
Algorithms and Experiments:
The New (and Old) Methodology

Bernard M.E. Moret
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131, USA

moret@cs.unm.edu

Henry D. Shapiro
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131, USA
shapiro@cs.unm.edu

Abstract: The last twenty years have seen enormous progress in the design of algorithms, but
little of it has been put into practice. Because many recently developed algorithms are hard to
characterize theoretically and have large running-time coefficients, the gap between theory and
practice has widened over these years. Experimentation is indispensable in the assessment of
heuristics for hard problems, in the characterization of asymptotic behavior of complex algo-
rithms, and in the comparison of competing designs for tractable problems.

Implementation, although perhaps not rigorous experimentation, was characteristic of early work
in algorithms and data structures. Donald Knuth has throughout insisted on testing every algo-
rithm and conducting analyses that can predict behavior on actual data; more recently, Jon Bentley
has vividly illustrated the difficulty of implementation and the value of testing. Numerical ana-
lysts have long understood the need for standardized test suites to ensure robustness, precision
and efficiency of numerical libraries. It is only recently, however, that the algorithms community
has shown signs of returning to implementation and testing as an integral part of algorithm devel-
opment. The emerging disciplines of experimental algorithmics and algorithm engineering have
revived and are extending many of the approaches used by computing pioneers such as Floyd and
Knuth and are placing on a formal basis many of Bentley’s observations.

We reflect on these issues, looking back at the last thirty years of algorithm development and
forward to new challenges: designing cache-aware algorithms, algorithms for mixed models of
computation, algorithms for external memory, and algorithms for scientific research.
Key Words: Algorithm engineering, cache-aware algorithms, efficiency, experimental algorith-
mics, external memory algorithms, implementation, methodology,

1 Introduction

Implementation, although perhaps not rigorous experimentation, was characteristic of
early work in algorithms and data structures. Donald Knuth insisted on implementing
every algorithm he designed and on conducting a rigorous analysis of the resulting code
(in the famous MIX assembly language) [Knu98], while other pioneers such as Floyd
are remembered as much for practical “tricks” (e.g., the four-point method to eliminate
most points in an initial pass in the computation of a convex hull and the “bounce”
techniques for binary heaps, see, e.g. [MS91a]) as for more theoretical contributions.

Throughout the last 25 years, Jon Bentley has demonstrated the value of implementation
and testing of algorithms, beginning with his text on writing efficient programs [Ben82]
and continuing with his invaluableProgramming Pearlscolumns inCommunications
of the ACM, now collected in a new volume [Ben99], and hisSoftware Explorations
columns in theUNIX Review. David Johnson, whose own work on optimization for
NP-hard problems involves extensive experimentation, started the annual ACM/SIAM
Symposium on Discrete Algorithms (SODA), which has sought,and every year featured
a few, experimental studies. It is only in the last few years,however, that the algorithms
community has shown signs of returning to implementation and testing as an integral
part of algorithm development. Other than SODA, publication outlets remained rare
until the late nineties: theORSA J. ComputingandMath. Programminghave published
several strong papers in the area, but the standard journalsin the algorithm community,
such as theJ. Algorithms, J. ACM, SIAM J. Computing, andAlgorithmica, as well as the
more specialized journals in computational geometry and other areas, have been slow
to publish experimental studies. (It should be noted that many strong experimental stud-
ies dedicated to a particular application have appeared in publication outlets associated
with the application area; however, many of these studies ran tests to understand the data
or the model rather than to understand the algorithm.) The online ACM Journal Exper-
imental Algorithmicsis dedicated to this area and is starting to publish a respectable
number of studies. The two workshops targeted at experimental work in algorithms, the
Workshop on Algorithm Engineering(WAE), held every late summer in Europe, and the
Workshop on Algorithm Engineering and Experiments(ALENEX), held every January
in the United States, are also attracting growing numbers ofsubmissions. Support for
an experimental component in algorithms research is growing among funding agencies
as well. We may thus be poised for a revival of experimentation as a research method-
ology in the development of algorithms and data structures,a most welcome prospect,
but also one that should prompt some reflection.

