

 i

 AI Algorithms, Data Structures, and
Idioms in Prolog, Lisp, and Java

 George F. Luger

 William A. Stubblefield

Addison-Wesley 2009

 Contents
 Preface ix

Part I Language Idioms and the Master Programmer 1

Chapter 1 Idioms, Patterns, and Programming 3

 1.1 Introduction: Idioms and Patterns 3

 1.2 Selected Examples of Language Idioms 6

 1.3 A Brief History of Three Programming Paradigms 11

 1.4 A Summary of Our Task 15

Part II Programming in Prolog 17

Chapter 2 Prolog: Representation 19

 2.1 Introduction: Logic-Based Representation 19

 2.2 Prolog Syntax 20

 2.3 Lists and Recursion in Prolog 25

 2.4 Structured Representation and Inheritance Search 28

 Exercises 32

ii Contents

Chapter 3 Abstract Data Types and Search 33

 3.1 Introduction 33

 3.2 Using cut to Control Search in Prolog 36

 3.3 Abstract Data Types (ADTs) in Prolog 38

 Exercises 42

Chapter 4 Depth- Breadth-, and Best-First Search 43

 4.1 Production System Search in Prolog 43

 4.2 A Production System Solution of the FWGC Problem 46

 4.3 Designing Alternative Search Strategies 52

 Exercises 58

Chapter 5 Meta-Linguistic Abstraction, Types, and Meta-Interpreters 59

 5.1 Meta-Interpreters, Types, and Unification 59

 5.2 Types in Prolog 61

 5.3 Unification, Variable Binding, and Evaluation 64

 Exercises 68

Chapter 6 Three Meta-Interpreters: Prolog in Prolog, EXSHELL, and a
Planner 59

 6.1 An Introduction to Meta-Interpreters: Prolog in Prolog 69

 6.2 A Shell for a Rule-Based System 73

 6.3 A Prolog Planner 82

 Exercises 85

Chapter 7 Machine Learning Algorithms in Prolog 87

 7.1 Machine Learning: Version Space Search 87

 7.2 Explanation Based Learning in Prolog 100

 Exercises 106

Chapter 8 Natural Language Processing in Prolog 107

 8.1 Natural Language Understanding 107

 8.2 Prolog Based Semantic Representation 108

 8.3 A Context-Free Parser in Prolog 111

 8.4 Probabilistic Parsers in Prolog 114

 8.5 A Context-Sensitive Parser in Prolog 119

 8.6 A Recursive Descent Semantic Net Parser 120

 Exercises 123

Chapter 9 Dynamic Programming and the Earley Parser 125

 9.1 Dynamic Programming Revisited 125

 Contents iii

 9.2 The Earley Parser 126

 9.3 The Earley Parser in Prolog 134

 Exercises 139

Chapter 10 Prolog: Final Thoughts 141

 10.1 Towards a Procedural Semantics 141

 10.2 Prolog and Automated Reasoning 144

 10.3 Prolog Idioms, Extensions, and References 145

Part III Programming in Lisp 149

Chapter 11 S-Expressions, the Syntax of Lisp 151

 11.1 Introduction to Symbol Expressions 151

 11.2 Control of Lisp Evaluation 154

 11.3 Programming in Lisp: Creating New Functions 156

 11.4 Program Control: Conditionals and Predicates 157

 Exercises 160

Chapter 12 Lists and Recursive Search 226

 12.1 Functions, Lists, and Symbolic Computing 161

 12.2 Lists as Recursive Structures 163

 12.3 Nested Lists, Structure, and car/cdr Recursion 166

 Exercises 168

Chapter 13 Variables, Datratypes, and Search 171

 13.1 Variables and Datatypes 171

 13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem 177

 Exercises 182

Chapter 14 Higher-Order Functions and Flexible Search 185

 14.1 Higher-Order Functions and Abstraction 185

 14.2 Search Strategies in Lisp 189

 Exercises 193

Chapter 15 Unification and Embedded Languages in Lisp 195

 15.1 Introduction 195

 15.2 Interpreters and Embedded Languages 203

 Exercises 205

Chapter 16 Logic programming in Lisp 207

 16.1 A Simple Logic Programming Language 207

iv Contents

 16.2 Streams and Stream Processing 209

 16.3 A Stream-Based logic Programming Interpreter 211

 Exercises 217

