 Inference mechanisms: contextual rewriting,
decision procedures, and cover-set induction

In this section, we discuss two key primitive inference
mechanisms of RRL which turned out to be the most
effective in verifying properties of arithmetic hardware
circuits. We first review simple contextual rewriting (in-
tegrated with a decision procedure for reasoning about
Horn clauses); then we show its interaction and integra-
tion with a decision procedure for equality on ground
terms. Finally, it is shown how a decision procedure for
a quantifier-free theory of numbers is integrated with con-
textual rewriting. Features/properties of a decision pro-
cedure for tight integration with conditional rewriting are
described.

Later, we discuss the cover set method for generating
induction schemes as implemented in RRL, and contrast
it with the structural induction method. We also discuss
heuristics for choosing an appropriate induction scheme.

The examples of ripple-carry adder circuits are used
for illustration.

4.1 Contextual rewriting

Contextual rewriting is the main primitive inference in
RRL. To establish a conjecture, which is typically a con-
ditional equation (or a clause), it is first simplified with

the help of existing definitions and already proved lem-
mas using contextual rewriting. The proof is attempted
by contradiction. The conjecture is negated and free vari-
ables are skolemized (i.e., replaced by constants). The
negated conjecture, which is a conjunction of subgoals,
is simplified by contextual rewriting, with an attempt to
derive a contradiction in the form of a false= true or
a literal conjuncted with its negation. Tautology of the
form s= s is deleted from the conjunction of subgoals. Be-
low, we show how contextual rewriting is different from
rewriting.

Consider a goal, which is a conjunction of subgoals

L1∧· · ·∧Lk,

where each Li, for simplicity, is either a literal of the form
s= t, or (s= t) = false. A (conditional) rewrite rule

l→ r if cond,

where cond is also a conjunction of literals c1∧· · ·∧ cj , is
said to simplify the goal at subgoal Li, to

L1∧· · ·∧Li−1∧Li[p→ σ(r)]∧Li+1 ∧· · ·Lk,

if for some position p in Li, there exists a substitution σ
such that

– Li/p1 = σ(l), and
– each of σ(cm) (recursively) simplifies to true assuming
the context L1∧· · · ∧Li−1 ∧Li+1 ∧· · ·Lk (i.e., every
subgoal other than the subgoalLi being simplified can
be assumed to be true).

In case the rewrite rule is unconditional (i.e., there is no
cond), then the above definition simplifies to checking
whether the subterm of Li at p matches the left side l of
the unconditional rewrite rule.

The reason such simplification is called contextual
rewriting (in contrast to rewriting) is because the re-
maining subgoals in the goal are used as context and are
assumed to be true while determining whether the condi-
tions of the rewrite rule are true. This is illustrated using
a simple example below.

Consider a simple conditional rewrite rule

p(x)→ true if (q(x)∧ x �= c).

Given a goal

p(a)∧ q(a)∧a �= c,

p(a) by itself cannot be rewritten unless other subgoals
in the goal are also used as its context. With the con-
text {q(a), a �= c}, p(a) can be rewritten using the above
rewrite rule to true, simplifying the goal to q(a)∧a �= c,
since the condition of the rewrite rule is satisfied by the
context.

1 Li/p denotes the subterm of Li at position p.

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 7

As the reader will notice, this is a powerful inference
mechanism since it recursively involves establishing the
conditions under the context surrounding the subgoal Li.
As discussed in [52], it subsumes many inference mechan-
isms in a first-order theorem prover based on resolution,
such as demodulation, subsumption and tautology dele-
tion. The completeness of the inference mechanism vis-
à-vis a simplification mechanism in which the simplified
goal can replace the original goal is also proved there.
The power of contextual rewriting comes at a price: if
some condition in cond, when appropriately instantiated,
cannot be established (i.e., simplified to true), then the
particular rule being considered is not applicable. So, it
is important for practical applications that instantiations
are not unnecessarily tried.

So far, we have discussed contextual rewriting in its
simplest form. Below, we discuss how equality subgoals
in a goal can be used to rewrite other subgoals, before
attempting contextual rewriting on the conjecture. In
a later section, we discuss how decision procedures can be
integrated with contextual rewriting, using the example
of quantifier-free theory of Presburger arithmetic.

4.2 Role of congruence closure in contextual rewriting

In the above definition of contextual rewriting, the con-
text of a subgoalLi is not used to simplify Li itself. In this
sense, literals in a goal are not normalized with respect
to each other. It may be the case that Li does not match
against the left side of a conditional rewrite rule, but if
other equality subgoals in the context are used to rewrite
Li, then the rewritten subgoal could have a successful
match. This interaction between equality reasoning and
contextual rewriting can be achieved by integrating the
constant congruence closure mechanism with contextual
rewriting. In a later section, we show how a decision pro-
cedure for interpreted symbols other than equality can be
used for normalizing a goal, much like the constant con-
gruence closure algorithm.

Instead of checking whether Li has a subterm at pos-
ition p which matches the left side of a rewrite rule l→
r if cond, one can check whether Li/p=c σ(l), where =c
stands for the congruence closure generated by equal-
ity literals in the context (an alternative could be some
L′i/p= σ(l), where L′i =c Li). Such a check can be pro-
hibitively expensive (it is NP-hard), so a compromise is
arrived in the implementation of contextual rewriting in
RRL. The equality literals in the context are used to
compute a canonical rewrite system (which is equiva-
lent to computing (ground) congruence closure gener-
ating canonical forms). The canonical rewrite system is
then used to normalize Li (as well as other subgoals in
the context). If a contradiction is established this way,
the goal is unsatisfiable; trivial literals of the form t = t
are dropped from the normalized goal using tautology
deletion. Otherwise, the normalized subgoal L′i is then

matched against the left side of a rewrite rule, as illus-
trated below using a simple example.

Consider again the rewrite rule discussed above:

p(x)→ true if (q(x)∧ x �= c).

Given another related goal

p(a)∧ q(b)∧a= b∧a �= c.

p(a) cannot be rewritten using the above rule by sim-
ple rewriting or contextual rewriting since the condition
q(a)∧a �= c cannot be satisfied. However, if the subgoal
a= b is used to simplify the rest of the subgoals in the goal
using congruence closure, we get the sightly modified goal

p(b)∧ q(b)∧a= b∧ b �= c.

Using the substitution x→ b on the rewrite rule, p(b) is
rewritten to true by contextual rewriting. The goal sim-
plifies to:

true∧ q(b)∧a= b∧ b �= c.

The above analysis assumed a� b, but a similar analysis
works if b�a, resulting in a different simplified goal:

q(a)∧a= b∧a �= c.

For computing (ground) congruence closure, a sim-
ple naive algorithm for ground completion can be used;
for an efficient implementation, the reader may consider
Shostak’s algorithm implemented as a completion pro-
cedure as described in [25]. Special care must be taken to
handle equality literals of the form x= t, where x is a vari-
able. If t does not include an occurrence of x, then this
equality is oriented as x→ t, leading to elimination of x.
This heuristic turns out to be very useful for simplifica-
tion purposes.

4.3 Integration of a decision procedure with contextual
rewriting

For mechanizing verification of properties of arithmetic
circuits, two data structures, numbers and bit vectors,
play an important role. In the previous section, it was dis-
cussed how equality on ground terms can be integrated
with contextual rewriting. In this section, we discuss how
to extend contextual rewriting further so that semantic
information about a data structure encoded in a deci-
sion procedure can be efficiently exploited, leading to in-
creased automation. Function symbols in the theory of
the data structure being considered will be called inter-
preted, whereas other symbols are assumed to be uninter-
preted.

In general, the requirements on a decision procedure
for integration with contextual rewriting are:

mMS ID: STTTN032

31 May 2000 14:59 CET

8 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

– The decision procedure should be able to detect un-
satisfiability of a quantifier-free formula with uninter-
preted symbols in the theory

– Implicit equalities, if any, on terms can be deduced.

Even though the decision procedure should be sound and
complete for both the requirements, an incomplete but
sound procedure can still be useful.

We will illustrate this integration of a decision pro-
cedure into contextual rewriting using the example of the
quantifier-free theory of Presburger arithmetic, involving
0, s,+ and ≤,= for the data structure of numbers; more
details can be found in [26].

Consider again a goal, which is a conjunction of sub-
goals L1∧· · ·∧Lk, with Li being the focus subgoal being
considered for simplification. It is assumed that literals
in the goal include symbols of Presburger arithmetic. Re-
call that L1∧· · · ∧Li−1 ∧Li+1 · · · ∧Lk serve as the con-
text of Li.

Above, it was shown how the context can not only be
used to discharge conditions in rewrite rules used for sim-
plification, but equality literals in the context can also
be used to simplify the focused subgoal Li using ground
congruence closure. Now the decision procedure for the
theory of the data structure can be used on the context to
simplify the focused subgoal Li for determining the appli-
cability of a rewrite rule, as well as for simplification.

Using a decision procedure for a quantifier-free theory
of numbers as an example, first it can be checked whether
the context of Li is unsatisfiable; if so, then the goal is un-
satisfiable. Otherwise, if not, then additional equalities,
if any, can be deduced using the decision procedure from
the context, which can then be used by the constant con-
gruence closure algorithm to simplify the context as well
as Li. When such simplification using the decision pro-
cedure for numbers and the constant congruence relation
stabilizes (i.e., does not yield any further simplification),
then rewrite rules are analyzed for possible application.

The applicability of a particular rewrite rule can be
determined in two possible ways.Matching of the left side
of a rewrite rule against a subterm of a subgoal can be
done with respect to the theory of the data structure (also
known as E-matching in the literature) which, in gen-
eral, is quite expensive. An alternative is to analyze the
left side of a rewrite rule and Li to determine whether it
may be useful to properly instantiate the rewrite rule for
interaction with Li. A useful heuristic is based on a well-
founded ordering on terms. If the outermost symbol of the
left side of a rule is an interpreted symbol, and there is
a maximal subterm of the left side that matches a sub-
term in Li by a substitution σ, then augment the goal
with the instantiation of the rule using σ provided the
condition of the rule, when appropriately instantiated, is
satisfied. Otherwise, if the outermost symbol of the left
side of a rule is an uninterpreted symbol, then check for
a match in Li of the whole left side.

Suppose the following conjecture over the integers is
attempted:

(p(x)∧(x≤max(x, y))∧ (z ≤ f(max(x, y)))

∧(0<min(x, y))∧ (max(x, y)≤ x))

⊃ (z < g(x)+y).

Assume that among other rules, the following rewrite
rules formax, f, g, p are already in the data base.

1. min(x, y)→ y if max(x, y) = x,
2. f(x)≤ g(x)→ true if p(x).

When the conjecture is attempted using RRL, it is
first negated and skolemized to give:

p(A)∧(A≤max(A,B))∧ (L≤ f(max(A,B)))

∧(0<min(A,B))∧ (max(A,B) ≤A))

∧¬(L < g(A)+B).

The resulting goal is simplified. Equality literals in the
goal are used to generate a canonical rewrite system that
can then be used for simplifying all literals in the subgoal.
Since the only equality literal is p(A), nothing happens on
this account. Now the decision procedure for numbers is
invoked on the linear literals (those involving operations
on numbers) to check for unsatisfiability or, if satisfiable,
deducing implicit equalities. (A literal is linear if its atom
is an inequality (with ≤) or an equality.) This leads to the
generation of the equality literal max(A,B) = A, which
can, in turn, be used to modify the congruence relation
represented as a canonical rewrite system. This in turn
may further simplify the goal; in this case that indeed
happens, as max(A,B) is simplified to A in other liter-
als. The resulting subgoal, after tautology deletion (such
as A≤A), is then:

p(A)∧(A=max(A,B))∧ (L≤ f(A))

∧(0<min(A,B))∧¬(L < g(A)+B).

Now rule 1 is applicable on literal (0 < min(A,B))
since the condition max(A,B) = A of the instantiated
rule is in the context of (0 <min(A,B)). The resulting
goal is:

p(A)∧(A=max(A,B))∧ (L≤ f(A))∧ (0<B)

∧¬(L < g(A)+B)∧ (min(A,B) =B).

The new constant congruence relation, as generated
by the equality literals does not lead to any simplification,
nor does the arithmetic decision procedure detect any un-
satisfiability or new equality literals.

Now we illustrate another interesting aspect of the
integration of the decision procedure with contextual
rewriting. The second rule has the linear literal f(x) ≤

CE
g ’and’ added in line below, OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 9

g(x) (since its outermost symbol is ≤) as its left side,
in which the maximal term is CEg f(x), assuming f � g
in the precedence used to order terms for termination.
The literal L ≤ f(A) in the simplified goal has a sub-
term that can match the maximal term in the left side of
a linear rule. Given that the condition of this rule can be
discharged from the context, rewriting now means con-
joining the literal from the instantiated rule to the goal,
giving:

p(A)∧(A=max(A,B))∧ (L≤ f(A))∧ (0<B)

∧¬(L < g(A)+B)∧

(min(A,B) =B)∧ (f(A)≤ g(A)).

The arithmetic decision procedure now detects a con-
tradiction, thus showing the goal to be unsatisfiable, im-
plying that the original conjecture is proved from the
two rules along with the theory of equality, propositional
calculus and the theory of numbers. Note that without
instantiating rule 2 and using it, it would not have been
possible to establish the goal above, even though no in-
stance of the left side of rule 2 appears in the original goal
or its intermediate simplified forms.

The reader will notice the interaction between the
congruence closure and the arithmetic decision proced-
ure through the deduction of implicit equalities, and be-
tween the arithmetic decision procedure and rewriting for
discharging conditions as well as for deducing useful in-
stances of rewrite rules for simplification.

Rewrite rules in which the outermost symbol of the
left side is a function on the data structure whose se-
mantics is being integrated (e.g., rule 2 above) using an
associated decision procedure,must be handled especially
for proper/tight integration. Applicability of such rules
can be tested by making weaker requirements – by re-
quiring that the maximal subterm with an uninterpreted
symbol in the left side (f(x) in the left side of rule 2),
not just the whole left side (f(x) ≤ g(x)), match against
a subterm (f(a)) in the conjecture. If so, the instance of
the rewrite rule thus generated can be augmented for fur-
ther deduction and analysis. As illustrated in the above
example, the left side of the rule does not have a match in
the conjecture. The instance of the rule obtained from the
maximal subtermmatch, f(a)≤ g(a) if p(a), is simplified
to f(a)≤ g(a) and added to the conjecture.

The approach for integrating a decision procedure
with rewrite rules as implemented in RRL is influenced
by Boyer and Moore’s work [4] in integrating Fourier’s
decision procedure in their prover. The main distinc-
tion is that whereas Boyer and Moore convert linear
equalities into a conjunction of inequalities, equalities
are kept as they are. Additional equalities are deduced
from linear inequalities, if any, so that they can be used
as rewrite rules for discharging hypotheses/conditions in
conditional rewrite rules using ground completion imple-
menting the congruence closure. Even though the proced-

ure for checking unsatisfiability of linear inequalities over
integers (as well as for deducing equalities) is incomplete,
it has been found quite effective in usingRRL for mechan-
ical verification of arithmetic circuits.

4.4 Mechanizing induction

One major distinction between the use of RRL and BDD-
based tools for verifying properties of arithmetic circuits
is that RRL can be used to verify properties of circuits
of arbitrary widths. This is in contrast to BDD-based ap-
proaches where proofs of only fixed data path widths can
be done. Even for similar circuits with different data path
widths, proofs must be redone using BDD-based tools as
these circuits represent different Boolean formulas and
hence have different behavior. In contrast, a proof by in-
duction in RRL can handle a potentially unbounded fam-
ily of related circuits in one shot.

Unlike control dominated hardware circuits, the be-
havior of arithmetic circuits can generally be succinctly
expressed in terms of number-theoretic properties. Such
properties are typically established using induction. In
contrast, in BDD-based tools, the properties of arith-
metic circuits are expressed using Boolean functions. The
correctness of the circuit is established by exhibiting the
input-output behavioral equivalence of the two Boolean
functions – one representing the circuit and the other rep-
resenting the property.

Methods for mechanizing induction thus play a criti-
cal role in automatically proving number-theoretic prop-
erties of arbitrary width arithmetic circuits. In this sec-
tion, we review the cover set induction method, the main
technique for generating induction schemes in RRL. We
discuss how induction schemes are automatically gener-
ated from terminating function definitions. This is illus-
trated by proving number-theoretic properties of an ar-
bitrary width ripple-carry adder circuit. Later we discuss
heuristics implemented in the theorem prover for choos-
ing an appropriate induction scheme, and contrast the
cover set induction approach with the structural induc-
tion method.

Cover set induction method

A proof of a given conjecture of the form l = r if cond, is
always first equationally attempted inRRL by contextual
rewriting and decision procedures. If a conjecture cannot
be established or refuted by equational reasoning, then
RRL automatically attempts to prove the simplified con-
jecture by induction.