2 Empiricism in Algorithm Design

Natural scientists have perfected since at least the MiddleAges a particular form of
enquiry, which has come to be called the scientific method. Itis founded upon exper-
iments; in its most basic form, it consists of using accumulated data to formulate a
conjecture within a particular model, then conducting additional experiments to affirm
or refute the conjecture. Such a completely empirical approach is well suited for a nat-
ural science, where the final arbiter is nature as revealed tous through experiments and
measurements, but it is incomplete in the artificial and mathematically precise world of
computing, where the behavior of an algorithm or data structure can often, at least in
principle, be characterized analytically. Natural scientists run experiments because they
have no other way of learning from nature. In contrast, algorithm designers run exper-
iments mostly because an analytical characterization is too hard to achieve in practice.
(Much the same is done by computational scientists in physics, chemistry, and biology,

but typically their aim is to analyze new data or to compare the predictions given by a
model with the measurements made from nature, not to characterize the behavior of an
algorithm.) Algorithm designers are measuring the actual algorithm, not a model, and
the results are not assessed against some gold standard (nature), but simply reported
as such or compared with other experiments of the same type. Thus computer scien-
tists must both learn from the natural sciences, where experimentation has been used
for centuries and where the scientific method has been developed to optimize the use
of experiments, but must also remain aware of the fundamental difference between the
natural sciences and computer science, since the goal of experimentation in algorithmic
work differs in important ways from that in the natural sciences.

3 Asymptotic Analysis vs. Implementation

For over thirty years, the standard mode of theoretical analysis, and thus also the main
tool used to guide new designs, has been the asymptotic analysis (“big Oh” and “big
Theta”) of worst-case behavior (running time or quality of solution). The asymptotic
mode eliminates potentially confusing behavior on small instances due to start-up costs
and clearly shows the growth rate of the running time. The worst-case (per operation or
amortized) mode gives us clear bounds and also simplifies theanalysis by removing the
need for any assumptions about the data. The resulting presentation is easy to commu-
nicate and reasonably well understood, as well as machine-independent. However, we
pay a heavy price for these gains:

– The range of values in which the asymptotic behavior is clearly exhibited (“asymp-
topia,” as it has been named by many authors) may include onlyinstance sizes that
are well beyond any conceivable application. A good exampleis the algorithm of
Fredman and Tarjan for minimum spanning trees. Its asymptotic worst-case running
time isO(|E|β(|E|, |V |))—whereβ(m, n) is given bymin{i | log(i) n ≤ m/n},
so that, in particular,β(n, n) is just log∗ n. This bound is much better for dense
graphs than that of Prim’s algorithm, which isO(|E| log |V |) when implemented
with binary heaps, but experimentation [MS94] verifies thatthe crossover point oc-
curs for dense graphs with well over a million vertices and thus hundreds of millions
of edges—beyond the size of any reasonable data set.

– In another facet of the same problem, the constants hidden inthe asymptotic anal-
ysis may prevent any practical implementation from runningto completion, even
if the growth rate is quite reasonable. An extreme example ofthis problem is pro-
vided by the theory of graph minors: Robertson and Seymour (see [RS85]) gave a
cubic-time algorithm to determine whether a given graph is aminor of another, but
the proportionality constants are gigantic—a recent estimate was on the order of
10150 [Fel99]—and have not been substantially lowered yet, making the algorithm
entirely impractical.

– The worst-case behavior may be restricted to a very small subset of instances and
thus not be at all characteristic of instances encountered in practice. A classic ex-
ample here is the running time of the simplex method for linear programming; for
over thirty years, it has been known that the worst-case behavior of this method is
exponential, but also that its practical running time is typically bounded by a low-
degree polynomial [AMO93]. (Indeed, in some of its newer versions, its running
time is competitive with that of the modern interior-point methods [BFG+00].)

– Even in the absence of any of these problems, deriving tight asymptotic bounds
may be very difficult. All optimization metaheuristics for NP-hard problems (such
as simulated annealing or genetic algorithms) suffer from this drawback: by con-
sidering a large number of parameters and a substantial slice of recent execution
history, they create a complex state space which is very hardto analyze with exist-
ing methods, whether to bound the running time or to estimatethe quality of the
returned solution.