Chapter 17 Lisp-shell: An Expert System Shell in Lisp 219

 17.1 Streams and Delayed Evaluation 219

 17.2 An Expert System Shell in Lisp 223

 Exercises 232

Chapter 18 Semantic Networks, Inheritance, and CLOS 233

 18.1 Semantic nets and Inheritance in Lisp 233

 18.2 Object-Oriented Programming Using CLOS 237

 18.3 CLOS Example: A Thermostat Simulation 244

 Exercises 250

Chapter 19 Machine Learning in Lisp 251

 19.1 Learning: The ID3 Algorithm 251

 19.2 Implementing ID3 259

 Exercisers 266

Chapter 20 Lisp: Final Thoughts 267

Part IV Programming in Java 269

Chapter 21 Java, Representation and Object-Oriented Programming 273

 21.1 Introduction to O-O Representation and Design 273

 21.2 Object Orientation 274

 21.3 Classes and Encapsulation 275

 21.4 Polymorphism 276

 21.5 Inheritance 277

 21.6 Interfaces 280

 21.7 Scoping and Access 282

 21.8 The Java Standard Library 283

 21.9 Conclusions: Design in Java 284

 Exercises 285

Chapter 22 Problem Spaces and Search 287

 21.1 Abstraction and Generality in Java 287

 21.2 Search Algorithms 288

 21.3 Abstracting Problem States 292

 21.4 Traversing the Solution Space 295

 Contents v

 21.5 Putting the Framework to Use 298

 Exercises 303

Chapter 23 Java Representation for Predicate Calculus and Unification 305

 23.1 Introduction to the Task 305

 23.2 A Review of the Predicate Calculus and Unification 307

 23.3 Building a Predicate Calculus Problem Solver in Java 310

 23.4 Design Discussion 320

 23.5 Conclusions: Mapping Logic into Objects 322

 Exercises 323

Chapter 24 A Logic-Based Reasoning System 325

 24.1 Introduction 325

 24.2 Reasoning in Logic as Searching an And/Or Graph 325

 24.3 The Design of a Logic-Based Reasoning System 329

 24.4 Implementing Complex Logic Expressions 330

 24.5 Logic-Based Reasoning as And/Or Graph Search 335

 24.6 Testing the Reasoning System 346

 24.7 Design Discussion 348

 Exercises 350

Chapter 25 An Expert System Shell 351

 25.1 Introduction: Expert Systems 351

 25.2 Certainty Factors and the Unification Problem Solver 352

 25.3 Adding User Interactions 358

 25.4 Design Discussion 360

 Exercises 361

Chapter 26 Case Studies: JESS and other Expert System Shells in Java 363

 26.1 Introduction 363

 26.2 JESS 363

 26.3 Other Expert system Shells 364

 26.4 Using Open Source Tools 365

Chapter 27 ID3: Learning from Examples 367

 27.1 Introduction to Supervised Learning 367

 27.2 Representing Knowledge as Decision Trees 367

 27.3 A Decision Tree Induction program 370

 27.4 ID3: An Information Theoretic Tree Induction Algorithm 385

 Exercises 388

vi Contents

Chapter 28 Genetic and Evolutionary Computing 389

 28.1 Introduction 389

 28.2 The Genetic Algorithm: A First Pass 389

 28.3 A GA Java Implementation in Java 393

 28.4 Conclusion: Complex Problem Solving and Adaptation 401

 Exercises 401

Chapter 29 Case Studies: Java Machine Learning Software Available on the
Web 403

 29.1 Java Machine Learning Software 403

Chapter 30 The Earley Parser: Dynamic Programming in Java 405

 30.1 Chart Parsing 405

 30.2 The Earley Parser: Components 406

 30.3 The Earley Parser: Java Code 408

 30.4 The Completed Parser 414

 30.5 Generating Parse Trees from Charts and Grammar Rules 419

 Exercises 422

Chapter 31 Case Studies: Java Natural Language Tools on the Web 423

 31.1 Java Natural Language Processing Software 423

 31.2 LingPipe from the University of Pennsylvania 423

 31.3 The Stanford Natural Language Processing Group Software 425

 31.4 Sun’s Speech API 426

Part V Model Building and the Master Programmer 429