RRL uses the cover set inductionmethod for automat-
ing well-founded induction. The cover set method was
proposed in [53], and it has been successfully used to
prove many nontrivial theorems by induction on num-
bers, lists, arrays and other recursive data structures.
Along with contextual rewriting, this is another powerful
inference mechanism supported in RRL.

mMS ID: STTTN032

31 May 2000 14:59 CET

10 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

In contrast to structural induction, there is no fixed
inductive inference rule for a data type in the cover set
induction approach. Different function definitions on the
same data type can lead to different inductive inference
rules for the same data type.

The cover set method automatically generates in-
duction schemes for a given conjecture. The induction
schemes are generated using complete definitions of func-
tions given as terminating rewrite rules. The induction
subgoals are automatically generated from the induction
scheme.We describe the main steps of the cover set induc-
tion method below:

1. Generating cover sets from terminating function def-
initions: the definitions of function symbols are first
preprocessed by RRL, oriented into terminating rules
and are analyzed for completeness using several built-
in heuristics. A cover set is generated from each com-
plete terminating function definition.
A cover set associated with a definition of a func-
tion f is a finite set of triples. There is one triple
for each rule in the definition. The first element of
the triple is derived from the left-hand side of the
rule. The second element of the triple is a set whose
elements are derived from the recursive calls to f
on the right-hand side of the rule. The last elem-
ent of the triple is derived from the conditions gov-
erning the rule. For a rule l→ r if cond, where l =
f(s1, · · · , sn) and f(si1, · · · , s

i
n) is the i

th recursive call
to f in the right side r, the corresponding triple is
〈〈s1, · · · , sn〉, {· · · , 〈si1, · · · , s

i
n〉, · · ·}, cond〉.

The second and the third components of a cover set
triple are the empty set if there is no recursive call to
f in r and if there is no condition cond associated with
the rule.

2. Generating subgoals using induction schemes: an in-
duction scheme is generated from a term f(x1, · · · , xn)
appearing in the conjecture using the cover set of f .
An induction scheme is a finite set of induction cases.
There is one induction induction case corresponding
to each cover set triple. Each induction case gener-
ates an induction subgoal which must be established
in order to prove the given conjecture. Each induc-
tion case is a triple whose elements are generated from
the corresponding elements in the cover set triple. The
first element of the triple is the substitution σc, the
second element is the set of substitutions {θi} and the
last element is the condition governing the induction
subgoal condc. The substitution σc is used to gener-
ate the induction conclusion of the induction subgoal,
each substitution in {θi} is used to generate an induc-
tion hypothesis for the subgoal.

For an induction scheme based on a cover set to be
sound, a cover set must have two properties. First, it must
be complete i.e., for each induction variable, all possible
values of a data type must be considered. Second, in the
induction step, the substitutions for generating induction

hypotheses must be lower in a well-founded order than
the substitutions in the conclusion. The second property
is automatically ensured in RRL since induction schemes
are generated from terminating definitions. To ensure
the first property, RRL supports algorithms for checking
completeness of function definitions given as terminating
rewrite rules.

The cover set method has been extensively used in all
our arithmetic circuit verification efforts. The working of
the cover set method on a simple example of a parameter-
ized ripple-carry adder is described in detail below.

Specifying a ripple-carry adder

A ripple-carry adder is a simple hardware circuit that im-
plements the conventional method of adding two binary
numbers. The inputs to a ripple-carry adder of size n are
two bit vectors of size n and an initial carry bit. The out-
puts is a bit vector of size n+1. Bits are added one by one
from the least significant to the most significant, with the
carry from the previous stage as input, and carry output
at the current stage to serve as the input to the next stage.

Bit vectors can be modeled inRRL by using lists freely
constructed with nil and cons. The elements of lists are
bits modeled in RRL by an enumerated type with con-
structors 0 and 1.

A parameterized ripple-carry adder using lists can be
specified in RRL as follows:

1. rca(x, nil, nil) := cons(x, nil),

2. rca(x,cons(y1,nil),cons(z1,nil)) :=

cons(mod2(x,y1,z1), cons(half(x,y1,z1),nil)),

3. rca(x,cons(y1,y),cons(z1,z)) :=

cons(mod2(x,y1,z1), rca(half(x,y1,z1), y, z))

if {len(y) = len(z), not(y = nil),

not(z = nil)}.

The first equation defines a ripple-carry adder of size 0
to be a wire propagating the input carry bit. The output
carry bit is tied to value 0. The second equation defines
a ripple-carry adder of size 1 to be a full adder. A full
adder takes three bits as inputs and produces a lists with
two bits as its output. The first bit in the list corresponds
to the sum obtained by adding the three input bits. The
other corresponds to the carry obtained by the addition.
The function mod2 in the equation is an abbreviation for
the sum computation of a full adder. It stands CEh for the
bit-level operation xor. The function half is an abbrevi-
ation for the carry computation of a full adder. half(x,
x1, x2) stands for the bit-level operation (x and x1) or

(x and x2) or (x1 and x2).
The third equation defines an adder of size n recur-

sively in terms of an adder of size n - 1 cascaded with a full
adder. The full adder is used for adding the initial carry
bit with the least significant bits of the two input bit vec-
tors. The carry bit from the full adder is taken to be the
initial carry bit for the ripple-carry adder of size n−1.
The function len above computes the length of a list.

CE
h A hyphen inserted between ’bit’ and ’level’ twice in para-

graph below. OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 11

These equations are oriented into terminating rules
using lexicographic recursive path ordering implemented
in RRL. By associating a right-left status with the func-
tion symbol rca (i.e., using a lexicographic ordering from
right to left among the arguments of the function sym-
bol rca), the recursive call rca(half(x, y1, z1), y, z)

is smaller than the left-hand side rca(x, cons(y1, y),

cons(z1, z)) in a well-founded order on terms induced
by a precedence relation on function symbols. A cover set
is generated from the above definition of rca, which is
then used to generate an induction scheme for conjectures
in which rca appears. Induction hypotheses are gener-
ated from the smaller recursive call to rca on the right
side of the definition.

Showing that ripple-carry adder implements addition

A proof of correctness of the ripple-carry adder rca (i.e.,
rca implements addition on bit representation of num-
bers) is mechanically generated by RRL. It is demon-
strated that given any two bit vectors y and z and an
initial carry bit x, the natural number derived from the
output pair obtained as a result of the ripple carry add-
ition of x and the bit vectors y and z is the same as the
sum of the numbers corresponding to y and z along with
x. A functions bton is defined to convert linear lists of bits
into numbers.

bton(nil) := 0,

bton(cons(x, y)) := x + (2 * bton(y)).

Note that the bit x is overloaded and treated as a num-
ber in the above definition. Such overloading of bits and
numbers is assumed in other function definitions as well.

The theorem expressing the correctness of the ripple-
carry adder is:

C1: x + bton(y) + bton(z) == bton(rca(x, y, z))

if len(y) = len(z),

where + is addition on natural numbers.
The theorem C1 is first attempted byRRL using equa-

tional reasoning using contextual rewriting and the linear
arithmetic decision procedure. Since C1 cannot be estab-
lished equationally, RRL automatically invokes the cover
set induction to prove C1.

The cover sets for all the non-constructor function
symbols are precomputed by RRL. In this case, RRL pre-
computes the cover sets of the function symbols +, len,

bton, rca. For example, the cover set that is precom-
puted for the function symbol rca is

[<<x, nil, nil>, {}, {}>,

<<x, cons(y, nil)>, cons(z, nil>>, {}, {}>,

<<x, cons(y1, y), cons(z1, z)>,

{<half(x, y1, z1), y, z>},

{len(cons(y1, y)) = len(cons(z1, z)),

not(y = nil), not(z = nil)}}>].

The first two triples above are derived from the first
two equations defining rca for the empty and singleton
bit vector inputs. The last triple is derived from the third
equation defining rca recursively for bit vectors of size
greater than 1. The first component of this triple comes
from the left side of the equation. The second compon-
ent is derived from the recursive call to rca on the right
side, and the third component is derived from the condi-
tion in third equation. The second component of the cover
set triple records distinct recursive calls.

In order to perform an inductive proof of C1, one of the
function symbols +, len, bton, rca appearing in C1 is
chosen. In this case, the heuristics in RRL pick the func-
tion symbol rca to perform induction.

The rewrite rule for rca defines rca for all the values
that the formula C1 is being CE

i proved (arbitrary carry
bit and equal length bit vectors)2.

The induction scheme for C1 is automatically gener-
ated by RRL from the subterm rca(x, y, z) in C1 by
using the cover set of rca:

Let P(x, y, z) be

bton(rca(x, y, z)) == (x + bton(y) + bton(z))

if {len(y) = len(z)}

Induction will be done on x, y, z in rca(x, y, z),

with the scheme:

[1] P(x, nil, nil).

[2] P(x, cons(x1, nil), cons(x2, nil)).

[3] P(x, cons(y1, y), cons(z1, z))

if {(len(y) = len(z), not(y = nil),

not(z = nil)),

P(half((x, y1, z1)), y, z)}.

Three induction subgoals are generated based on this
scheme. The first two subgoals correspond to the base
cases and the third goal is the induction step case.
The first induction subgoal,

[1] bton(rca(x, nil, nil)) == x + bton(nil) +

bton(nil) if {len(nil) = len(nil)},

reduces to true by the definitions of the function symbols
bton, rca and len.
The second subgoal,

[2] bton(rca(x,cons(x1,nil),cons(x2, nil))) ==

x + bton(cons(x1,nil)) + bton(cons(x2,nil))

if {len(cons(x1,nil)) = len(cons(x2,nil))},

simplifies by the definitions of rca, len and bton to:

mod2(x, x1, x2) + half(x, x1, x2) +

half(x, x1, x2) == x + x1 + x2.

This subgoal is proved by RRL by case analysis on the
values of the variables x, x1, x2.

2 Note that rca is not completely defined for all possible input
combinations. The equations define only cases where the bit CEj

vectors are of equal lengths. In such cases the cover set induction
method requires the C1 to be relativized to be proved only over
defined values [27]. The condition len(y) = len(z) in C1 provides
such a relativization.

CE
i Could the word ’proved’ be substituted with ’tested

for’in line below? Alternatively, another option might be
’..for all the values for which the formula..’above.

CE
j ’are’ added to line below. OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

12 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

The third subgoal [3] is

[3] bton(rca(x,cons(y1,y),cons(z1,z))) ==

x + bton(cons(y1,y)) + bton(cons(z1,z))) if

{(len(cons(y1, y)) = len(cons(z1, z))),

not(y = nil), not(z = nil),

(bton(rca(half(x, y1, z1), y, z)) =

(half(x, y1, z1) + bton(cons(y1, y)) +

bton(cons(z1, z)))) if len(y) = len(z)}

This subgoal is split into two intermediate subgoals by
contextual rewriting based on the combination of the
clauses. One of the intermediate subgoals generated is

[3.1] bton(rca(x,cons(y1,y),cons(z1,z))) ==

x + bton(cons(y1,y))+bton(cons(z1,z)) if

{len(cons(y1, y)) = len(cons(z1, z),

not(y = nil), not(z = nil),

not(len(y) = len(z))}.

Contextual rewriting of this subgoal with the definition
of len combined with the linear arithmetic procedure,
for the freeness of the successor function on numbers,
gives conditions len(y) = len(z) and not(len(y) =
len(z)). The subgoal is vacuously true due to contradic-
tory conditions.
The other subgoal generated from [3] is

[3.2] bton(rca(x,cons(y1,y),cons(z1,z))) ==

x + bton(cons(y1,y))+bton(cons(z1,z)) if

{len(cons(y1,y)) = len(cons(z1,z)),

not(y = nil), not(z = nil),

bton(rca(half((x,y1,z1)),y,z)) =

bton(y) + bton(z) + half(x, y1,z1))}

Note that the body of the above formula corresponds
to the induction conclusion and the final conjunct in
the condition corresponds to the induction hypothesis.
The conclusion is simplified by the definition of rca and
bton to,

[3.2.1] mod2(x, y1, z1) +

2 * bton(rca(half(x, y1, z1), y, z) ==

x + y1 + 2 * bton(y) + z1 + 2 * bton(z)

if {len(y) = len(z), not(y = nil),

not(z = nil)}

to which the hypothesis can be applied. The resulting for-
mula

[3.2.1.1] mod2(x, y1, z1) + 2 * bton(y) +

2 * bton(z) + 2 * half(x, y1, z1)) ==

x + y1 + 2 * bton(y) + z1 + 2 * bton(z)

if {len(y) = len(z), not(y = nil),

not(z = nil)},

is simplified by RRL by using linear arithmetic decision
procedure to,

[3.2.1.1.1] mod2(x, y1, z1) + half(x, y1, z1) +

half(x, y1, z1) == x + y1 + z1

if {len(y) = len(z), not(y = nil),

not(z = nil)},

which is proved by case analysis on the variables x, y1,

z1. The conditions in the above formula are actually
dropped by RRL since none of the variables in the condi-
tions occur in the body3.

All of the above steps in proving the formula [3.2] are
done using the combination of contextual rewriting and
the arithmetic decision procedure. Application of the hy-
pothesis is treated just like another instance of contextual
rewriting. A single application of contextual rewriting in-
tegrated with the arithmetic procedure produces the for-
mula [3.2.1.1.1] directly from the subgoal [3.2].

Choosing an appropriate induction scheme

The choice of an appropriate induction scheme is import-
ant for the success of a proof attempt by induction. For
a given conjecture, there are many possible alternative in-
duction schemes, corresponding to function symbols ap-
pearing in the conjecture. Further, a particular function
symbol may appear more than once in a given conjecture
with different variables as arguments. A choice among
these subterms corresponds to choosing different induc-
tion variables and leads to different subgoals.

For instance, for the conjecture C1,

x + bton(y) + bton(z) == bton(rca(x, y, z))

if len(y) = len(z).

There are three possible induction schemes based on
the function symbols bton, len and rca. For the schemes
based on len and bton either y or z could be chosen as
the induction variable. The induction scheme based on
rca uniquely determines both y and z as induction vari-
ables. A proof of C1 using the induction scheme suggested
by the function symbol rca was described in the previous
section.

Below, we first describe how the choice of the other
alternative induction schemes leads to unsuccessful proof
attempts. Then, we describe how such failures are avoided
by the heuristics implemented RRL for choosing the most
appropriate induction scheme and induction variables.

Consider proving C1 using the induction scheme sug-
gested by bton with y as the induction variable. Two
induction subgoals are generated for y = nil and y =

cons(u1, u).
The base case with y = nil simplifies to

C1.1: x + bton(z) == bton(rca(x, nil, z))

if len(z) = 0.

Since no further simplification is possible by contextual
rewriting and/or the decision procedures, the proof at-
tempt does not succeed.

In such a case, the formula is treated as an interme-
diate conjecture by RRL, and an inductive proof of this

3 This is one form of generalization that RRL supports. General-
ization and other forms of intermediate lemma generation support
in RRL are discussed in detail in the next section.

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 13

intermediate conjecture is attempted. An inductive proof
of C1.1 could be performed based on schemes derived
from the function symbols bton or len with the induc-
tion variable being z. An induction proof attempt based
on the function symbol bton leads to two subgoals with z

= nil and z = cons(v1, v)).
The base case with z = nil simplifies to

x == bton(rca(x, nil, nil)).

The above formula is reduced to true by the definitions of
rca, bton.
The induction step case with z = cons(v1, v) is easily
established since the condition 0 = len(cons(v1, v)) re-
duces to false using the definition of len and the linear
arithmetic decision procedure.

The formula C1.1 is thus an inductive theorem. Such
intermediate inductive theorems are oriented into rules
by RRL, and are added to CE

k the rule database. These
rules are used by RRL in subsequent as well other sub-
goals of the same proof. This is one way intermediate lem-
mas are generated, proved and stored by RRL. For fur-
ther details on intermediate lemma generation, the reader
can refer to the next section.

Coming back to the proof of C1, we now consider
the induction step case generated based on the induction
scheme based on the function symbol bton with the in-
duction variable y.
In the step case, the conclusion with y = cons(u1, u) is,

x + bton(cons(u1,u)) + bton(z) ==

bton(rca(x,cons(u1,u),z))

if len(cons(u1,u)) = len(z),

with the hypothesis being,

x + bton(u) + bton(z) == bton(rca(x, u, z))

if len(u) = len(z),

The conclusion cannot be simplified any further. Thus the
induction step case cannot be established by equational
reasoning.

As done for the base case, an inductive proof of the
step case can be attempted based on a scheme suggested
by the function symbol bton with the induction vari-
able z. Two subgoals are generated with z = nil, z =

cons(v1, v).
The base case with z = nil is reduced to true due to con-
tradictory conditions involving len.
In the step case, the conclusion is

x + bton(cons(u1,u)) + bton(cons(v1,v)) ==

bton(rca(x,cons(u1,u),cons(v1,v)))

if {len(cons(u1, u)) = len(cons(v1, v)),

(x + bton(u) + bton(cons(v1,v)) =

bton(rca(x,u,cons(v1,v))) if

len(u) = len(cons(v1,v)))},

with the hypothesis being

x + bton(cons(u1, u)) + bton(v) ==

bton(rca(x, cons(u1, u), v))

if {len(cons(u1, u)) = len(v),

(x + bton(u) + bton(v) = bton(rca(x, u, v))

if len(u) = len(v)}.