These are the most obvious drawbacks. A more insidious drawback, yet one that could
prove much more damaging in the long term, is that worst-caseasymptotic analysis
tends to promote the development of “paper-and-pencil” algorithms, that is, algorithms
that never get implemented. This problem compounds itself quickly, as further devel-
opments rely on earlier ones, with the result that many of themost interesting algo-
rithms published over the last ten years rely on several layers of complex, unimple-
mented algorithms and data structures. In order to implement one of these recent algo-
rithms, a programmer would face the daunting prospect of developing implementations
for all preceding layers. Moreover, the “paper-and-pencil” algorithms often ignore is-
sues critical in making implementations efficient, such as low-level algorithmic issues
and architecture-dependent issues (particularly caching), as well as issues of robustness
(such as the potential effects of numerical errors or unexpected symmetries in geomet-
ric computations, although recent recent conferences in computational geometry have
featured a number of papers addressing these issues). Transforming paper-and-pencil
algorithms into efficient and useful implementations is today referred to asalgorithm
engineering; case studies show that the use of algorithm engineering techniques, all
of which are based on experimentation, can improve the running time of code by up
to three orders of magnitude [MWB+01] as well as yielding robust libraries of data
structures with minimal overhead, as done in the LEDA library [MN95, MN99].

There is no reason to abandon asymptotic worst-case analysis; but there is a def-
inite need to supplement it with experimentation, which implies that most algorithms
should be implemented, not just designed. Many algorithms are in fact quite difficult to
implement—because of their intricate nature and also because the designer described
them at a very high level. The practitioner is not the only onewho stands to benefit from
implementation: the detailed, step-by-step understanding required for implementation
may enable the designer to notice features that had remainedinvisible in the high-level
design and so to bring about a simplified or improved design.

4 Modes of Empirical Assessment

We can classify modes of empirical assessment into a number of non-exclusive cate-
gories:

– Checking for accuracy or correctness in extreme cases (e.g., standardized test suites
for numerical computing).

– Assessing the quality of algorithms (heuristics, approximations, or exact solvers)
for the solution of NP-hard problems.

– Comparing the actual performance of competing algorithms for tractable problems
and characterizing the effects of algorithm engineering.

– Investigating and refining models and optimization criteria—what should be opti-
mized? and what parameters matter?

The first category has reached a high level of maturity in numerical computing, where
standard test suites are used to assess the quality of new numerical codes. Similarly,
the operations research community has developed a number oftest cases for linear pro-
gram solvers. We have no comparable emphasis to date in combinatorial and geometric
computing. Investigation and refinement of models and optimization criteria is of major
concern today, particularly in areas such as computationalbiology and computational
chemistry. While many studies are published, most demonstrate a certain lack of so-
phistication in the conduct of the computational studies—suffering as they do from
various sources of errors. We eschew a lengthy discussion ofthis important area and in-
stead present sound principles and illustrate pitfalls in the context of the two categories
that have seen the bulk of research to date in the algorithms community. Most of these
principles and pitfalls can be related directly to the testing and validation of discrete
optimization models in the natural sciences.

4.1 Assessment of Competing Algorithms and Data Structuresfor Tractable
Problems

The goal here is to measure the actual performance of competing algorithms for well-
solved problems. This is fairly new work in combinatorial algorithms and data struc-
tures, but common in Operations Research; early (1960s) work in data structures typ-
ically included code and examples, but no systematic study.Scattered articles during
the 70s (see, e.g., [DS85]) kept a low level of experimentation active, but did not at-
tempt to provide methodological pointers. More recent and comprehensive work be-
gan with Bentley’s many contributions in hisProgramming Pearls(starting in 1983
[Ben83]), then with Jones’ comparison of data structures for priority queues [Jon86]
and Stasko and Vitter’s combination of analytical and experimental work in the study
of pairing heaps [SV87]. An early experimental study on a large scale was that of Moret
and Shapiro on sorting algorithms [MS91a] (Chapter 8), itself inspired by the work of

Knuth in his Volume III [Knu98], followed by that of the same authors on algorithms for
constructing minimum spanning trees [MS94]. In 1991, DavidJohnson and others initi-
ated the very successful DIMACS Computational Challenges,the first of which [JM93]
focused on network flow and shortest path algorithms, indirectly giving rise to sev-
eral modern, thorough studies, by Cherkasskyet al. on shortest paths [CGR96], by
Cherkasskyet al. on the implementation of the push-relabel method for matching and
network flows [CGM+98, CG97], and by Goldberg and Tsioutsiouliklis on cut trees
[GT01]. The DIMACS Computational Challenges (the fifth, in 1996, focused on an-
other tractable problem, priority queues and point location data structures) have served
to highlight work in the area, to establish common data formats (particularly formats for
graphs and networks), and to set up the first tailored test suites for a host of problems.

