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Preface 
What we have to learn to do 
We learn by doing… 
 
- Aristotle, Ethics 

 

 
Why Another 
Programming 

Language 
Book? 

Writing a book about designing and implementing representations and 
search algorithms in Prolog, Lisp, and Java presents the authors with a 
number of exciting opportunities.  
The first opportunity is the chance to compare three languages that give 
very different expression to the many ideas that have shaped the evolution 
of programming languages as a whole. These core ideas, which also 
support modern AI technology, include functional programming, list 
processing, predicate logic, declarative representation, dynamic binding, 
meta-linguistic abstraction, strong-typing, meta-circular definition, and 
object-oriented design and programming. Lisp and Prolog are, of course, 
widely recognized for their contributions to the evolution, theory, and 
practice of programming language design. Java, the youngest of this trio, is 
both an example of how the ideas pioneered in these earlier languages 
have shaped modern applicative programming, as well as a powerful tool 
for delivering AI applications on personal computers, local networks, and 
the world wide web. 
The second opportunity this book affords is a chance to look at Artificial 
Intelligence from the point of view of the craft of programming. Although 
we sometimes are tempted to think of AI as a theoretical position on the 
nature of intelligent activity, the complexity of the problems AI addresses 
has made it a primary driver of progress in programming languages, 
development environments, and software engineering methods. Both Lisp 
and Prolog originated expressly as tools to address the demands of 
symbolic computing. Java draws on object-orientation and other ideas that 
can trace their roots back to AI programming. What is more important, AI 
has done much to shape our thinking about program organization, data 
structures, knowledge representation, and other elements of the software 
craft. Anyone who understands how to give a simple, elegant formulation 
to unification-based pattern matching, logical inference, machine learning 
theories, and the other algorithms discussed in this book has taken a large 
step toward becoming a master programmer. 
The book’s third, and in a sense, unifying focus lies at the intersection of 
these points of view: how does a programming language’s formal structure 
interact with the demands of the art and practice of programming to 
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create the idioms that define its accepted use. By idiom, we mean a set of 
conventionally accepted patterns for using the language in practice. 
Although not the only way of using a language, an idiom defines patterns 
of use that have proven effective, and constitute a common understanding 
among programmers of how to use the language. Programming language 
idioms do much to both enable, as well as support, ongoing 
communication and collaboration between programmers. 
These, then, are the three points of view that shape our discussion of AI 
programming.  It is our hope that they will help to make this book more 
than a practical guide to advanced programming techniques (although it is 
certainly that). We hope that they will communicate the intellectual depth 
and pleasure that we have found in mastering a programming language 
and using it to create elegant and powerful computer programs. 

The Design of 
this Book 

There are five sections of this book. The first, made up of a single chapter, 
lays the conceptual groundwork for the sections that follow. This first 
chapter provides a general introduction to programming languages and 
style, and asks questions such as “What is a master programmer?” What is a 
programming language idiom?”, and “How are identical design patterns 
implemented in different languages?”. Next, we introduce a number of 
design patterns specific to supporting data structures and search strategies 
for complex problem solving. These patterns are discussed in a “language 
neutral” context, with pointers to the specifics of the individual 
programming paradigms presented in the subsequent sections of our 
book. The first chapter ends with a short historical overview of the 
evolution of the logic-based, functional, and object-oriented approaches to 
computer programming languages.  
Part II of this book presents Prolog. For readers that know the rudiments 
of first-order predicate logic, the chapters of Part II can be seen as a 
tutorial introduction to Prolog, the language for programming in logic. 
For readers lacking any knowledge of the propositional and predicate 
calculi we recommend reviewing an introductory textbook on logic. 
Alternatively, Luger (2005, Chapter 2) presents a full introduction to both 
the propositional and predicate logics. The Luger introduction includes a 
discussion, as well as a pseudo code implementation, of unification, the 
pattern-matching algorithm at the heart of the Prolog engine. 
The design patterns that make up Part II begin with the “flat” logic-based 
representation for facts, rules, and goals that one might expect in any 
relational data base formalism. We next show how recursion, supported by 
unification-based pattern matching, provides a natural design pattern for 
tree and graph search algorithms. We then build a series of abstract data 
types, including sets, stacks, queues, and priority queues that support 
patterns for search. These are, of course, abstract structures, crafted for 
the specifics of the logic-programming environment that can search across 
state spaces of arbitrary content and complexity. We then build and 
demonstrate the “production system” design pattern that supports rule 
based programming, planning, and a large number of other AI 
technologies. Next, we present structured representations, including 
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semantic networks and frame systems in Prolog and demonstrate 
techniques for implementing single and multiple inheritance 
representation and search. Finally, we show how the Prolog design 
patterns presented in Part II can support the tasks of machine learning 
and natural language understanding.  
Lisp and functional programming make up Part III. Again, we present the 
material on Lisp in the form of a tutorial introduction. Thus, a 
programmer with little or no experience in Lisp is gradually introduced to 
the critical data structures and search algorithms of Lisp that support 
symbolic computing. We begin with the (recursive) definition of symbol-
expressions, the basic components of the Lisp language. Next we present 
the “assembly instructions” for symbol expressions, including car, cdr, and 
cons. We then assemble new patterns for Lisp with cond and defun. 
Finally, we demonstrate the creation and/or evaluation of symbol 
expressions with quote and eval. Of course, the ongoing discussion of 
variables, binding, scope, and closures is critical to building more complex 
design patterns in Lisp. 
Once the preliminary tools and techniques for Lisp are presented, we 
describe and construct many of the design patterns seen earlier in the 
Prolog section. These include patterns supporting breadth-first, depth-
first, and best-first search as well as meta-interpreters for rule-based 
systems and planning. We build and demonstrate a recursion-based 
unification algorithm that supports a logic interpreter in Lisp as well as a 
stream processor with delayed evaluation for handling potentially infinite 
structures. We next present data structures for building semantic networks 
and object systems. We then present the Common Lisp Object system 
(CLOS) libraries for building object and inheritance based design patterns. 
We close Part III by building design patterns that support decision-tree 
based machine learning.  
Java and its idioms are presented in Part IV. Because of the complexities 
of the Java language, Part IV is not presented as a tutorial introduction to 
the language itself. It is expected that the reader has completed at least an 
introductory course in Java programming, or at the very least, has seen 
object-oriented programming in another applicative language such as 
C++, C#, or Objective C. But once we can assume a basic understanding 
of Java tools, we do provide a tutorial introduction to many of the design 
patterns of the language.  