The conclusion cannot be simplified any further4. Ad-
ditional inductions based on the scheme bton are not
likely to help either. So, the induction proof attempt of
C1.1. based on the scheme suggested by the function
symbol bton fails.

An induction proof attempt based on a scheme sug-
gested by the function symbol len similarly fails as well.

To avoid such failures it is necessary that the heuris-
tics in RRL choose the most appropriate induction
scheme suggested by rca for the conjecture C1. RRL
automatically backtracks whenever an induction proof
attempt based on a scheme fails. The conjecture is retried
with a different induction scheme. Attempts at proving
a conjecture are abandoned by RRL once all the available
schemes have been tried or at a user request.

Heuristics for choosing an induction scheme

Several heuristics are implemented in RRL to choose
the most appropriate induction scheme from the given
possible schemes. These are based on the heuristics de-
veloped for the prover Nqthm, described in [3]. Two
heuristics that are frequently employed in the verification
of arithmetic circuits are subsumption andmerging.

Subsumption chooses an induction scheme with a com-
mon set of induction variables. An induction scheme φ
subsumes an induction scheme ψ if the substitutions for
the induction variables in φ refine those in ψ. For ex-
ample, the induction scheme suggested by rca subsumes
that suggested by bton, len with respect to the induc-
tion variable y or the induction variable z. The function
rca is defined in terms of bit vectors of size 0, 1 and those
with size greater than 1 whereas the functions bton and
len are defined in terms of bit vectors of size 0 and those
with size greater than 0.

If a scheme φ subsumes a scheme ψ, the heuristics in
RRL always choose the scheme φ. This is because choos-
ing a scheme ψ leads to an induction case whose con-
clusion cannot be simplified using the definitions since
the rules are more refined than the conclusion, and hence
will not match the conclusion. We describe below how
the scheme suggested by rca is chosen by these heuristics
while proving the conjecture C1.

A proof attempt of C1 based on the scheme suggested
by bton or len fails for this reason. The subterm rca(x,

cons(u1, u), cons(v1, v)) cannot be simplified by the
definition of rca as the rules in the definition are further

4 Note that the third equation in the definition of rca cannot be
applied to the conclusion. In order to apply this rule, it is necessary
that not(u = nil) and not(v = nil). These conditions do not follow
from the assumptions of the step case.

CE
k Would the word ’subgoals’ be appropriate after ’subse-

quent’ in line below?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

14 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

refined based on u and v. The case of u = v = nil is covered
by the second rule and the third rule covers the case when
these variables are not nil.

Using the subsumption heuristic, the schemes sug-
gested by bton and len is discarded by RRL in favor of
the scheme suggested by rca. This leads to a successful
proof of the conjecture C1 without backtracking.

Another heuristic implemented in RRL to pick an in-
duction scheme is merging. Often the induction schemes
suggested by the various subterms of a given conjecture
share induction variables amongst each other. An induc-
tive proof attempt of the conjecture based on one of these
schemes only is not likely to succeed in such cases. For in-
stance, if t1 = f(x, y) and t2 = g(z, x) are two subterms
of a given conjecture where f and g are binary functions
defined recursively on both of their arguments, then at-
tempting a proof of the conjecture by induction based
only on the scheme suggested by the term t1 would re-
sult in an induction step with the conclusion contain-
ing t′1 = σ(f(x, y)) = f(σ(x), σ(y)) and t′2 = σ(g(z, x)) =
g(z, σ(x)). The choice of induction scheme ensures that
the term t′1 can be simplified to match the induction hy-
pothesis, but the same need not be true for the term t′2
since the variable z in t′2 does not get instantiated.

In such cases, the two competing induction schemes
are merged into a single induction scheme that instan-
tiates the induction variables simultaneously in all the
terms. Merging reduces the number of alternative induc-
tion schemes, and also eliminates the need to arbitrarily
choose from among competing schemes.

Coverset induction vs structural induction

In the cover set induction method, induction schemes are
generated from the definitions of nonconstructor func-
tion symbols rather than being based on the constructors
of the data type. Thus, different schemes can be gener-
ated for the same data type using the cover set method.
Such schemes can involve nonconstructor symbols and
can differ in the induction hypotheses to be used. In con-
trast, there is only one induction scheme corresponding
to a data type in structural induction. In the cover set
induction approach, each recursive call in the definition
of a nonconstructor produces an inductive hypothesis,
whereas only one induction hypothesis is generated by the
structural induction approach. The capability of generat-
ing multiple induction schemes and additional hypothe-
ses seems very beneficial in verifying properties of arith-
metic circuits as discussed below.

Consider a ripple-carry adder rcp based on a divide-
and-conquer representation. In this case, a ripple carry-
adder of size n is recursively defined in terms of adders of
size n/2. A divide-and-conquer representation of a ripple-
carry adder is often used in hardware designs [39, 40] to
construct arithmetic circuits of larger data widths by cas-
cading similar smaller data width components. Smaller

data width adders are often used as standard cells in in-
dustrial ASIC designs, and logic synthesis tools often pro-
vide these in their technology libraries.

A divide-and-conquer representation of a ripple-carry
adder rcp can be used to exhibit the input-output equiva-
lence of a ripple-carry and a carry-lookahead adder, which
is much easier to specify using the divide-and-conquer
strategy. We have found that such an equivalence proof
is more easily done than the one in which a linear repre-
sentation of the ripple-carry adder rca is used. The verifi-
cation proofs of ripple-carry and carry-lookahead adders
are discussed in more detail in [29]. Below, we illustrate
how properties of a ripple-carry adder defined using the
divide-and-conquer strategy can be verified easily using
the cover set method, whereas proving these properties
using structural induction is nontrivial.

The adder rcp can be specified in RRL as follows:

1. rcp(x, nil, nil) := cons(x, nil),

2. rcp(x,cons(y1,nil),cons(z1,nil)) :=

cons(mod2(x, y1, z1),

cons(half(x, y1, z1), nil)),

3. rcp(x,app(y1,y2),app(z1,z2)) :=

app(sum(rcp(x, y1, z1)),

rcp(carry(rcp(x,y1,z1),y2,z2)

if {len(y1) = len(z1),

len(z1) = len(y2), len(y2) = len(z2)}.

The first two equations defining rcp are identical to
those defining rca. In the third equation, there are two
recursive calls to rcp on the right side. The first adder
performs addition of the corresponding lower halves of
the input bit vectors and the second adder performs the
addition of the upper halves. The function app denotes
the appending of lists, and can be recursively defined in
RRL. The functions sum, carry denote the outputs sum
and carry of the first adder. The function sum is defined
recursively as a list with the last element removed. The
function carry is CEl defined recursively as the last elem-
ent of a list.

The behavioral correctness of rcp can be stated in
RRL as follows:

C2: bton(rcp(x, y, z)) == x + bton(y) + bton(z)

if len(y) = len(z).

An inductive proof attempt of C2 by structural induc-
tion over lists with induction variables y, z does not seem
feasible. Such a proof attempt leads to two subgoals as be-
fore. The base case with y = nil, z = nil simplifies to true
by contextual rewriting.
In the step case, the conclusion with y = cons(u1, u), z

= cons(v1, v) is

bton(rcp(x,cons(u1,u),cons(v1,v))) ==

x + bton(cons(u1,u)) + bton(cons(v1,v)) if

(len(cons(u1, u)) = len(cons(v1, v))),

with the hypothesis being,

CE
l ’in’ eliminated from line below.OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 15

bton(rcp(x, u, v)) == x + bton(u) + bton(v)

if len(u) = len(v).

The conclusion cannot be simplified as there is no
rewrite that can match rcp whose second and third argu-
ments are cons terms. The hypothesis cannot be applied
to the conclusion, and therefore, the proof attempt fails.
Additional inductions and/or case analysis are not likely
to help in this case.

C2 can, however, be established in RRL by the cover
set induction scheme generated from the definition of
rcp. Three subgoals are generated corresponding to the
three equations in the definition of rcp. The first two
equations lead to base cases, and are proved by contextual
rewriting and case analysis as done for the conjecture C1.
In the third subgoal, the conclusion is

[3] bton(rcp(x,app(y1,y2),app(z1,z2))) ==

x + bton(app(y1,y2)) + bton(app(z1,z2)) if

{(len(app(y1, y2)) = len(app(z1, z2)),

len(y1) = len(y2), len(y2) = len(z1),

len(z1) = len(z2))}.

Two hypotheses are generated by the cover set method
from the two recursive calls of rcp. These are:

Hyp 1: bton(rcp(x, y1, z1)) ==

x + bton(y1) + bton(z2) if

{(len(y1) = len(y2), len(y2) = len(z1),

len(z1) = len(z2))}.

Hyp 2: bton(rcp(carry(rcp(x,y1,z1)),y2,z2)) ==

carry(rcp(x,y1,z1)) + bton(y2) + bton(z2)

if {(len(y1) = len(y2), len(y2) = len(z1),

len(z1) = len(z2))}.

Sixteen intermediate subgoals are generated by con-
textual rewriting corresponding to the each of the 5
clauses in the two hypotheses. 15 of these are established
by contextual rewriting combined with the linear arith-
metic decision procedure due to contradictory conditions
over the function len.
The only remaining subgoal is

[3.16] bton(rcp(x,app(y1,y2),app(z1,z2))) ==

x + bton(app(y1,y2)) + bton(app(z1,z2))

if {len(app(y1,y2)) = len(app(z1,z2)),

len(y1) = len(y2), len(y2) = len(z1),

len(z1) = len(z2),

bton(rcp(x,y1,z1)) =

x + bton(y1) + bton(z2),

bton(rcp(carry(rcp(x,y1,z1)),y2,z2)) =

carry(rcp(x,y1,z1)) + bton(y2) + bton(z2))}.

This subgoal simplifies by the definition of bton, rcp to

[3.16] bton(app(sum(rcp(x, y1, z1)),

rcp(carry(rcp(x, y1, z1)), y2, z2))) ==

x + bton(app(y1, y2)) + bton(app(z1, z2))

if {len(app(y1,y2)) = len(app(z1,z2)),

len(y1) = len(y2), len(y2) = len(z1),

len(z1) = len(z2),

bton(rcp(x, y1, z1)) =

x + bton(y1) + bton(z1),

bton(rcp(carry(rcp(x,y1,z1)),y2,z2)) =

carry(rcp(x,y1,z1)) + bton(y2) + bton(z2))}.

The subgoal is established in RRL by induction on
rcp with the help of an additional intermediate lemma
automatically generated by RRL by generalizing the sub-
term rcp(x, y1, z1) by a new variable. The intermediate
lemma generated is

bton(app(sum(z), cons(carry(z), nil)) == bton(z).

The generation of this lemma using the generaliza-
tion heuristic of RRL is discussed in detail in Sect. 6.1 on
lemma generation.

5 Verifying properties of a family of circuits

In the previous section, we discussed the use of induction
for verifying the number-theoretic properties of arith-
metic circuits with arbitrary data widths. Besides the
data width, arithmetic circuits are often parameterized in
terms of

– the number of signals that they process in a single step
– the types of hardware components that they use.

We call this component parameterization to distinguish it
from data width parameterization.

For example, most of the commonly used multiplier
circuits employ the same algorithm but differ only in the
number of partial sums considered at each step [28, 39,
40]. Similar parameterization of circuits is evident in the
description of subtractive division algorithms such as the
SRT [17]. In [17], the authors describe how four radix-
2 iterations can be overlapped to perform one iteration
of a radix-16 SRT division circuit. A radix-4 and radix-
8 SRT divider can be similarly designed by overlapping
two and three iterations of a radix-2 SRT divider, respec-
tively.

Multiplier circuits use adder circuits as components.
Different multipliers in the same chip may be designed
using different types of adder circuits, such as carry-save
adders, ripple-carry adders and carry-lookahead adders,
even though they provide the same functionality. The
choice of adder circuits is often dependent on timing and
area considerations [39]. Division algorithms are also pa-
rameterized based on the types of hardware adders and
subtractors that they use. Based on the representation
used for the partial remainder in each step, a carry-save
adder or a ripple-carry adder may be used. A carry-
save adder may be used to keep the partial remainder
as a pair of vectors, denoting the sum and carry; other-
wise a ripple-carry adder may be used [17]. The use of
carry-save adder reduces the time required to compute
the partial sum.

Typically, each such circuit has to be specified individ-
ually. Even though these circuits are related, their veri-
fication has to be redone all over again. Commonality in

mMS ID: STTTN032

31 May 2000 14:59 CET

16 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

the circuit structure leading to commonality in verifica-
tion proofs is not exploited. We believe this repetitive ef-
fort can be avoided by parameterizing arithmetic circuits
such as multipliers and dividers based on the number of
signals considered at each step as well as based on the
hardware components used.

By exploiting these parameters in addition to data
width, a common, hierarchical top-level specification of
a family of related circuits can be developed. A proof
can be generated for the whole family using such speci-
fications. The hardware components in these circuits are
abstracted in terms of their behavioral constraints. In-
dividual instances of the components can be separately
verified against these constraints. This approach avoids
redoing the proof for each instance of the circuit, as is the
case when BDD-based tools are used.

We illustrate this methodology for multiplier circuits
below.

5.1 Generic specification and verification: a family of
multiplier circuits

Most of the commonly used multiplier circuits are based
on the CEm grade school principle of multiplying any two
given n-bit numbers consisting of two steps:

– computing the partial sums
– adding the partial sums to obtain the required result.

This basic underlying principle is often not evident in
commonly found descriptions of these circuits. The com-
putation of partial sums is done in the same manner
in these circuits, but they differ in the number of par-
tial sums that they consider for addition at any particu-
lar time.

For example, a linear array multiplier performs the
multiplication of two n-bit numbers in linear time. The
n partial sums are first obtained in constant time. Then,
at each step one partial sum is added to the partial result
computed so far.

Wallace introduced a new scheme for multiplying two
n bit numbers in logarithmic time [50], which has pop-
ularly come to be known as the Wallace tree multiplier.
Improved performance is achieved in this multiplier by
considering three partial sums for addition together.

The multiplication scheme due to Wallace was gen-
eralized and improved upon by Dadda in [15] leading to
a rich family of multipliers called the Dadda multipli-
ers. In these multipliers, larger than three partial sums
are taken up for addition at a particular time. Consid-
ering larger numbers of partial sums does not improve
the asymptotic complexity but considerably reduces the
number of stages required for multiplication resulting in
reduced wiring delays. The 7-3 multiplier used in IBM
RS/6000 is based on this observation, and has been at-
tributed [37] as one of the important features that con-
tributes to its good performance.

A common top-level specification for this whole fam-
ily of multiplier circuits using the common algorithm can

be given. A multiplier circuit is abstracted in terms of
two components: a component that computes the partial
sums, called the partial sum computation component and
another that adds these partial sums to compute the final
product, called the partial sum addition component. We
then describe a uniform approach for mechanically verify-
ing properties of any multiplier in the family using RRL.
It is shown that the correctness of any multiplier circuit
in the family can be mechanically established from the
behavioral correctness of the partial sum computation
component and that of the partial sum addition compon-
ent. The correctness of these components follow from the
correctness of the adder circuits used in them.

In our specifications and proofs of various multiplier
circuits, we abstract the adders in terms of generic hard-
ware components with associated behavioral constraints.
The correctness of a multiplier circuit is first established
in terms of such generic components. It is shown later
how a particular adder can realize a generic component by
demonstrating that the adder satisfies the behavioral con-
straints of the generic component. Such a view provides
a clear separation between specification and implementa-
tion aspects. The use of generic components aids the reuse
of proofs and modularizes the correctness proofs, allow-
ing verification to go hand in hand with the design process
in a hierarchical fashion. Such modularization of proofs
is crucial for any verification methodology to effectively
scale up to larger and more complex hardware circuits.

The proposed approach is highly generic – it not only
abstracts over the word size of multiplier circuits but also
abstracts the common behavior of a variety of different
multiplier circuits. The proofs of correctness are obtained
for multiplier circuits of arbitrary word size. Second,
seemingly different multiplier circuits share a common
specification and a common proof of correctness using
the same lemmas, with only a few different definitions for
each multiplier circuit.

A major complaint against the use of theorem provers
and proof checkers for hardware verification has been the
semi-automatic nature of these systems. Verification ef-
forts involve considerable user ingenuity. We believe that
a common top-level proof for a family of multiplier cir-
cuits with well-characterized intermediate lemmas that
are independent of the underlying prover, is a step for-
ward in addressing this issue. It is also shown that the
intermediate lemmas needed in the proofs of correctness
of multipliers reported here correspond to formulas that
specify the input output behavior expressed in terms of
numbers, of different components of the circuits. Such
lemmas can be generated systematically from the struc-
ture of the circuits as discussed in a later section.

5.2 Specifying a family of multiplier circuits

A common, top-level equational specification for the fam-
ily of multiplier circuits is described. We first review how
a popular multiplier circuit – the Wallace tree circuit –

CE
m Hyphen added to ’n bit’ in lines below, OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 17

can be specified in RRL. A common top-level RRL speci-
fication for a family of multipliers is then described. From
this generic specification, specifications of linear array
multiplier and 7-3 multiplier can be generated by instan-
tiation.