Much interest has focused over the last three to four years onthe question of tai-
loring algorithms and implementations to the cache structure and policies of the archi-
tecture. Caching effects can significantly alter the predictions of asymptotic analysis; a
classic example is hashing: most textbook on data structures still advocate using dou-
ble hashing in preference to linear probing, whereas experimental data clearly indicates
that linear probing is the faster method, thanks to its good locality (see [BMQ98]).
Pioneering studies by Ladner and his coworkers [LL96, LL97]established that cache
optimization was feasible, algorithmically interesting,and worthwhile, even for such
old friends as sorting algorithms [ACVW01, LL97, RR99, XZK00] and priority queues
[LL96, San00]; indeed, even matrix multiplication, which has been optimized in nu-
merical libraries for over 40 years (including optimizations for paging behavior), is
amenable to such techniques [ERS90]. Ad hoc reduction in memory usage and im-
provement in patterns of memory addressing have been reported to gain speedups of
as much as a factor of 10 [MWB+01]. The related, and much better studied, model
of out-of-core computing, as pioneered by Vitter and his coworkers [Vit01], has in-
spired new work in cache-aware and cache-independent algorithm design. Once again,
though, this trend was pioneered over 40 years ago, when programmers had to work
with very limited memory and studied detailed optimizationstrategies for accessing
early secondary-storage devices such as magnetic drums, and followed in the seventies
by much work on out-of-core computing—Knuth has detailed analyses of external sort-
ing algorithms in his Volume III [Knu98]. Today, we are confronted with much deeper
memory hierarchies and enormous volumes of data, so we need to return to these opti-
mization techniques and extend them to apply throughout thehierarchy.

Characterizing the behavior of algoritms on real-world instances is generally very
hard simply because we often lack the crucial instance parameters with which to cor-
relate running times. Experimentation can quickly pinpoint good and bad implementa-
tions and whether theoretical advantages are retained in practice. In the process, newer
insights may be gleaned that might enable a refinement or simplification of the algo-
rithm. Experimentation can also enable us to determine the actual constants in the run-
ning time analysis; determining such constants beforehandis quite difficult (see [FM97]

for a possible methodology), but a simple regression analysis from the data can gives us
quite accurate values. Experimental studies naturally include caching effects, whereas
adding those into the analysis in a formal manner is very challenging.

4.2 Assessment of Heuristics

Here the goal is to measure the performance of heuristics on real and artificial instances
and to improve the theoretical understanding of the problem, presumably with the aim
of producing yet better heuristics or proving that current heuristics have guaranteed
performance bounds. By performance is implied both the running time and the quality
of the solution produced.

Since the behavior of heuristics is very difficult to characterize analytically, exper-
imental studies have been the rule. The Operations Researchcommunity, which has a
long tradition of application studies, has slowly developed some guidelines for exper-
imentation with integer programming problems (see [AMO93], Chapter 18). Inspired
in part by experimental studies of integer-programming algorithms for combinatorial
optimization, such as algorithms for the set-covering problem—see, e.g., [BH80], we
conducted a large-scale combinatorial study on the minimumtest set problem [MS85],
one of the first such studies in Computer Science to include both real-world and gener-
ated instances. Other large-scale studies were published in the same time frame, most
notably the classic and exemplary study of simulated annealing by David Johnson’s
group [JAMS89, JAMS91], which, among other things, demonstrated the value of a var-
ied collection of test instances. The Second DIMACS Computational Challenge [JT96]
was devoted to satisfiability, graph coloring, and clique problems and thus saw a large
collection of results in this area. The ACM/SIAM Symposium on Discrete Algorithms
(SODA) has included a few such studies in each of its dozen events to date, such as the
study of cut algorithms by Chekuriet al. [CaDRKLS97]. The Traveling Salesperson
problem has seen large numbers of experimental studies (including the well publicized
study of Jon Bentley [Ben90]), made possible in part by the development of a library of
test cases [Rei94]. Graph coloring, whether in its NP-hard version of chromatic number
determination or in its much easier (yet still challenging)version of planar graph color-
ing, has seen much work as well; the second study of simulatedannealing conducted by
Johnson’s group [JAMS89] discussed many facets of the problem, while Morgenstern
and Shapiro [MS91b] provided a detailed study of algorithmsto color planar graphs.