Chapter 32 Conclusion: The Master Programmer 431

 32.1 Paradigm-Based Abstractions and Idioms 431

 32.2 Programming as a Tool for Exploring Problem Domains 433

 32.3 Programming as a Social Activity 434

 32.4 Final Thoughts 437

 Bibliography xxx

 Index yyy

 vii

Preface
What we have to learn to do
We learn by doing…

- Aristotle, Ethics

Why Another
Programming

Language
Book?

Writing a book about designing and implementing representations and
search algorithms in Prolog, Lisp, and Java presents the authors with a
number of exciting opportunities.
The first opportunity is the chance to compare three languages that give
very different expression to the many ideas that have shaped the evolution
of programming languages as a whole. These core ideas, which also
support modern AI technology, include functional programming, list
processing, predicate logic, declarative representation, dynamic binding,
meta-linguistic abstraction, strong-typing, meta-circular definition, and
object-oriented design and programming. Lisp and Prolog are, of course,
widely recognized for their contributions to the evolution, theory, and
practice of programming language design. Java, the youngest of this trio, is
both an example of how the ideas pioneered in these earlier languages
have shaped modern applicative programming, as well as a powerful tool
for delivering AI applications on personal computers, local networks, and
the world wide web.
The second opportunity this book affords is a chance to look at Artificial
Intelligence from the point of view of the craft of programming. Although
we sometimes are tempted to think of AI as a theoretical position on the
nature of intelligent activity, the complexity of the problems AI addresses
has made it a primary driver of progress in programming languages,
development environments, and software engineering methods. Both Lisp
and Prolog originated expressly as tools to address the demands of
symbolic computing. Java draws on object-orientation and other ideas that
can trace their roots back to AI programming. What is more important, AI
has done much to shape our thinking about program organization, data
structures, knowledge representation, and other elements of the software
craft. Anyone who understands how to give a simple, elegant formulation
to unification-based pattern matching, logical inference, machine learning
theories, and the other algorithms discussed in this book has taken a large
step toward becoming a master programmer.
The book’s third, and in a sense, unifying focus lies at the intersection of
these points of view: how does a programming language’s formal structure
interact with the demands of the art and practice of programming to

viii Preface

create the idioms that define its accepted use. By idiom, we mean a set of
conventionally accepted patterns for using the language in practice.
Although not the only way of using a language, an idiom defines patterns
of use that have proven effective, and constitute a common understanding
among programmers of how to use the language. Programming language
idioms do much to both enable, as well as support, ongoing
communication and collaboration between programmers.
These, then, are the three points of view that shape our discussion of AI
programming. It is our hope that they will help to make this book more
than a practical guide to advanced programming techniques (although it is
certainly that). We hope that they will communicate the intellectual depth
and pleasure that we have found in mastering a programming language
and using it to create elegant and powerful computer programs.