The overall structure of the Wallace tree multiplier
can be described diagrammatically as in Fig. 1.

Given bit vectors x and y of equal length, a Wal-
lace tree circuit first computes a list of partial sums
(P1, · · · , P8 for an 8-bit multiplier in Fig. 1) using a func-
tion such as psum-all. Each partial sum in the list is a bit
vector that corresponds to a single bit of x, and is ob-
tained by shifting y appropriately. The partial sums in the
list are then added together by adding in parallel three
partial sums at a time. Addition of any three partial sums
is typically done using a carry-save adder (CSA) that
has three bit vectors as its inputs and produces a pair of
bit vectors as its output. The outputs correspond to the
bitwise sum and the bitwise carry of the inputs5. The par-
allel addition of three bit vectors at a time is repeated
on the outputs of the carry-save adders until there are
only two bit vectors left. The final result is obtained using
a ripple-carry (RCA in Fig. 1) or a carry-lookahead adder
on these two bit vectors.

The computation of the partial sums can be achieved
in constant time in parallel as the partial sums are inde-
pendent of each other. The partial sum corresponding to
a single bit z can be computed from the bit value, the bit
position and y. While adding partial sums, at each level,

5 Further details on the specification of the carry-save adder are
given in Sect. 5.4.

P1 P2 P3 P4 P5 P6 P7 P8

3-at-a-tim
e-addrepeat

3-at-a-tim
e-addonce

x y

CSA CSA

CSA CSA

CSA

CSA

RCA

Psum-All

Fig. 1.Wallace tree multiplier

�n/3� carry-save adders in parallel convert the addition
of n partial sums to the addition of �2n/3� partial sums
resulting in a tree with depth bounded by log(n).

Specifying Wallace tree partial sum computa-
tion in RRL. Partial sums in multiplier circuit are mod-
eled in RRL as a list of bit vectors with lnil denoting the
empty list of bit vectors and consl that adds a bit vector
to a list of bit vectors6.

The partial sum psum corresponding to a single bit x1
of x is the same as y if x1 is 1; otherwise, it is the zero bit
vector of the same length as y.

psum(x1, y) := cond(x1 = 0, mkzero(y), y),

where mkzero generates a zero bit vector of the same
length as its input.

The list of partial sums corresponding to all the bits of
x is computed by applying the function psum point-wise
to each bit of x and shifting y to the right by appending
a trailing zero.

psum-all(nil, y) := lnil,

psum-all(cons(x1, x), y) :=

consl(psum(x1, y), psum-all(x, cons(0, y))).

Specifying Wallace tree partial sums addition in
RRL. In a Wallace tree circuit, each level in the tree in
Fig. 1 contains a list of bit vectors that have to be added
to produce the final result. The root contains the list of

6 Recall that contrary to the usual convention, we assume that
the bits increase in order from left to right in a bit vector i.e., the
bit vector 01 stands for 0∗20+1∗21 = 2.

mMS ID: STTTN032

31 May 2000 14:59 CET

18 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

partial sums corresponding to each bit of the bit vector
x. The successive levels of the tree are repeatedly con-
structed until there are less than three bit vectors at any
given level(equations 1, 2 and 3 below). In the case of
two bit vectors, addition using a ripple-carry adder rca, is
performed(equation 3 below).

The Wallace tree multiplier is specified by 3-mult be-
low. The trace of a computation of 3-mult on input vec-
tors of a specific length corresponds to a specific circuit:

1. 3-mult(cons(x1,nil), y) := psum(x1, y),

2. 3-mult(cons(x1, cons(x2, nil)), y) :=

rca(0, pad(1,psum(x1,y)),

psum(x2,cons(0,y))),

3. 3-mult(cons(x1,cons(x2,cons(x3,x))),y) :=

3-repeat(psum-all(cons(x1,cons(x2,

cons(x3,x))),y)).

The function 3-repeat repeatedly takes 3 bit vectors and
adds them; it is specified as

1. 3-repeat(lnil) := nil,

2. 3-repeat(consl(x1,lnil)) := x1,

3. 3-repeat(consl(x1,consl(x2,lnil))) :=

rca(0,pad(1,x1),x2)

if len(pad(1,x1)) = len(x2),

4. 3-repeat(consl(x1,consl(x2,consl(x3,x)))) :=

3-repeat(3-once(consl(x1,consl(x2,

consl(x3,x))))),

where len denotes the length of a list (of bit vectors). The
function pad(m, x) produces a bit vector by appending m
leading zeroes to the bit vector x. Bit vectors are typically
padded by leading zeroes in these specifications so that
the input bit vectors to the adders are of equal length.
The last equation (equation 4) computes the bit vectors
at the successive level by the function 3-once.

The function 3-once is defined on a list of bit vec-
tors. If the input list contains less than three bit vec-
tors(equations 1, 2 and 3 below), then the bit vectors in
the input list are carried over to the output list. Other-
wise, the bit vectors in the input list are taken in groups of
three, and added in parallel using a carry-save addercsa,
(equation 4 below)7. The outputs of the carry-save adder
and the bit vectors in the input list that were not consid-
ered for addition together constitute the bit vectors of the
output list.

1. 3-once(lnil) := lnil,

2. 3-once(consl(x1, lnil)) :=

consl(x1, lnil),

3. 3-once(consl(x1, consl(x2, lnil))) :=

consl(x1, consl(x2, lnil)),

4. 3-once(consl(x1,consl(x2,consl(x3,x)))) :=

consl(fst(z1),consl(snd(z1), 3-once(x)))

7 As said earlier, a carry-save adder takes three bit vectors of
equal length as inputs, and produces two bit vectors of equal length
as outputs. One output denotes the position-wise sum of the in-
puts, and the other denotes the position-wise carry of the inputs.
For more details on carry-save adders the reader may refer to the
end of this section.

if {(z1 = csa(pad(2, x1), pad(1, x2), x3)),

len(pad(2, x1)) = len(x3),

len(pad(1, x2)) = len(x3)}.

A generic specification

The above specification of the Wallace tree multiplier
can be generalized to specify any multiplier of the above
family. A generic specification of a multiplier k-mult in
which k (k >= 1) partial sums are added together at
any time can be given. The specification of k-mult is
described below. It uses generic hardware components
gsimple-mult for multiplier and gsimple-adder and
gkogk-adder for adder circuits. The specification of the
linear array, Wallace and the 7-3 multiplier can be ob-
tained by instantiating k to 1, 3, and 7, respectively.
The generic hardware components are instantiated by
multipliers and adder circuits with the appropriate data
width. The complete specification of the linear-array and
the 7-3 multiplier are available by anonymous ftp via
ftp.cs.albany.edu/pub/subu/Multipliers.

The k-multmultiplier is abstracted in terms of a par-
tial sum computation component psum-all and partial
sum addition component k-repeat. k-mult is specified in
RRL as follows.

k-mult(x,y,k) := cond(len(x) < k,

gsimple-mult(x,y,k),

k-repeat(k,psumall(x,y))) if

(len(x) = len(y)).

The function k-mult takes two equal length bit vectors
x, y and the parameter k as its inputs. If the size of
the input bit vectors is less than k, then a generic multi-
plier gsimple-mult is used. Otherwise, the partial sums
are generated from x, y using the partial sum compu-
tation component psum-all, as before. The generated
partial sums feed into the partial sum addition compon-
ent k-repeat, which repeatedly adds k partial sums at
a time. The partial sum computation component is speci-
fied just as in the case of the Wallace tree multiplier using
the functions psum and psum-all. It does not depend
upon the parameter k.

The partial sum addition component k-repeat has k
as a parameter. The parameter determines the number of
partial sums added at each step. This component is re-
cursively specified in RRL using the function k-once that
adds k partial sums at one level until there are fewer than
k partial sums left. The functions k-repeat and k-once

are analogous to the functions 3-repeat and 3-once used
in the case of Wallace tree multiplier above.

k-repeat(k, y) :=

gsimple-adder(y) if (lenlst(y) < k),

k-repeat(k, applst(y1, y)) :=

k-repeat(k, k-once(k, applst(y1, y))) if

(lenlst(applst(y1, y)) >= k),

k-once(k, x) :=

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 19

x if (lenlst(x) < k),

k-once(k, applst(x1, x)) :=

applst(gklogk-adder(x1, k), k-once(k, x)) if

{(lenlst(applst(x1, x)) >= k), (lenlst(x1) = k)}.

The function lenlst computes the length of a list of bit
vectors. The function applst takes two lists of bit vectors
as its inputs and appends the first input list of bit vectors
to the second list in the front to produce a list of bit vec-
tors. Recall that a bit vector is itself represented as a list
of bits.

The functions gsimple- adder and gklogk- adder

above are specified as generic hardware adder compo-
nents. The adder gsimple-adder takes a list of bit vec-
tor as inputs and produces a bit vector as output which
is the result of adding the input bit vectors. The adder
gklogk- adder takes k bit vectors as inputs and produces
log(k) (rounded to the next highest integer) as its out-
puts, bit vectors corresponding to the bitwise sum and
bitwise carry(s) of the input bit vectors. Adding k bits can
result in a carry of size at most log(k). For instance, for
k = 3, the adder gklogk-adder can be realized by a carry-
save adder that takes 3 bit vectors as inputs and produces
2 bit vectors as its outputs – a bit vector of bitwise sums
and a bit vector of carrys.

As shown below, these generic components are speci-
fied abstractly only in terms of behavioral constraints; no
definitions, implementation or realizations of their behav-
ior are provided. Behavioral constraints must be subse-
quently checked from definitions when a generic compon-
ent is instantiated. RRL automatically checks that the
instantiations satisfy constraints by establishing the con-
straints as theorems from these definitions. The use of
such generic components enables hierarchical structuring
and reuse of correctness proofs.

5.3 Verifying properties of multipliers in RRL

We discuss how properties of multiplier circuits can be
automatically verified usingRRL. An important aspect of
this verification is the generation of intermediate lemmas
needed. In this section, we discuss how these lemmas are
used in proofs. In a later section, we discuss how such lem-
mas can be automatically generated from circuit struc-
ture and specifications of components in a circuit using
heuristics.

Verification of the Wallace tree multiplier circuit is
presented first. Subsequently, we outline how a correct-
ness proof with the same top-level structure as that of the
Wallace tree multiplier can be generated for any multi-
plier circuit in the family.

To establish the correctness of these circuits with re-
spect to multiplication over numbers, conversion func-
tions from bit vectors and lists of bit vectors to numbers
are needed. In addition to the function bton described
in the previous section on adder circuits, the function
btonlist is used to convert bit vectors to numbers. Given

a list of bit vectors as input, the function btonlist per-
forms a linear addition of numbers corresponding to each
of the bit vectors.

btonlist(lnil) := 0,

btonlist(consl(x, y)) := bton(x) + btonlist(y).

Verification of the Wallace multiplier

The main theorem expressing the correctness of the Wal-
lace tree multiplier is stated in RRL as follows:

C3: bton(3-mult(x, y)) == bton(x) * bton(y)

if (len(x) = len(y)).

The equations defining functions psum, psum-all,
3-once, 3-repeat and 3-mult are first oriented by RRL
into rewrite rules8. The cover set corresponding to each of
these functions is computed.

The theorem C3 is proved in RRL by induction. The
subterms bton(x), bton(y) and 3-mult(x, y) suggest
three possible induction schemes. The induction sug-
gested by the subterm 3-mult(x, y) subsumes the one
suggested by the subterm bton(x) since the left sides of
the rules in the definition of 3-mult refine the left sides of
the rules in the definition of bton. The scheme based on
the definition of the function 3-mult is chosen to be the
most appropriate one automatically by RRL. Here is the
transcript generated in RRL.

Let P(x) be bton(3-mult(x, y)) == bton(x) * bton(y)

if (len(x) = len(y))

Induction will be done on x in 3-mult(x, y),

with the scheme:

[1] P(cons(x1, nil))

[2] P(cons(x1, cons(x2, nil)))

[3] P(cons(x1, cons(x2, cons(x3, x))))

The subgoal corresponding to [1] is established by case
analysis based on the definition of psum, using the defi-
nitions of 3-mult and bton for simplification. The case
analysis is automatically recognized byRRL based on the
definition of psum given in terms of the ternary predicate
cond.
The subgoal corresponding to [2] simplifies by the sec-
ond rule in the definition of 3-mult to

bton(rca(0,pad(1,psum(x1,y)),

psum(x2,cons(0,y)))) ==

bton(cons(x1,cons(x2,nil))) * bton(y).

After simplification, the above formula suggests the fol-
lowing lemma, which ensures that the ripple-carry adder
correctly implements addition over numbers:

8 All the equations except the last equation in the definition of
3-repeat can be oriented left to right using term orderings such
as lrpo implemented in RRL. In order to orient the last equation
defining 3-repeat, a semantic argument that the number of par-
tial sums to be added decreases after one-level addition of partial
sums by 3-once has to be used. Such an argument can be proved
by induction in RRL.

mMS ID: STTTN032

31 May 2000 14:59 CET

20 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

L1: bton(rca(x, y, z)) == bton(x) + bton(y)

if len(y) = len(z).

This lemma is the same as the theorem C1 discussed in the
previous section, and it can be directly proved in RRL by
induction as discussed there. Using this lemma, by case
analysis on the definition of the function psum, the sub-
goal [2] is easily established in RRL.
The subgoal [3], simplifies by the definition of 3-mult to

bton(3-repeat(psum-all(cons(x1,

cons(x2, cons(x3, x))), y)))) ==

bton(cons(x1,cons(x2,cons(x3,x)))) * bton(y)

if len(cons(x1,cons(x2,cons(x3,x)))) = len(y).

Similar to the subgoal [2], the above formula on simplifi-
cation suggests the following lemma relating the number
corresponding to the output of the partial sum addition
component to the number corresponding to the input list
of bit vectors to this component.

L2: bton(3-repeat(x)) == btonlist(x).

Using L2, the subgoal [3] is simplified to:

btonlist(psum-all(cons(x1,cons(x2,

cons(x3,x))),y)) ==

bton(cons(x1,cons(x2,cons(x3,x)))) * bton(y)

if len(cons(x1,cons(x2,cons(x3,x)))) =

len(y)).

Just as in the case of lemmas L2 and L1, the above formula
on simplification suggests an intermediate lemma L3 be-
low. This lemma L3 relates the number corresponding to
the linear addition of the bit vectors output by the partial
sum component to the product of the numbers corres-
ponding to the two bit vectors input to this component.

L3: btonlist(psum-all(x, y)) == bton(x) * bton(y).

The subgoal [3] follows from this lemma by rewriting. As
a result, the main theorem C3 is established by induction.

Lemmas L2 and L3 are proved in RRL again using
the cover set induction method. In each of these proofs,
the appropriate induction scheme leading to a successful
proof was automatically chosen by RRL.

The proof of the lemma L3 is established by induction
based on the definition of psum-all followed by case an-
alysis on psum. Here is a part of the transcript generated
in RRL.

Let P(x, y) be btonlist(psum-all(x, y)) ==

(bton(x) * bton(y))

The induction will be done on X, Y in

psum-all(x, y), with the scheme:

[1] P(nil, y)

[2] P(cons(y1, y), y1) if {P(y, cons(0, y1))}

The first subgoal [1] trivially follows from the definitions
of psum-all, bton and that of *. The second subgoal [2]
simplifies to the formula:

bton(y2) * bton(cons(y1,y)) ==

bton(psum(y1,y2)) + bton(y) * bton(y2) +

bton(y) * bton(y2),

which is reduced to true by case analysis on psum and the
definition of bton.

Lemma L2 was proved in RRL by induction based on
the definition of 3-repeat. Here is the transcript gener-
ated in RRL for proving this lemma,

Let P(x) be btonlist(x) == bton(3-repeat(x))

Induction will be done on x in 3-repeat(x),

and will follow the scheme:

[1] P(lnil)

[2] P(consl(x1, lnil))

[3] P(consl(x1, consl(x2, lnil))) if

{(len(app(x1, cons(0, nil))) = len(x2))}

[4] P(consl(x1,consl(x2,consl(x3, x)))) if

P(3-once(consl(x1,consl(x2,consl(x3,x)))))

The subgoals [1], [2], [3] are easily established from
the definitions of bton and btonlist using the lemma L1.
In subgoal [4] the conclusion is

btonlist(consl(x1,consl(x2,consl(x3,x)))) ==

bton(3-repeat(consl(x1,consl(x2,consl(x3,x))))),

with the hypothesis being,

btonlist(3-once(consl(x1,consl(x2,consl(x3,x))))) =

bton(3-repeat(3-once(consl(x1,

consl(x2,consl(x3,x)))))).

The conclusion simplifies by the definition of 3-repeat
and partial application of the hypothesis to

btonlist(consl(x1, consl(x2, consl(x3, x)))) ==

btonlist(3-once(consl(x1,consl(x2,consl(x3,x))))).