Understanding how a heuristic works to cut down on computational time is gener-
ally too difficult to achieve through formal derivations; much the same often goes for
bounding the quality of approximations obtained with many heuristics. Of course, we
have many elegant results bounding the worst-case performance of approximation al-
gorithms, but many of these bounds, even when attainable, are overly pessimistic for
real-world data. Yet both aspects are crucial in evaluatingperformance and in helping
us design better heuristics.

In the same vein, understanding when an exact algorithm runsquickly is often too
difficult for formal methods. It is much easier to characterize the worst-case running
time of an algorithm than to develop a classification of inputdata in terms of a few
parameters that suffice to predict the actual running time inmost cases. Experimentation
can help us assess the performance of an algorithm on real-world instances (a crucial
point) and develop at leastad hocboundaries between instances where it runs fast and
instances that exhibit the exponential worst-case behavior.

5 Experimental Setup

How should an experimental study be conducted, once a topic has been identified?
Surely the most important criterion to keep in mind is that anexperiment is run either
as a discovery tool or as a means to answer specific questions.Experiments as explo-
rations are common to all endeavors; the setup is essentially arbitrary—it should not be
allowed to limit one’s creativity. We focus instead on experiments as means to answer
specific questions—the essence of the scientific method usedin all physical sciences.
In this methodology, we begin by formulating a hypothesis ora question, then set about
gathering data to test or answer it, while ensuring reproducibility and significance. In
terms of experiments with algorithms, these characteristics give rise to the following
procedural rules—but the reader should keep in mind that most researchers would mix
the two activities for quite a while before running their “final” set of experiments:

– Begin the work with a clear set of objectives: which questions will you be asking,
which statements will you be testing?

– Once the experimental design is complete, simply gather data.

– Analyze the data to answer only the original objectives. (Later, consider how a new
cycle of experiments can improve your understanding.)

At all stages, we should beware of a number of potential pitfalls, including various
biases due to:

– The choice of machine (caching, addressing, data movement), of language (regis-
ter manipulation, built-in types), or of compiler (qualityof optimization and code
generation).

– The quality of the coding (consistency and sophistication of programmers).

– The selection or generation of instances (we must use sufficient size and variety to
ensure significance).

– The method of analysis (many steps can be taken to improve thesignificance of the
results as well as to bring out trends).

Caching, in particular, may have very strong effects when comparing efficient algo-
rithms. For instance, in our study of MST algorithms, we observed 3:1 ratios of running

time depending on the order in which the adjacency lists werestored; in our study of
sorting algorithms, we observed a nonlinear running time for radix sort (contradicting
the theoretical analysis), which is a simple consequence ofcaching effects. Recent stud-
ies by LaMarca and Ladner [LL96, LL97] have quantified many aspects of caching and
offer suggestions on how to work around (or take advantage of) caching effects.

Johnson [Joh01] offers a detailed list of the various problems he has observed in
experimental studies, particularly those dealing with heuristics for hard optimization
problems. Most of these pitfalls can be avoided with the typeof routine care used by
experimentalists in any of the natural sciences. However, we should point out that con-
founding factors can assume rather subtle forms. Knuth longago pointed out curious
effects of apparently robust pseudorandom number generators (see [Knu98], Vol. II);
the creation of unexpected patterns as an artifact of a hidden routine (or, in the case
of timing studies, as an artifact of interactions between the memory hierarchy and the
code) could easily lead the experimenter to hypothesize nonexistent relationships in
the data. The problem is compounded in complex model spaces,since obtaining a fair
sampling of such a space is always problematic. Thus it pays to go over the design of
an experimental study a few times just to assess its sensitivity to potential confounding
factors—and then to examine the results with the same jaundiced eye.