The Design of
this Book

There are five sections of this book. The first, made up of a single chapter,
lays the conceptual groundwork for the sections that follow. This first
chapter provides a general introduction to programming languages and
style, and asks questions such as “What is a master programmer?” What is a
programming language idiom?”, and “How are identical design patterns
implemented in different languages?”. Next, we introduce a number of
design patterns specific to supporting data structures and search strategies
for complex problem solving. These patterns are discussed in a “language
neutral” context, with pointers to the specifics of the individual
programming paradigms presented in the subsequent sections of our
book. The first chapter ends with a short historical overview of the
evolution of the logic-based, functional, and object-oriented approaches to
computer programming languages.
Part II of this book presents Prolog. For readers that know the rudiments
of first-order predicate logic, the chapters of Part II can be seen as a
tutorial introduction to Prolog, the language for programming in logic.
For readers lacking any knowledge of the propositional and predicate
calculi we recommend reviewing an introductory textbook on logic.
Alternatively, Luger (2005, Chapter 2) presents a full introduction to both
the propositional and predicate logics. The Luger introduction includes a
discussion, as well as a pseudo code implementation, of unification, the
pattern-matching algorithm at the heart of the Prolog engine.
The design patterns that make up Part II begin with the “flat” logic-based
representation for facts, rules, and goals that one might expect in any
relational data base formalism. We next show how recursion, supported by
unification-based pattern matching, provides a natural design pattern for
tree and graph search algorithms. We then build a series of abstract data
types, including sets, stacks, queues, and priority queues that support
patterns for search. These are, of course, abstract structures, crafted for
the specifics of the logic-programming environment that can search across
state spaces of arbitrary content and complexity. We then build and
demonstrate the “production system” design pattern that supports rule
based programming, planning, and a large number of other AI
technologies. Next, we present structured representations, including

 Preface ix

semantic networks and frame systems in Prolog and demonstrate
techniques for implementing single and multiple inheritance
representation and search. Finally, we show how the Prolog design
patterns presented in Part II can support the tasks of machine learning
and natural language understanding.
Lisp and functional programming make up Part III. Again, we present the
material on Lisp in the form of a tutorial introduction. Thus, a
programmer with little or no experience in Lisp is gradually introduced to
the critical data structures and search algorithms of Lisp that support
symbolic computing. We begin with the (recursive) definition of symbol-
expressions, the basic components of the Lisp language. Next we present
the “assembly instructions” for symbol expressions, including car, cdr, and
cons. We then assemble new patterns for Lisp with cond and defun.
Finally, we demonstrate the creation and/or evaluation of symbol
expressions with quote and eval. Of course, the ongoing discussion of
variables, binding, scope, and closures is critical to building more complex
design patterns in Lisp.
Once the preliminary tools and techniques for Lisp are presented, we
describe and construct many of the design patterns seen earlier in the
Prolog section. These include patterns supporting breadth-first, depth-
first, and best-first search as well as meta-interpreters for rule-based
systems and planning. We build and demonstrate a recursion-based
unification algorithm that supports a logic interpreter in Lisp as well as a
stream processor with delayed evaluation for handling potentially infinite
structures. We next present data structures for building semantic networks
and object systems. We then present the Common Lisp Object system
(CLOS) libraries for building object and inheritance based design patterns.
We close Part III by building design patterns that support decision-tree
based machine learning.
Java and its idioms are presented in Part IV. Because of the complexities
of the Java language, Part IV is not presented as a tutorial introduction to
the language itself. It is expected that the reader has completed at least an
introductory course in Java programming, or at the very least, has seen
object-oriented programming in another applicative language such as
C++, C#, or Objective C. But once we can assume a basic understanding
of Java tools, we do provide a tutorial introduction to many of the design
patterns of the language.

The first chapter of Part IV, after a brief overview of the origins of
Java, goes through many of the features of an object-oriented language
that will support the creation of design patterns in that environment.
These features include the fundamental data structuring philosophy of
encapsulation, polymorphism, and inheritance. Based on these
concepts we briefly address the analysis, iterative design, programming
and test phases for engineering programs. After the introductory
chapter we begin pattern building in Java, first considering the

x Preface

representation issue and how to represent predicate calculus structures
in Java. This leads to building patterns that support breadth-first,
depth-first, and best-first search. Based on patterns for search, we build
a production system, a pattern that supports the rule-based expert
system. Our further design patterns support the application areas of
natural language processing and machine learning. An important
strength that Java offers, again because of its object-orientation and
modularity is the use of public domain (and other) libraries available on
the web. We include in the Java section a number of web-supported AI
algorithms, including tools supporting work in natural language, genetic
and evolutionary programming (a-life), natural language understanding,
and machine learning (WEKA).
The final component of the book, Part V, brings together many of the
design patterns introduced in the earlier sections. It also allows the authors
to reinforce many of the common themes that are, of necessity,
distributed across the various components of the presentation, We
conclude with general comments supporting the craft of programming.