The above formula is automatically established by RRL
by induction based on the scheme obtained from the cover
set of the function 3-once. However, one of the induc-
tion subgoals in this proof requires another lemma L4

establishing the correctness of the carry-save adder with
respect to addition over natural numbers. Lemma L4 and
its proof are discussed in detail in Sect. 5.4.

A common top-level proof

The above proof for the Wallace multiplier can be made
generic; the basic proof structure remains invariant when
a proof of k-mult, a multiplier circuit that uses generic
hardware components, is attempted. The correctness of
a multiplier k-mult is stated in RRL as:

C4: bton(k-mult(x, y)) == bton(x) * bton(y)

if (len(x) = len(y)).

The proof is similar to that of the Wallace multiplier dis-
cussed above using a similar set of lemmas about the
behavior of components,

Linear addition of partial sums serves as a common de-
nomination for any k, and the addition of k partial sums

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 21

together can be reduced to linear addition. As in the case
of the proof for the Wallace multiplier, this proof also
involves characterizing the input-output behavior of the
partial sum computation component and the partial sum
addition component with respect to numbers, and then
showing that cascading these two components leads to
the desired overall behavior. It is shown that:

1. Multiplying the numbers corresponding to the input
bit vectors of the partial sum computation compon-
ent is the same as the number obtained by the linear
addition of the list of partial sums output by this com-
ponent

2. The number corresponding to the bit vector output by
the partial sum addition component is the same as the
number corresponding to the linear addition of the list
of partial sums input.

The same strategy can be used to verify any multiplier
in the family of multipliers (for any fixed k). Verification
of other multipliers in the family of multipliers such as
the linear array or the 7-3 multiplier can be performed
in RRL using the same top-level proof. For instance, the
verification of a linear array multiplier stated as

C5: bton(1-mult(x, y)) == bton(x) * bton(y)

if (len(x) = len(y)),

is proved in RRL using three lemmas which are exactly
the same as L1 - L3 with the lemma L3 defined in terms of
functions 1-repeat instead of the function 3-repeat. In
order to establish lemma L3, it is necessary to verify the
carry-save adder L4 in this case also.

The correctness proof of the 7-3 multiplier inRRL also
follows the same top-level proof using the lemmas L1 -
L3 with the lemma L3 defined in terms of the functions
7-repeat instead of 3-repeat. In a 7-3 multiplier, the
main adder employed for adding partial sums has seven
bit vectors as its input, and produces three bit vectors
corresponding to the bitwise carry and the bitwise sum of
the inputs. Just like the carry-save and the ripple-carry
adders, this adder is verified separately in RRL to get
a hierarchical verification proof.

5.4 Using generic hardware components

A multiplier circuit can be realized in a number of ways,
based on different adder components used in it. Each of
these realizations must be specified separately, and their
correctness has to be established separately from the first
principles. In this section we illustrate how such duplica-
tion of proof effort can be avoided by describing circuits in
terms of generic hardware components, that enables hier-
archically structured verification of circuits.

Abstracting adder circuits using behavioral constraints

In a verification proof of a multiplier circuit, it is sufficient
to use the input-output behavior of adder circuits used in

it. Other details of adder circuits are irrelevant. Adder cir-
cuits can be abstracted as generic hardware components
satisfying behavioral constraints. The correctness proof
of multiplier circuits can then be performed in terms of
these generic hardware components. The generic hard-
ware components are subsequently realized by specific
adders that satisfy these behavioral constraints.

RRL has been extended to allow function instantia-
tions and for handling theories (see also [6]). In addition
to definitions and lemmas, RRL allows the user to intro-
duce function symbols with behavioral constraints. For
instance, a carry-save adder can be specified in RRL in
terms of the generic component g32-adder (g in this
name stands for generic, 32 is to signify that the compon-
ent has 3 inputs and 2 outputs, and adder tells what the
circuit does): as:

[g32-adder : list, list, list -> pairlst]

bton(fst(g32-adder(x, y, z))) +

bton(snd(g32-adder(x, y, z))) ?=

bton(x) + bton(y) + bton(z) if

{(len(x) = len(y)), (len(y) = len(z))}.

The ripple carry adder and the adder employed in the 7-
3 multiplier can be similarly abstracted in RRL in terms
of the generic components g31-adder and g73-adder.
Much like definitions which are distinguished from lem-
mas and properties by the use of the symbol := in-
stead of ==, the symbol ?= is used. Like all other (condi-
tional) equations, constraints are oriented into terminat-
ing rewrite rules by RRL and are used for rewriting.

Different multipliers can be specified in RRL using
generic hardware components. The use of such generic
components in specifying the multipliers leads to shorter
correctness proofs and reflects the common top-level
structure of these proofs.

Realizing generic components: carry-save adder

A generic hardware component such as g32-adder above
should be realized by a specific adder that satisfies the as-
sociated behavioral constraints. In this section, we use the
correctness proof of a carry-save adder as an example to
realize g32-adder. The other generic components used in
the proofs of the multiplier circuits can be realized simi-
larly using RRL.

The carry-save adder csa accepts three bit vectors of
equal length as its inputs, and produces two bit vectors
as its output, corresponding to the bitwise parity and the
bitwise sum of its inputs. It is specified in RRL as

csa(x,y,z) := pairl(paritylst(x,y,z),

cons(0,majoritylst(x,y,z))) if

{(len(x) = len(y),

len(y) = len(z))},

where pairlwhen given two bit vectors, constructs a pair
of bit vectors. The function paritylst, given three input
bit vectors of equal length, computes the bitwise parity of

mMS ID: STTTN032

31 May 2000 14:59 CET

22 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

its inputs, and the function majoritylst computes their
bitwise majority. The function paritylst is specified in
RRL as follows:

paritylst(nil, nil, nil) := nil

paritylst(cons(x1,x),cons(y1,y),cons(z1,z)) :=

cons(mod2(x1,y1,z1), paritylst(x,y,z)) if

{len(x) = len(y), len(y) = len(z)}.

The function mod2 is defined in the previous section. Re-
call that it produces a 0(1) based on the input being even
or odd, respectively. The function majoritylst is defined
in a similar fashion using the function half defined in the
previous section.

The correctness of the carry-save adder with respect
to addition over numbers can be stated in RRL as:

L4: bton(x) + bton(y) + bton(z) ==

bton(paritytlst(x,y,z)) +

bton(cons(0,majoritylst(x,y,z))) if

{(len(x) = len(y)), (len(y) = len(z))}.

The above formula is proved directly inRRL by induction
based on the definition of paritylst.

In order to realize the hardware component g32-

adder by the carry-save adder csa, RRL provides an in-
stantiate directive, which the user can invoke with a set
of function replacements such as ((g32-adder csa),..).
Based on these function replacements, the behavioral
constraints are suitably instantiated by RRL and the in-
stantiated formula is treated as a proof obligation which
must be discharged from the properties of the realization.
The instantiation directive implemented in RRL auto-
matically discharges equational consequences using the
combination of contextual-rewriting and built-in decision
procedures. Proof obligations that need to be established
by induction have to be explicitly presented by the user
to RRL.

6 Heuristics for lemma generation

A key distinguishing feature of mechanizing proofs by in-
duction from first-order theorem proving is that a proof
by induction often involves the use of intermediate lem-
mas. These lemmas must CE

n either be discovered or
speculated while attempting an inductive proof or they
have to be supplied by the user for a proof attempt to suc-
ceed. To minimize human intervention in guiding proof
search, it thus becomes CEo extremely important to de-
velop heuristics for speculating intermediate conjectures
that can help in discovering proofs. Further, while at-
tempting proofs of certain conjectures, it is sometimes
easier to attempt a proof of a generalization of a con-
jecture from which the conjecture itself follows. In this
section, we discuss three techniques for CEp speculating
intermediate conjectures which have been found effective
in mechanizing verification of arithmetic circuits.

6.1 Generalization heuristic

The generalization heuristic implemented in RRL to
speculate intermediate conjectures is quite effective in
verifying number-theoretic properties of arithmetic cir-
cuits. Without a proper use of heuristic, considerable
human guidance is required in finding proofs of even sim-
ple theorems. In fact, RRL is one of the few theorem
provers, which, from the recursive definitions of + and
∗ for numbers in terms of 0 and s, the successor func-
tion, can automatically generate a proof of distributivity
of ∗ over +. The theorem prover automatically gener-
ates lemmas such as associativity and commutativity of
+ as well as associativity of ∗ as needed for this proof.
Also, one of the main reason RRL succeeds, is because of
the aggressive use of the generalization heuristic, and the
backtracking facility which enables RRL to attempt dif-
ferent generalizations, when an intermediate conjecture
cannot be proved. We discuss these features below.

Most induction theorem provers support heuristics for
generalizing conjectures. In RRL, at least two kinds of
generalizations are performed:

1. Abstracting a nonvariable subterm appearing in a con-
jecture to be a variable, if the nonvariable subterm
appears more than once in the conjecture (in the left
side as well as the right side and/or the condition)

2. Dropping an assumption from a conditional conjec-
ture.

Semantic analysis can be useful in the implementation
of the generalization heuristic since a subterm may have
multiple occurrences semantically, but it may not ap-
pear to have multiple occurrences syntactically. In this
section we illustrate the use of generalization based on
syntactic analysis; for a discussion about a generalization
heuristic based on semantic analysis, the reader may con-
sult [27, 46].

The generalization heuristic is not only useful for gen-
erating stronger lemmas, assuming that they are valid,
but can sometimes be useful to generate an automatic
proof. Proof attempts on the original conjecture may not
succeed if all induction schemes are flawed [3, 46]. Gen-
eralizing a subterm may result in new schemes some of
which may be unflawed. A judicious application of the
generalization heuristic based on whether a particular
generalization is likely to result in unflawed induction
schemes appears to be a good way to filter outmany of the
generalizations and avoid over-generalization.

Given a conjecture C of the form l = r if cond, we
look for a maximal nonvariable subterm s occurring in
at least two of l, r and cond. Since there may be many
such maximal subterms, they are abstracted to distinct
variables in some order governed by heuristics. It is ob-
vious that if a generalization Cg can be proved, then C
follows from it (by rewriting). The backtracking mechan-
ism comes in handy for this purpose. A generalization is
attempted and if it turns out to be invalid, (i.e., a counter

CE
n Could ’speculated’ be replaced by ’assumed’ or similar in

line below?
CE
o ’speculating’. Change to ’assuming’?

CE
p ’speculate’, ’speculating’ seem to be being used in an un-

usual manner in the following secions. Is this a technical
use, or can they all be replaced by ’assume’, ’assuming’

d ? O h lt ti ?

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 23

example is generated) or a proof cannot be generated, the
theorem prover backtracks and tries a different general-
ization. At the end, if no generalization can be proved,
then the original conjecture C is attempted. It thus be-
comes very important that an invalid generalization is
detected quickly, and here the role of examples to test
a generalization becomes critical as a way to discard ob-
viously invalid generalizations.

For example, consider the following intermediate sub-
goal generated in establishing the correctness of the
ripple-carry adder rcp9.

[3.16] bton(app(sum(rcp(x, y1, z1)),

rcp(carry(rcp(x, y1, z1)), y2, z2))) ==

x + bton(app(y1, y2)) + bton(app(z1, z2))

if {(len(app(y1, y2)) = len(app(z1, z2)),

len(y1) = len(y2), len(y2) = len(z1),

len(z1) = len(z2),

bton(rcp(x, y1, z1)) =

x + bton(y1) + bton(z1),

bton(rcp(carry(rcp(x,y1,z1)), y2,z2)) =

carry(rcp(x, y1, z1)) +

bton(y2) + bton(z2)).

The above subgoal is established in RRL by the cover
set method using an induction scheme generated from the
definition of rcp. The induction variables chosen are y2,
z2. The induction proof leads to three subgoals. The in-
termediate lemma I1 is generated by RRL to establish
the first base case.

The first base case with y2 = z2 = nil simplifies by the
definition of rcp to

[3.16.1] bton(app(sum(rcp(x, y1, z1)),

cons(carry(rcp(x, y1, z1), nil)))) ==

x + bton(y1) + bton(z1) if

{(len(y1) = 0, len(z1) = 0,

bton(rcp(x,y1,z1)) =

x + bton(y1) + bton(z1))}.

The subterm rcp(x, y1, z1) occurs on the left-hand side
of the subgoal [3.16] and in the conditions governing the
subgoal. This subterm is replaced by a new variable in
[3.16] to generate a new generalized conjecture.

[G1] bton(app(sum(Z1), cons(carry(Z1), nil))) ==

bton(Z1) if {len(y1) = 0, len(z1) = 0}.

The conjecture G1 is further generalized by RRL by
dropping the conditions len(y1) = 0 and len(z1) =
0. The generalization heuristics in RRL drop conditions
that do not involve variables appearing in the body of the
conjecture. The resulting conjecture is:

[I1] bton(app(sum(Z1), cons(carry(Z1), nil)))

== bton(Z1).

This generalized conjecture is established in RRL
by induction using the definition of sum. The induction
scheme generated is the same as the structural induction
over lists.

9 A correctness proof of rcp is discussed in detail in Sect. 4.4

The other two subgoals in the induction proof of the
subgoal [3.16] are established using this intermediate
lemma and the definitions of the function symbols rcp,
len, app, bton, sum and carry.

As stated above, if there are multiple subterms repeat-
edly occurring in a conjecture, then the generalization
heuristics in RRL generate a new conjecture by abstract-
ing maximal non-overlapping subterms simultaneously. If
a generalized conjecture cannot be proved, RRL back-
tracks and generates progressively less general conjec-
tures by abstracting fewer subterms. The process termi-
nates once a generated conjecture is established or if there
are no more subterms to abstract. In the latter case, the
original conjecture is attempted without attempting any
generalization.

In order to avoid reckless generalization, a subterm
(or subterms) being generalized is matched against the
data base of properties already proved. If the subterm ap-
pears in the left side of an unconditional rule that is some
theorem already proved or a part of a definition, then the
generalization mechanism uses this unconditional rule to
generate a constraint on the new variable being intro-
duced. For instance, if s is a subterm being generalized
to a variable u and there is an unconditional rule l→ r
in which s appears in l at position p, then a constraint
l′ = r is added to the generalized conjecture, where l′ is
obtained from l by replacing s with u at position p.

6.2 Speculating conjectures guided by use of induction
hypothesis

Another heuristic for lemma speculation is to generate in-
termediate conjectures to serve as bridge lemmas so that
the induction hypothesis(es) can be successfully applied.
In an induction subgoal, none of the induction hypotheses
may be applicable on the simplified conclusion. Instantia-
tions for non-induction variables in an induction hypoth-
esis may have to be guessed; if a conjecture does not have
any non-induction variables, they may have to be intro-
duced by attempting a generalization. A constraint-based
approach for speculating conjectures for this was pro-
posed in [30]. Constraints are generated from the simpli-
fied conclusion and the induction hypothesis, and aided
by the definitions and known properties of function sym-
bols appearing in the conjecture. These constraints are
also analyzed to speculate the missing side of an interme-
diate conjecture.

This approach has turned out to be quite effective in
proving properties from tail-recursive definitions. We il-
lustrate some of the key steps of this method on a simple
property of a ripple-carry adder rca.

Consider proving the following conjecture about rca
that states that adding a binary number whose least sig-
nificant bit is 0 to another binary number using rca CE

q

is equivalent to adding its half twice.

C6: bton(rca(x, y, lftshft(0, z))) ==

CE
q Does ’its half twice’ in line below mean ’half of it twice’?

If so, please change.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

24 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

bton(rca(0, rca(x, y, z), pad(1, z)))

if {(len(y) = len(lftshft(0, z)),

len(rca(x, y, z)) = len(pad(1, z)))},

The function lftshft takes a bit and a bit vector as its in-
puts, and produces a bit vector that is shifted left by one
position using the input bit. The function pad, described
earlier, pads a given bit vector with the given number of
leading zeroes. The functions lftshft and pad are de-
fined in RRL as

lftshft(x, y) := cons(x, y),

pad(0, z) := z,

pad(s(x), z) := pad(x, app(z, cons(0, nil))).

Conjecture C6 simplifies by the definitions of lftshft
and pad to

bton(rca(x, y, cons(0, z))) ==

bton(rca(0, rca(x, y, z),

app(z, cons(0, nil)))) if

{len(y) = add1(len(z)),

len(rca(x,y,z)) = len(app(z,cons(0,nil)))}.

The proof of this formula is done in RRL by the cover
set method based on the induction scheme generated
from the definition of rca. The induction variables chosen
are y, z. Two base cases and one induction step case are
generated.

The base cases are trivially established due to con-
tradictory assumptions over len. In the first base case
the first conjunct len(nil) = add1(len(nil)) reduces to
false. Similarly, in the second base case the first conjunct
len(cons(x1,nil)) = add1(len(cons(x1, nil))) re-
duces to add1(0) = add1(add1(0)) which reduces to
false.
In the step case, the conclusion is

bton(rca(x,cons(y1,y),cons(0,cons(z1,z)))) ==

bton(rca(0,rca(x,cons(y1,y), cons(z1,z))),

app(cons(z1,z), cons(0, nil))) if

{(len(y) = add1(len(z)),

len(rca(x,cons(y1,y),cons(z1,z))) =

len(app(cons(z1,z), cons(0, nil)))).