6 What to Measure?

One of the key elements of an experiment is the metrology. What do we measure, how
do we measure it, and how do we ensure that measurements do notinterfere with the
experiments? Obvious measures may include the value of the solution (for heuristics
and approximation algorithms), the running time (for almost every study), the running
space, etc. These measures are indeed useful, but a good understanding of the algo-
rithm is unlikely to emerge from such global quantities alone. We also need structural
measures of various types (number of iterations; number of calls to a crucial subrou-
tine; etc.), if only to serve as a scale for determining such things as convergence rates.
Knuth [Knu93] has advocated the use ofmems, or memory references, as a structural
substitute for running time. Other authors have used the number of comparisons, the
number of data moves (both classical measures for sorting algorithms), the number of
assignments, etc. Most programming environments offer some type of profiler, a sup-
port system that samples code execution at fixed intervals and sets up a profile of where
the execution time was spent (which routines used what percentage of the CPU time) as
well as of how much memory was used; with suitable hardware support, profilers can
also report caching statistics. Profiling is invaluable in algorithm engineering—multiple
cycles of profiling and revising the most time-consuming routines can easily yield gains
of one to two orders of magnitude in running time.

In our own experience, we have found that there is no substitute, when evaluating
competing algorithms for tractable problems, for measuring the actual running time;

indeed, time and mems measurements, to take one example, maylead one to entirely
different conclusions. However, the obvious measures are often the hardest to inter-
pret as well as the hardest to measure accurately and reproducibly. Running time, for
instance, is influenced by caching, which in turn is affectedby any other running pro-
cesses and thus effectively not reproducible exactly. In the case of competing algorithms
for tractable problems, the running time is often extremelylow (we can obtain a mini-
mum spanning tree for a sparse graph of a million vertices in much less than a second
on a typical desktop machine), so that the granularity of thesystem clock may create
problems—this is a case where it pays to repeat the entire algorithm many times over
on the same data, in order to obtain running times with at least two digits of precision.
In a similar vein, measuring the quality of a solution can be quite difficult, due to the
fact that the optimal solution can be very closely approached on instances of small to
medium size or due to the fact that the solution is essentially a zero-one decision (as
in determining the chromatic index of a graph or the primality of a number), where the
appropriate measure is statistical in nature (how often is the correct answer returned?)
and thus requires a very large number of test instances.

7 How to Present and Analyze the Data

Perhaps the first requirement in data presentation is to ensure reproducibility by other
researchers: we need to describe in detail what instances were used (how they were
generated or collected), what measurements were collectedand how, and, preferably,
where the reader can find all of this material on-line. The data should then be ana-
lyzed with suitable statistical methods. Since attaining levels of statistical significance
may be quite difficult in the large state spaces we commonly use, various techniques to
make the best use of available experiments should be applied(see McGeoch’s excellent
survey [McG92] for a discussion of several such methods). Cross-checking the mea-
surements with any available theoretical results, especially those that attempt to predict
the actual running time (such as the “equivalent code fragments” approach of [FM97]),
is crucial; any serious discrepancy needs to be investigated. Normalization and scaling
are a particularly important part of both analysis and presentation: not only can they
bring out trends not otherwise evident, but they can help in filtering out noise and thus
increasing the significance of the results.

8 Conclusions

Implementation and experimentation should become once again the “gold standard” in
algorithm design, for several compelling reasons:

– Experimentation can lead to the establishment of well tested and well documented
libraries of routines and instances.

– Experimentation can bridge the gap between practitioner and theoretician.

– Experimentation can help theoreticians develop a deeper understanding of existing
algorithms and thus lead to new conjectures and new algorithms.

– Experimentation can point out areas where additional research is most needed.

However, experimentation in algorithm design needs some methodological develop-
ment. While it can and, to a large extent, should seek inspiration from the natural sci-
ences, its different setting (a purely artificial one in which the experimental procedure
and the subject under test are unavoidably mixed) requires at least extra precautions.
Fortunately, a number of authors have blazed what appear to be a good trail to follow;
hallmarks of good experiments include:

– Clearly defined goals;

– Large-scale testing, both in terms of a range of instance sizes and in terms of the
number of instances used at each size;

– A mix of real-world instances and generated instances, including any significant
test suites in existence;

– Clearly articulated parameters, including those defining artificial instances, those
governing the collection of data, and those establishing the test environment (ma-
chines, compilers, etc.);

– Statistical analyses of the results and attempts at relating them to the nature of the
algorithms and test instances; and

– Public availability of instances and instance generators to allow other researchers
to run their algorithms on the same instances and, preferably, public availability of
the code for the algorithms themselves.