Using this Book This book is designed for three primary purposes. The first is as a
programming language component of a general class in Artificial
Intelligence. From this viewpoint, the authors see as essential that the AI
student build the significant algorithms that support the practice of AI.
This book is designed to present exactly these algorithms. However, in the
normal lecture/lab approach taken to teaching Artificial Intelligence at the
University level, we have often found that it is difficult to cover more than
one language per quarter or semester course. Therefore we expect that the
various parts of this material, those dedicated to either Lisp, Prolog, or
Java, would be used individually to support programming the data
structures and algorithms presented in the AI course itself. In a more
advanced course in AI it would be expected that the class cover more than
one of these programming paradigms.
The second use of this book is for university classes exploring
programming paradigms themselves. Many modern computer science
departments offer a final year course in comparative programming
environments. The three languages covered in our book offer excellent
examples on these paradigms. We also feel that a paradigms course should
not be based on a rapid survey of a large number of languages while doing
a few “finger exercises” in each. Our philosophy for a paradigms course is
to get the student more deeply involved in fewer languages, and these
typically representing the declarative, functional, and object-oriented
approaches to programming. We also feel that the study of idiom and
design patterns in different environments can greatly expand the skill set
of the graduating student. Thus, our philosophy of programming is built
around the language idioms and design patterns presented in Part I and
summarized in Part V. We see these as an exciting opportunity for
students to appreciate the wealth and diversity of modern computing

 Preface xi

environments. We feel this book offers exactly this opportunity.
The third intent of this book is to offer the professional programmer the
chance to continue their education through the exploration of multiple
programming idioms, patterns, and paradigms. For these readers we also
feel the discussion of programming idioms and design patterns presented
throughout our book is important. We are all struggling to achieve the
status of the master programmer.
We have built each chapter in this book to reflect the materials that would
be covered in either one or two classroom lectures, or about an hour’s
effort, if the reader is going through this material by herself. There are a
small number of exercises at the end of most chapters that may be used to
reinforce the main concepts of that chapter. There is also, near the end of
each chapter, a summary statement of the core concepts covered in that
chapter.

Acknowledg-
ments

First, we must thank several decades of students and colleagues at the
University of New Mexico. These friends have not only suggested, helped
design, and tested our algorithms but have also challenged us to make them
better. In the acknowledgments for each chapter we have mentioned students
and colleagues that have helped develop key aspects of that chapter.
Second, there are several professional colleagues that we owe particular debts.
These include David MacQueen of the University of Chicago, one of the
creators of SML, Manuel Hermenegildo, The Prince of Asturias Endowed
Chair of Computer Science at UNM and a designer of Ciao Prolog, Paul De
Palma, Professor of Computer Science at Gonzaga University, and Alejandro
Cdebaca, our friend and former student, who helped design many of the
algorithms of the Java chapters.
Third, we thank our friends at Pearson Education who have supported our
various creative writing activities over the past two decades. Especially
important our editors Alan Apt, Karen Mossman, Keith Mansfield, Owen
Knight, and Simon Plumtree, and Matt Goldstein, along with their various
associate editors, proof readers, and web support personnel.
We also acknowledge wives, children, family, and friends; all those that have
made our lives not just survivable, but intellectually stimulating and enjoyable.
Finally, to our readers; we salute you: the art, science, and practice of
programming is great fun, enjoy it!

GL
BS

July 2008
Albuquerque