The hypothesis is

bton(rca(half(x,y1,z1),y,cons(0,z))) ==

bton(rca(0,rca(half(x,y1,z1),y,z),

app(z,cons(0,nil)))) if

{len(y) = add1(len(z)),

len(rca(half(x,y1,z1), y, z)) =

len(app(z, cons(0, nil)))}.

The conclusion simplifies by the definitions of rca, len,
bton and app to

mod2(x, y1, 0) +

2 * bton(rca(half(x, y1, 0), y, cons(z1, z))) ==

mod2(0, mod2(x, y1, z1), z1) +

2 * bton(rca(half(0, mod2(x, y1, z1), z1),

rca(half(x,y1,z1),y,z),

app(z,cons(0,nil)))) if

{len(y) = add1(len(z)),

len(rca(half(x,y1,z1),y,z)) =

len(app(z,cons(0,nil)))}.

Further, simplification using the definitions of the func-
tion symbols mod2, +, and linear arithmetic leads to the
subgoal10

I2: bton(rca(half(x,y1,0),y,cons(z1,z))) ==

bton(rca(half(0, mod2(x, y1, z1), z1),

rca(half(x, y1, z1), y, z),

app(z, cons(0, nil))))

if {len(y) = add1(len(z)),

len(rca(half(x,y1,z1), y, z)) =

len(app(z, cons(0, nil)))}.

The induction hypothesis cannot be applied to the
conclusion. Proof attempts using other induction schemes
result in similar failure. So the heuristic to speculate in-
termediate conjectures guided by induction hypotheses is
invoked as described below.

First, positions in I2, where either side of the hypoth-
esis can be potentially applied are determined, and the
corresponding subterm of I2 is equated with the appro-
priate side of the hypothesis.

The left and right sides of the hypothesis can be ap-
plied, respectively, to the left and right sides of I2 at the
root. This can be determined by analyzing the definitions
of the function symbols rca, bton as discussed in [30, 46].
Two equations are generated corresponding to these po-
tential applications of the hypothesis:

1: bton(rca(half(x, y1, 0), y, cons(z1, z))) ==

bton(rca(half(x’, y1, z1), y, cons(0, z))) if

{len(y) = add1(len(z)),

len(rca(half(x’,y1,z1), y, z)) =

len(app(z, cons(0, nil)))}.

2: bton(rca(half(0, mod2(x, y1, z1), z1),

rca(half(x, y1, z1), y, z),

app(z, cons(0, nil)))) ==

bton(rca(0, rca(half(x’, y1, z1), y, z),

app(z, cons(0, nil)))) if

{len(y) = add1(len(z)),

len(rca(half(x’,y1,z1), y, z)) =

len(app(z, cons(0,nil))).}

Such equations are called difference equations. The
primed variables in the difference equations are the non-
induction variables in the hypothesis for which appropri-
ate instantiations must be chosen.

The next step is to simplify/solve the difference equa-
tions to find substitutions for the primed variables.
Whenever the two sides of a difference equation have
the same root symbol, a simple heuristic of decomposing
the difference equation is used much like unification and
matching to generate simpler equations. The decompos-
ition step fails if the result produces an equation without

10 Recall that the functions mod2 and half are Boolean functions.
A case analysis on the values of x, y1 and z1 is invoked by RRL

leading to 8 cases. All the cases reduce to the same subgoal I2.

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 25

a primed variable whose two sides are not identical. Such
an equation cannot be satisfied as no substitutions can be
made to make the two sides equal.

Decomposing equation 1 leads to failure resulting in
the nontrivial equation cons(z1, z) = cons(0, z). De-
composing equation 2 also leads to failure resulting in the
nontrivial equation 0 = half(0, s(x, y1, z1), z1).

If the difference equations cannot be satisfied, the
lemma generation heuristic identifies subterms in the hy-
pothesis (which is a proxy for the conjecture) which if
generalized, are likely to make solving difference equa-
tions feasible. In the example, a candidate subterm for
generalization is 0.

Abstracting 0 by a new variable w in C611 leads to the
difference equations,

1: bton(rca(half(x,y1,w), y, cons(z1,z))) ==

bton(rca(half(x’, y1, z1), y, cons(w’, z)))

if {len(y) = add1(len(z)),

len(rca(half(x’,y1, z1) y, z)) =

len(app(z, cons(0, nil)))}.

2: bton(rca(half(w, mod2(x, y1, z1), z1),

rca(half(x, y1, z1), y, z),

app(z, cons(0, nil)))) ==

bton(rca(w’, rca(half(x’, y1, z1), y, z),

app(z, cons(0, nil)))) if

{len(y) = add1(len(z)),

len(rca(half(x’, y1, z1), y, z)) =

len(app(z, cons(0, nil)))}.

Decomposing equation 2 leads to the substitutions x’ = x
, w’ = half(w, s(x, y1, z1), z1).
Applying these substitutions to the remaining difference
equation 1 leads to the intermediate conjecture

I3: bton(rca(half(x,y1,w),y,cons(z1,z))) ==

bton(rca(half(x,y1,z1), y,

cons(half(w,mod2(x,y1,z1),z1),z))) if

{len(y) = add1(len(z)),

len(rca(half(x,y1,z1), y, z)) =

len(app(z, cons(0, nil))))}.

Conjecture I3 is automatically established by RRL by
structural induction on the variable y, thereby, proving
the conjecture C6.

Our work is similar in its motivation to that of [20,
22, 23] in which approaches for speculating intermediate
lemmas and for discovering generalized forms of conjec-
tures for fixing failed induction proof attempts are given
using the rippling heuristic. The non-induction variables
of a conjecture (called sinks) are exploited in that ap-
proach also. In rippling, it is assumed that a common
term structure called the skeleton is shared by both the
induction hypothesis and the conclusion. Meta level an-

11 If the subterm that is identified for generalization occurs on
only one side of the conjecture, then a new conjecture is gener-
ated. The side in which the subterm does not appear is replaced
by a term schema in the new conjecture. An instantiation for the
schema is speculated while attempting to prove the new conjecture.
The reader may refer to [30] for details.

notations called wave fronts are used to mark the differ-
ences between the hypothesis and the conclusion with re-
gards to the skeleton. Similar annotations are associated
with the rewrite rules (called wave rules), representing
definitions and lemmas. Intermediate lemmas are gener-
ated as annotated equations by individually speculating
each of the sides of the equation. Speculation typically
involves starting with the skeleton embedded in second-
order meta-variables denoting the missing wave fronts,
and repeatedly simplifying using wave rules. The miss-
ing term structure is incrementally generated by unifying
terms with second order meta variables after each simpli-
fication step. The approach uses higher-order unification,
an expensive primitive operation, often leading to many
useless paths.

Another related approach based on rippling is a crit-
ic [51] for handling diverging induction proof attempts.
The critic is implemented in the theorem prover SPIKE
and identifies accumulating term structures in succes-
sive induction subgoals by difference matching these sub-
goals [2], a technique for reconciling term annotations.
Missing lemmas are heuristically speculated as wave rules
that can aid in removal of this accumulating structure.
The speculation of lemmas is based solely on the analysis
of the proof attempts and does not exploit the structure
of the rewrite rules.

The proposed approach, in contrast, is guided by
heuristics to semantically match the hypothesis and the
conclusion in a restricted fashion based on the structure
of the available definitions and lemmas. We believe that
it is simpler as additional annotations on rewrite rules
are not needed and higher order unification for generating
instantiations for term schemas as done in [20, 22, 23] is
also avoided. Suitable instantiations are instead obtained
by generating sufficiently many constraints on instan-
tiations, and heuristically speculating ground instances
using constraints. More constraints can be generated, if
need be, depending upon how many resources a prover is
interested in using in speculating conjectures.

6.3 Lemma speculation guided by circuit structure and
homomorphisms

The correctness proof of a multiplier circuit is instructive
in illustrating how interpretation of signals and the cir-
cuit structure can be helpful in identifying/speculating
intermediate conjectures needed in the proof. A multi-
plier circuit in the family discussed above has four sub-
circuits. The first circuit psum-all computes the partial
sums; the second circuit k-repeat repeatedly performs
addition of k bit vectors until the result is less than k

bit vectors; the third circuit gsimple-adder adds the bit
vectors resulting from k-repeat. The fourth circuit, la-
beled gklogk-adder, is the adder used within k-repeat

for adding k bit vectors used by the k-repeat component.
From the circuit structure, we have:

k-mult(x, y) == gsimple_adder(k-repeat

mMS ID: STTTN032

31 May 2000 14:59 CET

26 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

(k, psum-all(x, y))) if

len(x) = len(y),

The output of gsimple-adder is also the output of
the whole multiplier circuit.

Interpretations are used to express the correctness of
the multiplier circuit as

bton(k-mult(x, y)) = bton(x) * bton(y)

if len(x) = len(y),

where x and y are bit vectors and bton is a homomorph-
ism from bit vectors to numbers. Similarly, a collection
(list) of bit vectors is interpreted using btonlist, which is
a homomorphism from a list of bit vectors to numbers, ex-
pressed using bton as discussed above. The specification
for gsimple-adder is

bton(gsimple_adder(x)) = btonlist(x).

The specification of the gklogk-adder component is

btonlist(gklogk-adder(x1, k)) = btonlist(x1)

if (lenlst(x1) = k).

The equation expressing the correctness of the multiplier
unfolds to

bton(gsimple_adder(k-repeat(psum-all(x, y)))) ==

bton(x) * bton(y) if len(x) = len(y).

The above formula simplifies, using the specification of
the adder component gsimple-adder, to

C7: btonlist(k-repeat(k, psum-all(x, y)))) ==

bton(x) * bton(y) if len(x) = len(y).

This formula cannot be simplified any further. An at-
tempt to prove this formula by induction fails, however,
no matter what induction scheme suggested by any of the
definitions of psum-all, bton, len is used. This can be
found by analyzing the definitions of the function symbols
psum-all and k-repeat.

Intermediate conjecture generation heuristic is in-
voked. Since the functions bton and btonlist are spec-
ified as homomorphisms, intermediate lemmas relat-
ing btonlist to the functions k-repeat, k-once and
psum-all with unknown templates are automatically
generated by RRL.

1. btonlist(applst(Y, Z)) ==

G’(btonlist(Y), btonlist(Z))

2. btonlist(k-repeat(k, Z)) == H’(btonlist(Z)),

3. btonlist(k-once(k, Z)) == I’(btonlist(Z)),

4. btonlist(psum-all(x, y)) ==

J’(bton(x), bton(y)),

where G’, H’, I’ and J’ denote unknown term schemas,
which must be discovered. Similar to the discussion in
the previous section on a constraint-based approach for
lemma speculation, constraints on the term schemas are
generated using the definitions of the function symbols

(using induction). ¿From these constraints, instantiations
for the term schemas are speculated.

Let us consider conjecture 1. Two constraints are gen-
erated for the term schema G’ from the definition of
applst.

1.1 G’(0, btonlist(Z)) = btonlist(Z),

1.2 G’(bton(Z11) + btonlist(Z1), btonlist(Z)) =

bton(Z11) + G’(btonlist(Z1), btonlist(Z)).

Substituting Z1 = lnil in constraint 1.2 as suggested by
the definition of btonlist gives

1.3. G’(bton(Z11), btonlist(Z)) =

bton(Z11) + G’(0, btonlist(Z)).

The above constraint simplifies, using constraint 1.1, to

1.4. G’(bton(Z11), btonlist(Z)) =

bton(Z11) + btonlist(Z)).

By generalizing the constraint 1.4, the instantiation for
the term schema G’ is speculated to be

G’(x, y) = x + y.

We get the first intermediate conjecture to be

I4: btonlist(applst(x, y)) ==

btonlist(x) + btonlist(y).

The conjecture I4 can be easily established in RRL by
coverset induction using the definition of applst.

Consider intermediate conjecture 2 now. From the
definition of k-repeat, a constraint is generated for the
term schema H’:

2.1. H’(btonlist(applst(Z1, Z))) =

H’(btonlist(applst(gklogk-adder(Z1, k),

k-once(k, Z)))).

Constraint 2.1 can be simplified using the lemma I4 and
the specification of the adder component gklogk-adder
to

2.2 H’(btonlist(Z1) + btonlist(Z)))) =

H’(btonlist(Z1) + btonlist(k-once(k, Z))).

Again, as suggested by the definition of btonlist, substi-
tuting Z1 = lnil in the above constraint gives

2.3 H’(btonlist(Z)) = H’(btonlist(k-once(k, Z))).

The constraint 2.3 cannot be further simplified. Using
the definition of k-once with Z = applist(Z11, Z12)

leads to a formula which is the same as the constraint 2.2.
However, since the root function symbols of the two sides
of the constraint 2.3 are the same, the decomposition
heuristic in RRL is used to equate the arguments, and
generate additional constraints. The constraint generated
by decomposition in this case is

I5: btonlist(Z) == btonlist(k-once(k, Z)).

The conjecture I5 is easily established in RRL by induc-
tion using the coverset of k-once.

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 27

This implies that the initial conjecture

2. btonlist(k-repeat(k, Z)) == H’(btonlist(Z)),

is independent of the instantiation chosen for the schema
H’. The intermediate conjecture is speculated to be

I6: btonlist(k-repeat(k, Z)) == btonlist(Z).

The conjecture I6 is proved in RRL using the intermedi-
ate lemmas I4, I5 by coverset induction on the definition
of the function symbol k-repeat.

The lemmas I4, I5, I6 are all the intermediate lem-
mas that are needed to establish the correctness of the
multiplier as shown below.

Going back to

C7: btonlist(k-repeat(k, psum-all(x, y)))) ==

bton(x) * bton(y) if len(x) = len(y),

C7 simplifies by lemma I6 to,

btonlist(psum-all(x, y)))) ==

bton(x) * bton(y) if len(x) = len(y).

This subgoal is established in RRL by induction using
the coverset of psum-all.

7 Finite tables and case analysis

Many hardware circuits, for example, SRT division, use
a large number of preprogrammed constants, which are
typically specified as finite tables. Implementations of
arithmetic functions such as the square root and trigono-
metric functions are based on evenmuch larger lookup ta-
bles [18, 44, 54]. Many of these implementations use mul-
tiple lookup tables [18, 54]. These tables are realized in
hardware using PLAs (programmable logic arrays) [17,
39].

We discuss extensions to RRL for performing exten-
sive case analysis typically arising in the verification of
such circuits as well as for handling large finite tables.
A hardware implementation of the radix 4 SRT division
algorithm, the source of the now notorious Intel Pentium
bug, is used for illustration.

A finite table can be specified in RRL as a predicate
that is a subset of the Cartesian product of the index
types and the entry type. Both index values for which
there is a table entry as well as those index values for
which there is no table entry would have to be given.
A lack of functional notation, however, is likely to lead
to cumbersome expression of properties involving a table.
A second way to specify a table is as a partially speci-
fied function. Each index tuple for which the table has
an entry, the function has that entry as its value. To
use the cover-set induction method to generate cases in
proofs [53], it is necessary to relativize the original for-
mula using a predicate specifying the subdomain of index
values for which the table has the entries.

With either of these approaches, RRL would typic-
ally resort to brute force case analysis based on the table
indices, regardless of the table structure. This may get
prohibitively expensive for large tables. For example, the
radix 4 SRT division uses a lookup table for quotient digit
selection with up to 800 entries [47]. In order for the ver-
ification to scale up to these applications, it is necessary
that the underlying structure in tables be better exploited
by the theorem proverRRL.

We introduce a special data structure for modeling fi-
nite tables. Partial tables are modeled using specialDont-
care entries. In order to better exploit the structure of
the tables we introduce sparse tables based on how fre-
quently particular values appear as table entries. Sparsity
in the tables is exploited in correctness proofs by doing
case analysis on the table entries rather on the indices.
The generated cases are used to deduce constraints on the
table indices. Additional domain information about table
indices can then be used to further simplify constraints on
indices and check them.

As an example, for the SRT division circuit, 1536 cases
are needed in the correctness proof if case analysis is done
based on table indices [31]. This is reduced to 12 top-level
cases by modeling tables as a special data type and per-
forming case analysis on table entries. Each individual
top level case generated is much simpler, even though it
may have additional subcases.

Below, we first give an overview of the SRT division
algorithm, and then briefly discuss its hardware imple-
mentation using a finite table for selecting quotient digit.
Later we review a special data structure for finite tables,
and show how it can be used to specify the quotient digit
table of the radix 4 SRT division, and illustrate special
reasoning mechanisms for the data structure in a proof of
the main invariant property of the SRT division circuit.

7.1 SRT division algorithm

The SRT division algorithm [41, 47, 48] is an iterative al-
gorithm for dividing a normalized dividend by a normal-
ized divisor in which the quotient is computed digit by
digit by repeatedly subtracting the multiples of the divi-
sor from the dividend. The algorithm can be formalized in
terms of the following recurrences about division in base
(radix) r.