Acknowledgments

Bernard Moret’s work was supported in part by the National Science Foundation under
grant ITR 00-81404.

References

[ACVW01] L. Arge, J. Chase, J. S. Vitter, and R. Wickremesinghe, Efficient sorting using
registers and caches, Proc. 4th Workshop on Algorithm Eng. WAE 2000, Springer
Verlag, 2001, to appear in LNCS.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network flows, Prentice Hall, En-
glewood Cliffs, NJ, 1993.

[Ben82] J. L. Bentley,Writing efficient programs, Prentice-Hall, Englewood Cliffs, NJ,
1982.

[Ben83] , Programming pearls: cracking the oyster, Commun. ACM26 (1983),
no. 8, 549–552.

[Ben90] , Experiments on geometric traveling salesman heuristics, Report CS TR
151, AT&T Bell Laboratories, 1990.

[Ben99] , Programming pearls, ACM Press, New York, 1999.
[BFG+00] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, MIP: Theory

and practice—closing the gap, System Modelling and Optimization: Methods,
Theory and Applications (M. J. D. Poweel and S. Scholtes, eds.), Kluwer Acad.
Pub., 2000, pp. 19–49.

[BH80] E. Balas and A. Ho,Set covering algorithms using cutting planes, heuristics,and
subgradient optimization: A computational study, Math. Progr.12 (1980), 37–60.

[BMQ98] J. R. Black, C. U. Martel, and H. Qi,Graph and hashing algorithms for modern
architectures: design and performance, Proc. 2nd Workshop on Algorithm Eng.
WAE 98, Max-Planck Inst. für Informatik, 1998, in TR MPI-I-98-1-019, pp. 37–
48.

[CaDRKLS97] C. S. Chekuri, A. V. Goldberg adn D. R. Karger, M.S. Levine, and C. Stein,
Experimental study of minimum cut algorithms, Proc. 8th ACM/SIAM Symp. on
Discrete Algs. SODA 97, SIAM Press, 1997, pp. 324–333.

[CG97] B. V. Cherkassky and A. V. Goldberg,On implementing the push-relabel method
for the maximum flow problem, Algorithmica19 (1997), 390–410.

[CGM+98] B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C. Setubal, and J. Stolfi,
Augment or push: a computational study of bipartite matching and unit-
capacity flow algorithms, ACM J. Exp. Algorithmics 3 (1998), no. 8,
www.jea.acm.org/1998/CherkasskyAugment/.

[CGR96] B. V. Cherkassky, A. V. Goldberg, and T. Radzik,Shortest paths algorithms: the-
ory and experimental evaluation, Math. Progr.73 (1996), 129–174.

[DS85] S. P. Dandamudi and P. G. Sorenson,An empirical performance comparison of
some variations of the k-d tree and bd tree, Int’l J. Computer and Inf. Sciences14
(1985), no. 3, 134–158.

[ERS90] N. Eiron, M. Rodeh, and I. Stewarts,Matrix multiplication: a case study of
enhanced data cache utilization, ACM J. Exp. Algorithmics4 (1990), no. 3,
www.jea.acm.org/1999/EironMatrix/.

[Fel99] M. Fellows, 1999, private communication.
[FM97] U. Finkler and K. Mehlhorn,Runtime prediction of real programs on real ma-

chines, Proc. 8th ACM/SIAM Symp. on Discrete Algs. SODA 97, SIAM Press,
1997, pp. 380–389.

[GT01] A. V. Goldberg and K. Tsioutsiouliklis,Cut tree algorithms: an experimental
study, J. Algs.38 (2001), no. 1, 51–83.

[JAMS89] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,Optimization by
simulated annealing: an experimental evaluation. 1. graphpartitioning, Opera-
tions Research37 (1989), 865–892.

[JAMS91] , Optimization by simulated annealing: an experimental evaluation. 2.
graph coloring and number partitioning, Operations Research39 (1991), 378–
406.

[JM93] D. S. Johnson and C. C. McGeoch (eds.),Network flows and matching: First DI-
MACS implementation challenge, vol. 12, Amer. Math. Soc., 1993.