The first chapter of Part IV, after a brief overview of the origins of 
Java, goes through many of the features of an object-oriented language 
that will support the creation of design patterns in that environment. 
These features include the fundamental data structuring philosophy of 
encapsulation, polymorphism, and inheritance. Based on these 
concepts we briefly address the analysis, iterative design, programming 
and test phases for engineering programs. After the introductory 
chapter we begin pattern building in Java, first considering the 
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representation issue and how to represent predicate calculus structures 
in Java. This leads to building patterns that support breadth-first, 
depth-first, and best-first search. Based on patterns for search, we build 
a production system, a pattern that supports the rule-based expert 
system. Our further design patterns support the application areas of 
natural language processing and machine learning. An important 
strength that Java offers, again because of its object-orientation and 
modularity is the use of public domain (and other) libraries available on 
the web. We include in the Java section a number of web-supported AI 
algorithms, including tools supporting work in natural language, genetic 
and evolutionary programming (a-life), natural language understanding, 
and machine learning (WEKA). 
The final component of the book, Part V, brings together many of the 
design patterns introduced in the earlier sections. It also allows the authors 
to reinforce many of the common themes that are, of necessity, 
distributed across the various components of the presentation, We 
conclude with general comments supporting the craft of programming. 

Using this Book This book is designed for three primary purposes. The first is as a 
programming language component of a general class in Artificial 
Intelligence. From this viewpoint, the authors see as essential that the AI 
student build the significant algorithms that support the practice of AI. 
This book is designed to present exactly these algorithms. However, in the 
normal lecture/lab approach taken to teaching Artificial Intelligence at the 
University level, we have often found that it is difficult to cover more than 
one language per quarter or semester course. Therefore we expect that the 
various parts of this material, those dedicated to either Lisp, Prolog, or 
Java, would be used individually to support programming the data 
structures and algorithms presented in the AI course itself. In a more 
advanced course in AI it would be expected that the class cover more than 
one of these programming paradigms. 
The second use of this book is for university classes exploring 
programming paradigms themselves. Many modern computer science 
departments offer a final year course in comparative programming 
environments. The three languages covered in our book offer excellent 
examples on these paradigms. We also feel that a paradigms course should 
not be based on a rapid survey of a large number of languages while doing 
a few “finger exercises” in each. Our philosophy for a paradigms course is 
to get the student more deeply involved in fewer languages, and these 
typically representing the declarative, functional, and object-oriented 
approaches to programming. We also feel that the study of idiom and 
design patterns in different environments can greatly expand the skill set 
of the graduating student. Thus, our philosophy of programming is built 
around the language idioms and design patterns presented in Part I and 
summarized in Part V. We see these as an exciting opportunity for 
students to appreciate the wealth and diversity of modern computing 
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environments. We feel this book offers exactly this opportunity. 
The third intent of this book is to offer the professional programmer the 
chance to continue their education through the exploration of multiple 
programming idioms, patterns, and paradigms. For these readers we also 
feel the discussion of programming idioms and design patterns presented 
throughout our book is important. We are all struggling to achieve the 
status of the master programmer. 
We have built each chapter in this book to reflect the materials that would 
be covered in either one or two classroom lectures, or about an hour’s 
effort, if the reader is going through this material by herself. There are a 
small number of exercises at the end of most chapters that may be used to 
reinforce the main concepts of that chapter. There is also, near the end of 
each chapter, a summary statement of the core concepts covered in that 
chapter. 
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