P0 := dividend/r, Q0 := 0,
Pj+1 := r ∗ Pj − qj+1 ∗ D, for j = 0, · · · , n−1,
Qj+1 := r ∗ Qj + qj+1, for j = 0, · · · , n−1,

whereD is the positive divisor,Pj is the partial remainder
at the beginning of the j-th iteration, and 0≤ Pj <D, for
all j, Qj , is the quotient at the beginning of the iteration
j, qj is the quotient digit at iteration j, and n is the num-
ber of digits in the quotient. The bounds on the successive
partial remainder 0≤ Pj <D guarantee the convergence
of the algorithm.

mMS ID: STTTN032

31 May 2000 14:59 CET

28 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

SRT dividers used in practice incorporate several per-
formance enhancing techniques while realizing the above
recurrences. In particular, it is necessary to minimize the
number of iterations and efficiently compute the quo-
tient digit in each iteration. In radix 4 SRT division al-
gorithm, the quotient digits are represented by a redun-
dant signed-digit representation with digits in the range
[−2, 2]. Tradeoffs between speed, radix choice and redun-
dancy of quotient digits are discussed in [47]. Because
of the redundancy, the bounds on the successive partial
remainders for the convergence of the algorithm can be
looser:

−D ∗ 2/3 ≤ Pj ≤ D ∗ 2/3.

By substituting the recurrence for the successive par-
tial remainders, the range of shifted partial remainders,
4 ∗ Pj , that allow a quotient digit k to be chosen is:

[(k − 2/3)∗D, (k + 2/3)∗D].

The above relation between the shifted partial remain-
der range P and divisor D is diagrammatically plotted
as a P-D plot given in Fig. 2. The plot gives the shifted
partial remainder ranges in which a quotient digit can
be selected, without violating the bounds on the next
partial remainder. For example, when the partial remain-
der is in the range [5/3D, 8/3D], the quotient digit 2
is selected. The shaded regions represent quotient digits
overlaps where more than one quotient digits selection
is feasible.

Redundancy in quotient digits allows the quotient
digit to be selected based on only a few significant bits
of the partial remainder and the divisor. As explained

1/3
2/3
1
4/3

5/3
2

7/3
8/3
3
10/3
11/3
4
13/3

14/3
5
16/3

Divisor

1/3D

2/3D

4/3D

5/3D

8/3D

qj = 0

qj = (0, 1)

qj = 1

qj = (1, 2)

qj = 2

0

8/8 12/8 15/8

Remainder

Shifted Partial

Fig. 2. P-D plot for radix 4

in [47], for a radix 4 SRT divider with the partial remain-
ders and divisor of arbitrary width n, n > 8, it suffices
to consider partial remainders up to 7 bits of accuracy
and a divisor up to 4 bits of accuracy. This reduces the
complexity of the quotient selection process and it can
be implemented as a finite table. The partial remainder
computation can be overlapped with the quotient digit
selection computation.

The quotient digit selection table implementing theP-
D plot for radix 4 is reproduced above from [47]. Rows
are indexed by the shifted truncated partial remainder
g7g6g5g4.g3g2g1 (in 2’s complement); columns are in-
dexed by the truncated divisor f1.f2f3f4; table entries
are the quotient digits. The table is compressed by consid-
ering only row indices up to 5 bits since only a few entries
in the table depend upon the two least significant bits
g2g1 of the shifted partial remainder. For those cases, the
table entries are symbolic values A,B,C,D,E defined in
term of g2g1 as:

A= − (2− g2∗ g1), B = −(2− g2), C = 1+ g2,

D = −1+ g2, E = g2.

Every entry in the table is thus for four remainder esti-
mates. The - entries in the table are the dontcare entries.

In the above recurrence relations, qj+1 is replaced by
qtable(up, ud), where qtable is the quotient selection
table, up, ud are, respectively, the truncated partial re-
mainder and divisor.

7.2 SRT divider circuit

A radix 4 SRT divider circuit based on the above quo-
tient digit selection table is described in Fig. 3. The reg-

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 29

A - B -1

Divisor

<<1

MUX

DALUGALU

<<2<<2

REMAINDER

QUO LOGIC

 q

QPOS QNEG

d

d1 (3 bits)
md

md1 (8 bits)

rin1
(8 bits)

rout

rout1
(8 bits)

4r
ou

t1

 0

A B
A - B

A BA B

A + B

A + B

A - B

qsign (1 bit)

qdigit(2 bits)

Fig. 3. SRT division circuit using radix 4

isters divisor, remainder in the circuit hold the value of
the divisor and the successive partial remainders, respec-
tively. The register q holds the selected quotient digit
along with its sign; the registers QPOS and QNEG hold
the positive and negative quotient digits of the quotient.
A multiplexor MUX is used to generate the correct mul-
tiple of the divisor based on the selected quotient digit
by appropriately shifting the divisor. The hardware com-
ponentDALU is a full width ALU that computes the par-
tial remainder at each iteration. The component GALU
(the guess ALU [47]) is an 8-bit ALU that computes
the approximate 8-bit partial remainder to be used for
quotient selection. The components < < 2 perform left
shift by 4. The hardware componentQUO LOGIC stands
for the quotient selection table, and it is typically im-
plemented using an array of preprogrammed read-only-
memory. GALU computes an 8-bit estimate of the next
partial remainder which is left shifted by 4 and then
used with the truncated divisor (d1) to index into QUO
LOGIC to select the quotient digit for the next iteration.

Note thatGALU and the quotient digit selection are done
in parallel with the full width DALU so that the correct
quotient digit value is already available in the register q at
the beginning of each iteration.

7.3 Modeling table as a special data type

We define a table as a special data type to avoid the
burden of having to specify what index tuples must be
excluded from its specification, as well have a functional
notation for accessing table entries. Ideally, we would
like a table to be input graphically to RRL as given in
Table 1.TSr In the absence of that, we propose a simple
mechanism using finite enumerated types for indices.

A finite enumerated data type is a finite set of dis-
tinct values, typically denoted by a finite set of distinct
free constructor symbols, i.e., every two distinct construc-
tors are not equal. Such a data type en can be specified in
RRL by listing CE

s its constructors as nullary constants
of types en, and declaring them to be free. Since finite

TS
r Table 1 or 2?

CE
s Should ’nullary’ be ’null’ in line below?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

30 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

Table 2. Quotient digit selection table

parrem Divisor
f1.f2f3f4

g7g6g5g4.g3g2g1 1.000 1.001 1.010 1.011 1.100 1.101 1.110 1.111

1010.0 – – – – – – – –
1010.1 – – – – – – -2 -2
1011.0 – – – – – -2 -2 -2
1011.1 – – – -2 -2 -2 -2 -2
1100.0 – – -2 -2 -2 -2 -2 -2
1100.1 -2 -2 -2 -2 -2 -2 -2 -2
1101.0 -2 -2 -2 -2 -2 -2 B -1
1101.1 -2 -2 -2 B -1 -1 -1 -1
1110.0 A B -1 -1 -1 -1 -1 -1
1110.1 -1 -1 -1 -1 -1 -1 -1 -1
1111.0 -1 -1 D D 0 0 0 0
1111.1 0 0 0 0 0 0 0 0
0000.0 0 0 0 0 0 0 0 0
0000.1 1 1 1 1 E 0 0 0
0001.0 1 1 1 1 1 1 1 1
0001.1 2 C 1 1 1 1 1 1
0010.0 2 2 2 2 C 1 1 1
0010.1 2 2 2 2 2 2 2 1
0011.0 – 2 2 2 2 2 2 2
0011.1 – – 2 2 2 2 2 2
0100.0 – – – – 2 2 2 2
0100.1 – – – – – 2 2 2
0101.0 – – – – – – – 2
0101.1 – – – – – – – –

subranges of natural numbers are often used for indices,
a finite enumerated data type can also be specified as
a subrange: enum en: [lo ... hi: nat], where lo and hi
are natural numbers with lo <= hi. Subranges over inte-
gers can also be used as shown below for the quotient digit
selection table for SRT division.

If the constructors of an enumerated type are given
using numbers, then an implicit conversion from the
values of the enumerated type to numbers is done so that
the usual operations on numbers supported by RRL as
a part of the quantifier-free theory of Presburger arith-
metic can be used. As will be evident below, for SRT
division, such an implicit conversion is quite useful.

A parameterized (generic) function lookup is associ-
ated with the data type table to access the entries of
a specific table given the index values. We slightly abuse
the notation and write lookup(t, i1, j1) to mean the
entry associated with the index values i1, j1 in the table
t. For convenience, we introduce the syntactic sugar for
lookup(t, i1, j1) and write it as t(i1, j1). A table can
be specified by enumerating its entries as: t(i1, j1) :=

v1, t(i2, j2) := v2, Entries not explicitly listed
are assumed to be not specified.

Tables with don’t-care entries

Many lookup tables, in practice, have don’t-care entries,
i.e., for certain index values, it does not really matter

what the table entry is. This may be so either because the
table is not meant to be used for such index values, or the
properties of interest involving the table do not depend
upon the entry value for such index values. A table with
don’t-care entries is supported in a similar way to a table
without don’t-care entries, with the difference that a spe-
cial constant value dontcare of type Dtcare is used as an
entry value.

Specifying quotient digit selection table in RRL

The quotient digit selection table is specified in RRL by
qtable as an instance of the parameterized table type
discussed above. The table indices are given by the inte-
ger subranges column and row. The entry type of qtable
is the union of integers and Dtcare, but only the sub-
range [m(2)...2] is used. The unary function m is the
minus operation on integers12. As the table is too big to be
included here, we reproduce below a portion of the speci-
fication – a part of the eighth row.

The eighth row corresponds to four shifted truncated
remainder estimates: {−17/8,−9/4,−19/8,−5/2} de-
pending upon the values of g2g1; they are scaled up by

12 Instead of using fractional numbers for indices, it is more con-
venient and faster for RRL to use their scaled integer versions as
indices to the table. So all row and column indices are scaled up by
8. Scaling up effectively leads to using number representations of
bit vectors of the shifted truncated partial remainder estimate and
the truncated divisor estimate by dropping the decimal point.

TS
t Table 1 or 2?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 31

multiplying by 8, to {−17,−18,−19,−20} (2’s comple-
ment is used in Table 1TSt for row indices). Below, the
table entries for row index 20 are given.

[8...15 : column] [m(48)...47: row]

table [qtable : row, column -> integer U Dtcare]

qtable(m(20),8) := m(2) qtable(m(20),9) := m(2)

qtable(m(20),10) := m(2) qtable(m(20),11) := m(2)

qtable(m(20),12) := m(1) qtable(m(20),13) := m(1)

qtable(m(20),14) := m(1) qtable(m(20),15) := m(1)

The table entry for the eighth row and the column in-
dex 1.011 (11) is B, where B =−(2− g2). For all other
column indices, the entries do not depend upon g2g1.
So for all column indices other than 11, the table value
is the same irrespective of whether the row index is
−20,−19,−18 or −17.

For the column index 11, the table entry is -2 if the row
index is −20 or −19, since in that case g2 is 0; if the row
index is −18 or−17, then the table entry is -1.

qtable(m(19),11) := m(2)

qtable(m(18),11) := m(1)

qtable(m(17),11) := m(1)

Other rows are similarly specified, with each row
defining 32 table entries.

7.4 Verifying SRT division by exploiting sparsity in
tables

The main invariant of SRT division is specified in RRL
using qtable as:

(C3): m(2) * divsr <=

12 * parrem - 3 * qtable(up, ud) * divsr

<= 2 * divsr if

{m(2) * divsr <= 3 * parrem <= 2 * divsr,

ud <= 8 * divsr < ud + 1,

up <= 32 * parrem < up + 1}.

The above formula states that if the partial remainder
parrem in the previous iteration is within bounds of the
divisor divsr (the absolute value of the partial remain-
der is within two-thirds of the divisor) and if the table
indices up, ud correctly approximate the divisor and the
partial remainder within certain bounds, then the partial
remainder computed in the next iteration 4 * parrem -

qtable(up, ud) * divsr would continue being appropri-
ately bounded by the divisor.

In [24, 31], we reported two different methods for prov-
ing this invariant. In [31], (C3) was automatically proved
in RRL by modeling quotient selection table as a func-
tion over integers, and by performing case analysis on the
table indices up and ud. This leads to 1536 cases, 768
cases each for proving the upper bound and lower bound,
respectively. Don’t-care entries are modeled by out-of-
bound integers, and the intermediate cases generated are
extremely cumbersome. In [24], the proof was done using

an intensional formulation of the quotient table by ab-
stracting table entries in terms of boundary value predi-
cates proposed in [13]. This approach requires user guid-
ance in terms of additional lemmas besides the manual
abstraction of the table. Establishing the correctness of
this manual abstraction is nontrivial.

The proof can, however, be vastly simplified by noting
that the number of distinct entries in the table is only six,
Dtcare, -2, -1, 0, 1, 2. Hence only 12 top-level cases
need be generated if case analysis is performed on entries
instead of indices.

Reasoning About sparse tables

RRL automatically invokes case analysis on entries for
sparse tables such as the quotient digit selection table.
The notion of sparsity used by RRL is reviewed below.
More details can be found in [34].
A table t, table [t:e1, e2 → er], is sparse iff
|entries(t)| ≤ minimum(|e1|, |e2|), where entries(t) is
the set of all table entries including the don’t-care value,
if used.

The rationale behind this definition is that performing
case analysis on entry values for a sparse table does not
result in more cases than would arise if the case analysis
is done on any of the index variables. Mechanizing proofs
of properties involving tables based on entries may lead to
fewer cases with simpler proofs. If the number of distinct
table entries is much less than the total number of distinct
index tuples, proof attempts using case analysis based on
table entries can be helpful.

Sometimes it is also possible to use properties of index
types as well for testing constraints on indices deduced
from an instantiation of a given conjecture based on a par-
ticular table entry value. For a particular table entry, say
v, a proof of the simplified conjecture can be attempted
for the index values for which the table has v as the entry.
Another promising approach is to generate from the sim-
plified conjecture, a constraint on index values that must
be satisfied for the conjecture to be valid. It can then be
checked whether the index values corresponding to v in-
deed satisfy the constraint.

The main idea in deriving constraints on index vari-
ables from a given conjecture for a particular table entry
value is that of projection of the values of index variables.
This can be obtained by eliminating non-index variables
from the negation of the simplified formula.

Consider a universally quantified conjecture φ(x1, · · · ,
xn, y1, · · · , ym) where x1, · · · , xn are the index variables
and y1, · · · , ym are the nonindex variables. Without any
loss of generality and for simplicity, we assume a single
table term t(x1, · · · , xn) occurring in φ. Consider a par-
ticular entry value, say v of t(x1, · · · , xn); let I be the
finite set of index tuples (values of x1, · · · , xn) for which
the table t has entry value v.

When φ is attempted for the case t(x1, · · · , xn) = v,
a formula φ1 with t(x1, · · · , xn) replaced by v is obtained

CE
u End-stop added after ’mynot’ and ∀ eliminated. OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

32 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

from φ. Typically φ1 is simpler than φ. If it can be proved,
we are done. In general, φ1 need not be valid, in which
case, the goal is to find an equivalent quantifier-free for-
mula ψ(x1, · · · , xn) without any nonindex variables such
that for each index tuple satisfying ψ, φ1 is true for every
value of the nonindex variables. CEu

Let θ(x1, · · · , xn) be ¬. The formula θ character-
izes the index tuples for which there is at least a tuple
of values for nonindex variables that falsifies φ1. Let
ψ1(x1, · · · , xn) be a quantifier-free formula equivalent to
¬ ∀ y1,· · · ym φ1(x1,· · · , xn, y1,· · · , ym). Then ψ = ¬ψ1
characterizes the set of index tuples such that for all
values of nonindex variables, φ1 is true. The formula
ψ(x1, · · · , xn) is the constraint on index variables for φ to
be valid if t(x1, · · · , xn) = v. If for every tuple in I, ψ is
true, then φ is valid for the case when t(x1, · · · , xn) = v.

For a don’t-care entry value, it must be ensured that
the conjecture is valid independent of the table entry.
This particular case is handled separately without replac-
ing the table term by the don’t-care value.

We illustrate this approach in a proof of the above in-
variant of the SRT division algorithm.

SRT division correctness

The correctness proof of (C3) is done by case analysis
on table entry values rather on the indices. For the lower
bound, this leads to five top-level cases – five correspond-
ing to the entry values in the subrange [m(2)...2], and
one case is generated for the don’t-care entry value. Six
cases are generated for the upper bound as well.

For qtable(up, ud) = 0, (C3) simplifies to

(C3.0): (-divsr) <= (6 * parrem) <= divsr if

{(-2 * divsr) <= (3 * parrem) <= (2 * divsr),

(ud <= (8 * divsr) < (ud + 1)),

(up <= (32 * parrem) < (up + 1))}.

Consider the subcase of this simplified formula to
show - divsr <= 6 * parrem. The negated formula is:

(Exists. parrem, divsr)

[(6 * parrem < -divsr) and

(-2 * divsr <= 3 * parrem) and

(3 * parrem <= 2 * divsr) and

(ud <= (8 * divsr) and (8 * divsr < ud + 1) and

(up <= 32 * parrem) and

(32 * parrem < up + 1)].