[Joh01] D. S. Johnson,A theoretician’s guide to the experimental analysis of algorithms,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Amer. Math. Soc., 2001, to appear.

[Jon86] D. W. Jones,An empirical comparison of priority queues and event-set imple-
mentations, Commun. ACM29 (1986), 300–311.

[JT96] D. S. Johnson and M. Trick,Cliques, coloring, and satisfiability: Second DI-
MACS implementation challenge, vol. 26, Amer. Math. Soc., 1996.

[Knu93] D. E. Knuth,The Stanford GraphBase: A platform for combinatorial computing,
Addison-Wesley, Reading, Mass., 1993.

[Knu98] , The art of computer programming, vols I (3rd ed.), II (3rd ed.), and III
(2nd ed.), Addison-Wesley, Reading, Mass., 1997, 1997, and 1998.

[LL96] A. LaMarca and R. Ladner, The influence of caches on the
performance of heaps, ACM J. Exp. Algorithmics 1 (1996),
www.jea.acm.org/1996/LaMarcaInfluence/.

[LL97] , The influence of caches on the performance of sorting, Proc. 8th
ACM/SIAM Symp. on Discrete Algs. SODA 97, SIAM Press, 1997, pp. 370–
379.

[McG92] C. C. McGeoch,Analysis of algorithms by simulation: variance reduction tech-
niques and simulation speedups, ACM Comput. Surveys24 (1992), 195–212.

[MN95] K. Mehlhorn and S. Näher,LEDA, a platform for combinatorial and geometric
computing, Commun. ACM38 (1995), 96–102.

[MN99] K. Melhorn and S. Näher,The LEDA platform of combinatorial and geometric
computing, Cambridge U. Press, Cambridge, UK, 1999.

[MS85] B. M. E. Moret and H. D. Shapiro,On minimizing a set of tests, SIAM J. Scien-
tific & Statistical Comput.6 (1985), 983–1003.

[MS91a] , Algorithms from P to NP, volume I: Design and efficiency, Benjamin-
Cummings Publishing Co., Menlo Park, CA, 1991.

[MS91b] C. Morgenstern and H. D. Shapiro,Heuristics for rapidly four-coloring large pla-
nar graphs, Algorithmica6 (1991), 869–891.

[MS94] B. M. E. Moret and H. D. Shapiro,An empirical assessment of algorithms for
constructing a minimal spanning tree, DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science (N. Dean and G. Shannon, eds.), vol. 15,
Amer. Math. Soc., 1994, pp. 99–117.

[MWB+01] B. M. E. Moret, S. K. Wyman, D. A. Bader, T. Warnow, and M. Yan, A new im-
plementation and detailed study of breakpoint analysis, Proc. 6th Pacific Symp.
Biocomputing PSB 2001, World Scientific Pub., 2001, pp. 583–594.

[Rei94] G. Reinelt,The traveling salesman: Computational solutions for tsp applications,
Springer Verlag, Berlin, 1994, in LNCS 840.

[RR99] N. Rahman and R. Raman,Analysing cache effects in distribution sorting, Proc.
3rd Workshop on Algorithm Eng. WAE 99 (Berlin), Springer Verlag, 1999, in
LNCS 1668, pp. 183–197.

[RS85] N. Robertson and P. Seymour,Graph minors—a surveys, Surveys in Combina-
torics (J. Anderson, ed.), Cambridge U. Press, Cambridge, UK, 1985, pp. 153–
171.

[San00] P. Sanders,Fast priority queues for cached memory, ACM J. Exp. Algorithmics
5 (2000), no. 7,www.jea.acm.org/2000/SandersPriority/.

[SV87] J. T. Stasko and J. S. Vitter,Pairing heaps: experiments and analysis, Commun.
ACM 30 (1987), 234–249.

[Vit01] J. S. Vitter, External memory algorithms and data structures: dealing
with massive data, ACM Comput. Surveys (2001), to appear, available at
www.cs.duke.edu/ jsv/Papers/Vit.IO survey.ps.gz.

[XZK00] L. Xiao, X. Zhang, and S. Kubricht, Improving memory performance
of sorting algorithms, ACM J. Exp. Algorithmics 5 (2000), no. 3,
www.jea.acm.org/2000/XiaoMemory/.