The non-index variable parrem can be eliminated by
cross-multiplying the coefficients of parrem [26]. The re-
sulting formula is 6 * up <= -32 * divsr. Using ud <= 8 *

divsr eliminates the remaining nonindex variable divsr
to give 48 * up < -32 * ud. The constraint on indices is
generated by negating and simplifying this formula:

(0, Lowerbound): up >= -2/3 ud. (I)

For the second subcase corresponding to the upper
bound 6 * parrem <= divsr, the nonindex variables

divsr, parrem are eliminated from the negated formula
leading to the constraint

(0, Upperbound): up + 1 <= 2/3 ud. (II)

The constraints for other table entries can be similarly
derived.

The proof of the invariant (C3) is reduced to show-
ing that nine constraints similar to I and II on indices
up, ud are satisfied for different quotient digit values.
One method to check them is to explicitly plug in various
values of up, ud which give rise to each of quotient digits.

Since these constraints are simple inequalities, and in-
dices are subranges over numbers, this information can be
used to simplify checking these constraints. For instance,
consider constraint (I): up >= - 2/3 ud. For qtable(up,
ud) = 0, ud ranges over [8...15], meaning -2 * ud is in the
range [m(30), m(16)]. The constraint is satisfied for all
values of up greater than or equal to m(5). The remaining
cases to be considered are:

[(m(6), 10),..., (m(6), 15),

(m(7), 12),..., (m(7), 15),...,

(m(8), 12),..., (m(8), 15).]

When up = m(6), 9 <= ud. When up = m(7), 11 <= ud. So
all cases are considered.

A similar analysis works for (II) and other quotient
digits, including the don’t-care entry.

To summarize, for circuits using sparse tables, ver-
ification of their properties can involve extensive case
analysis, which can be simplified and structured by per-
forming case analysis based on the values appearing in
the table instead of its indices. Projection and elimina-
tion techniques can be exploited to generate simpler con-
straints that are easier to check. Index type structure can
be used to the advantage in simplification and analysis.

8 Conclusion: future enhancements and
challenges

We have shown that existing theorem proving technol-
ogy can go a long way in ensuring reliability of a certain
family of circuit descriptions. For simple adder, multi-
plier and division circuits, a theorem prover such as RRL
that provides support for fast contextual rewriting, deci-
sion procedures for equality on ground terms and num-
bers, as well as mechanization of induction with interme-
diate lemma generation features and backtracking, can
be used as a push-button tool. Number-theoretic prop-
erties about such circuits can be proved automatically
without any human guidance. This is in sharp contrast
to the experience with other theorem provers including
Boyer-Moore’s prover, ACL2, PVS, Larch and NuPRL,
which require considerable human guidance for finding
proofs. Such experience gives hope that with additional
enhancements and extensions to theorem proving tools,
it is possible to automatically verify a larger class of

mMS ID: STTTN032

31 May 2000 14:59 CET

D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits 33

circuits. In the rest of this section, we propose enhance-
ments needed for theorem provers and challenges faced
by theorem proving research to make theorem provers
more effective and useful for this application of hardware
reliability.

We are quite aware of the limitation of the approach
advocated in this paper. The main thing we have demon-
strated is that a theorem proving tool exists with capa-
bilities and features using which it is possible to auto-
matically verify (without any human guidance or inter-
vention) properties of simple arithmetic circuits such as
adders, multipliers and division circuits. Can we claim
that we have a tool that can be used by hardware design-
ers for designing such circuits? The answer is no, as there
are a number of issues which must be addressed and RRL
must be enhanced to get to that level of use.

First and foremost the input language of RRL is
a functional programming language using recursion, and
not a hardware description language. There is clearly
a need to develop an interface betweenRRL and a tool for
describing hardware designs from which circuits can be
synthesized. A theorem prover should be able to process
descriptions used by hardware designers, instead of re-
quiring descriptions in a special purpose language viewed
unrelated to hardware designs. A good step in making
progress in that direction would be to develop a translator
from a subset of a commonly-used hardware description
language by hardware designers, e.g., Verilog or VHDL,
to the input language of RRL. This does not appear to be
an easy task, as a number of researchers have attempted
to do so with limited success due to the problematic se-
mantics of some of the features in these languages.

The second enhancement needed is that a theorem
prover must provide feedback found useful by a designer
when it is unable to prove a property about a design. This
could be in the form of a counter-example (test) that es-
tablishes that the property is not true of the CEv circuit.
If the portion of the circuit which is giving rise to the con-
flict between the circuit description and the property can
be localized, then this can be helpful in understanding the
problem and possibly lead to a fix. Some believe that this
can perhaps be the most useful role for theorem proving
tools.

Third, for a theorem proving tool to be acceptable to
designers, not only should it address a need felt by the
designers, it also needs to be integrated into the over-
all hardware design environment. The use of a theorem
prover should not be perceived as a burden or something
to be avoided unless it becomes unavoidable.

The above discussion about extensions and enhance-
ments to theorem proving tools has been motivated by
the objective of making them accessible to the practition-
ers of the application domain. Now, we discuss extensions
to a theorem prover such as RRL to enhance its reasoning
power to broaden its scope and make it widely applica-
ble to a larger family of circuit designs. First, we address
enhancements to address some peculiarities of RRL.

As of now, RRL does not use an efficient represen-
tation of numbers including naturals, integers and ra-
tionals. Naturals and integers are represented in unary
notation. And, rationals can be modeled as pairs of in-
tegers. Operations on numbers are implemented using
these representations. The efficiency of rewriting and
other inference mechanisms used in the decision proced-
ure can be significantly improved by adopting a more
efficient/compact representation of numbers.

Given that most hardware circuits are dealing with bit
vectors and signals (control and data), developing spe-
cial data structures and reasoning mechanisms suited to
handle these concepts are likely to help in increased au-
tomation of verification attempts of circuits.

RRL does not have any special data structure for rep-
resenting state machines and reasoning about reachable
states. For many control-theoretic properties, it is more
effective to use a state machine model. It would be useful
to support reasoning algorithms for state machines and
their properties. To deal with the state explosion problem
faced by most model checkers, it is necessary to provide
heuristics for designing and verifying abstractions to con-
trol the complexity of the state space. CEw

References

1. Angelo, C.M., Claesen, L., De Man, H.: A Methodology for
proving correctness of parameterized hardware modules in
HOL. In: Borrione, D., Waxman, R. (eds.): CHDL ’91, Ams-
terdam: Elsevier Science (North-Holland), 1991

2. Basin, D., Walsh, T.: Difference Matching. In: Kapur, D. (ed.):
Proc. CADE 11. LNAI 607. Berlin, Heidelberg, New York:
Springer-Verlag, 1992

3. Boyer, R.S., Moore, J.S.: A Computational Logic. ACM
Monogr Comput Sci, 1979

4. Boyer, S.B., Moore, J.S.: Integrating decision procedures into
heuristic theorem provers: a case study of linear arithmetic.
Mach Intell 11: 83–157, 1988

5. Boyer, R.S., Moore, J.: A Computational Logic Handbook.
New York: Academic Press, 1988

6. Boyer, R.S., Moore, J., Kaufmann, M.: Functional Instantia-
tion in Nqthm. CLI Tech Rep

7. Brock, B.C., Hunt, W.A., Kaufmann, M.: The FM9001 Micro-
processor Proof. CLI Tech Rep 86, Dec 1994

8. Bryant, R.E.: Graph-based algorithms for Boolean function
manipulation. IEEE Trans Comput C-35(8), 1986

9. Bryant, R.E., Chen, Y.-A.: Verification of arithmetic functions
with binary moment diagrams. Tech Rep CMU-CS-94-160,
June 1994

10. Bryant, R.E.: Bit-level analysis of an SRT divider circuit. Tech
Rep CMU-CS-95-140, Carnegie Mellon University, April 1995

11. Burch, J.R., Clarke, E.M., Mcmillan, K.L., Dill, D.L.: Sequen-
tial circuit verification using symbolic model checking. 27th
ACM/IEEE Design Autom Conf, 1990

12. Camilleri, A.J., Gordon, M.J.C., Melham, T.F.: Hardware ver-
ification using higher-order logic. In: Borrione, D. (ed.): HDL
Descriptions to Guaranteed Correct Circuit Designs. Amster-
dam: North Holland, pp. 43–67, 1987

13. Clarke, E.M., German, S.M., Zhao, X.: Verifying the SRT di-
vision algorithm using theorem proving techniques. In: Alur,
R., Henzinger, T. (eds.): Proc. Comput Aided Verification, 8th
Int Conf CAV ’96, New Brunswick, July/August 1996. LNCS
1102. Berlin, Heidelberg, New York: Springer-Verlag, pp. 111–
122, 1996

14. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.K.: Effective
theorem proving for hardware verification. In: Kumar, Kropf

CE
v The following sentence changed and re-ordered. OK?

CE
w Please supply author’s/s’ (ed/s) initials whenever they

are missing in the refs, e.g., [14]

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

mMS ID: STTTN032

31 May 2000 14:59 CET

34 D. Kapur, M. Subramaniam: Using an induction prover for verifying arithmetic circuits

(eds.): Proc. 2nd Conf Theorem Provers in Circuit Design,
Sept 1994

15. Dadda, L.: Some schemes for parallel multipliers. In: Swartz-
lander, E.E., Jr. (ed.): Computer Arithmetic I, IEEE Comput
Soc Press, 1990

16. Dershowitz, N.: Termination of rewriting. J Symb Comput 3:
69–116

17. Ercegovac, M.D., Lang, T.: Division and Square Root: Digit
Recurrence Algorithms and Implementations. Boston, MA:
Kluwer, 1994

18. Ercegovac, M.D., Lang, T.: Radix-4 square root without initial
PLA. IEEE Trans Comput 39(8), 1990 CEx

19. German, S.: Towards Automatic Verification of Arithmetic
Hardware. Lecture Notes, 1995

20. Hesketh, J.T.: Using middle out reasoning to guide inductive
theorem proving. Ph.D thesis. University of Edinburgh, UK,
1991

21. Hunt, W.A., Brock, B.C.: The verification of a bit-slice ALU.
Workshop on Hardware Specification, Verification and Syn-
thesis: Mathematical Aspects. LNCS 408. Berlin, Heidelberg,
New York: Springer-Verlag, 1989

22. Ireland, A., Bundy, A.: Productive Use of Failure in Inductive
Proof. Edinburgh DAI Research Report No: 716

23. Ireland, A.: The use of planning critics in mechanizing induc-
tive proofs. In: Voronkov, A. (ed.): Proc LPAR ´92. LNAI 624.
Berlin, Heidelberg, New York: Springer-Verlag, 1992

24. Kapur, D.: Rewriting, decision procedures and lemma specu-
lation for automated hardware verification. Proc 10th Int Conf
Theorem Proving in Higher Order Logics. LNCS 1275. Berlin,
Heidelberg, New York: Springer-Verlag, 1997

25. Kapur, D.: Shostak’s congruence closure as completion. Proc
Intl Conf on Rewriting Techniques and Applications, (RTA-
97), Barcelona, Spain, June 1997

26. Kapur, D., Nie, X.: Reasoning about numbers in Tecton. Proc
8th Int Symp Methodol for Intelligent Systems, (ISMIS ’94),
Charlotte, NC, October 1994, pp. 57–70

27. Kapur, D., Subramaniam, M.: New uses of linear arithmetic in
automated theorem proving for induction. J Autom Reasoning
16(1-2): 39–78, 1996

28. Kapur, D., Subramaniam, M.: Mechanically verifying a family
of multiplier circuits. In: Alur, R., Henzinger, T. (eds.): Proc
Comput Aided Verification (CAV ’96), New Jersey. LNCS
1102. Berlin Heidelberg New York: Springer-Verlag, pp. 135–
146, 1996

29. Kapur, D., Subramaniam, M.: Mechanical verification of
adder circuits using powerlists. Dept Comput Sci Tech Rep,
SUNY Albany, November 199. Accepted for publication in J
Formal Methods in System Design

30. Kapur, D., Subramaniam, M.: Lemma discovery in automat-
ing induction. In: McRobbie, Slaney (eds.) Proc Int Conf on
Autom Deduction, CADE-13. LNAI 1104. New Jersey, July
1996

31. Kapur, D., Subramaniam, M.: Mechanizing reasoning about
arithmetic circuits: SRT division. In: Sivakumar, Ramesh
(eds.): Proc 17th FSTTCS. CEy LNCS. Berlin, Heidelberg,
New York: Springer-Verlag, 1997

32. Kapur, D., Subramaniam, M.: Intermediate lemma generation
from circuit descriptions. (in preparation) State University of
New York, Albany, NY, May 1997

33. Kapur, D., Zhang, H.: An overview of Rewrite Rule Labora-
tory (RRL). J Comput Math Appl 29(2): 91–114, 1995 CEz

34. Kapur, D., Subramaniam, M.: Mechanizing reasoning about
large finite tables in a rewrite-based theorem prover. In: Proc.

of ASEAN-8. LNCS, 1998
35. Moore, J., Lynch, T., Kaufmann, M.: A Mechanically Checked

Proof of the Correctness of the AMD5K86 Floating Point Di-
vision Algorithm. CETOOMUCH CL Tech Rep, March 1996

36. Miner, P.S., Leathrum, J.F.: Jr. Verification of IEEE com-
pliant subtractive division algorithm. Proc FMCAD ’96,
Palo Alto, CA. LNCS 1166. Berlin, Heidelberg, New York:
Springer-Verlag, 1996

37. Montoye, R.K., Hokenek, E., Runyon, S.L.: Design of the
IBM RISC System/6000 floating-point execution unit. IBM J
34(1), 1990

38. Nelson, G., Oppen, D.C.: Simplification by cooperating deci-
sion procedures. ACM Trans Program Lang Syst 1(2): 245–
257, 1979

39. Omondi, A.R.: Computer Arithmetic Systems: Algorithms,
Architecture and Implementations. Englewood Cliffs, NJ:
Prentice Hall, 1994

40. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to
Algorithms. Cambridge, MA: MIT Press, 1991

41. Robertson, J.E.: A new class of digital division methods. IRE
Trans Electron Comput, pp. 218–222, 1958

42. Ruess, H.: Hierarchical verification of two-dimensional high-
speed multiplication in PVS: a case study. Formal Methods
in CAD. LNCS 1166. Berlin, Heidelberg, New York: Springer-
Verlag, 1996

43. Ruess, H., Shankar, N., Srivas, M.K.: Modular verification of
SRT division. In: Alur, R., Henzinger, T. (eds.): Proc Com-
put Aided Verif, 8th Int Conf - CAV ’96, New Brunswick,
July/August 1996. LNCS 1102. Berlin, Heidelberg, New York:
Springer-Verlag, pp. 123–134, 1996

44. Sarma, D.D., Matula, D.: Measuring the accuracy of ROM
reciprocal tables. IEEE Int Symp on Comput Arith, IEEE
Computer Society, 1993

45. Shostak, R.E.: Deciding combination of theories. J ACM
31(1): 1–12, 1984

46. Subramaniam, M.: Failure Analyses of Inductive Theorem
Provers. Doctoral Dissertation, State University of New York,
Albany 1996

47. Taylor, G.S.: Compatible hardware for division and square
root. Proc 5th IEEE Symp Comput Archit, May 1981

48. Tocher, K.D.: Techniques of multiplication and division for
automatic binary computers. Q J Mech Appl Math 11(3): 1958

49. Verkest, D., Claesen, L., De Man, H.: On the use of the Boyer-
Moore theorem prover for correctness proofs of parameterized
hardware modules. In: Claesen, L. (ed.): Formal VLSI Specifi-
cation and Synthesis: VLSI Design Methods I, Elsevier Science
(North-Holland), 1990

50. Wallace, C.S.: A suggestion for a fast multiplier. In: IEEE
Trans Electron Comput EC-13: 14–17, 1964

51. Walsh, T.: A divergence critic. In: Bundy, A. (ed.): Proc
CADE 12. LNAI 814. Berlin, Heidelberg, New York: Springer-
Verlag, 1994

52. Zhang, H.: Implementing contextual rewriting. In: Remy,
Rusinowitch (eds.): Proc 3rd Int Workshop on Cond Term
Rewriting Syst. LNCS 656. Berlin, Heidelberg, New York:
Springer-Verlag, pp. 363–377, 1992

53. Zhang, H., Kapur, D., Krishnamoorthy, M.S.: A mecha-
nizable induction principle for equational specifications. In:
Lusk, Overbeek (eds.): Proc 9th Int Conf Automat Deduction
(CADE), Chicago. LNCS 310. Berlin, Heidelberg, New York:
Springer-Verlag, pp. 250–265, 1988

54. Zurawski, J.H., Gosling, J.B.: Design of a high speed square
root multiply and divide unit. IEEE Trans Comput C-36, 1987

CE
x Please supply missing information in ref below.(Which

lecture notes, number...)

CE
y Please supply missing LNCS number in ref below.

CE
z Please supply missing LNCS number in ref below.

CE
TOOMUCH Should ’CL’ in ref below be ’CLI’?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

