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Abstract— Dynamic Time Warping (DTW) distance has been
effectively used in mining time series data in a multitude of
domains. However, in its original formulation DTW is extremely
inefficient in comparing long sparse time series, containing mostly
zeros and some unevenly spaced non-zero observations. Original
DTW distance does not take advantage of this sparsity, leading to
redundant calculations and a prohibitively large computational
cost for long time series.

We derive a new time warping similarity measure (AWarp)
for sparse time series that works on the run-length encoded
representation of sparse time series. The complexity of AWarp is
quadratic on the number of observations as opposed to the range
of time of the time series. Therefore, AWarp can be several orders
of magnitude faster than DTW on sparse time series. AWarp is ex-
act for binary-valued time series and a close approximation of the
original DTW distance for any-valued series. We discuss useful
variants of AWarp: bounded (both upper and lower), constrained,
and multidimensional. We show applications of AWarp to three
data mining tasks including clustering, classification, and outlier
detection, which are otherwise not feasible using classic DTW,
while producing equivalent results. Potential areas of application
include bot detection, human activity classification, and unusual
review pattern mining.

I. INTRODUCTION

Time warping naturally appears in many domains, especially

in the activities of humans and animals. For example, humans

can produce the same motion or speech at a different pace and

acceleration and have it still be recognizable. Time warping

is also present in discrete action sequences. For example,

Figure 1 shows the 24-hour time series of the front door

statuses of two single-resident apartments. Each day shows

a warped version of the unique schedule of the resident in

that apartment. A simple hierarchical clustering of the data

shows that the daily patterns of a person can be clustered well

if we use Dynamic Time Warping (DTW) distance instead of

the widely used Euclidean distance.

Dynamic Time Warping (DTW) is a distance measure

that has been used in dozens of research works on mining

equally sampled time series data [13]. However, new sensor

technologies (both soft and hard) can capture a sequence of

discrete events that forms a sparse time series (as in Figure 1).

In its original form, DTW distance does not take advantage of

this sparsity. For example, Twitter records discrete activities

of more than 700 million users at a resolution of milliseconds.

Comparing the activities of two users for a day at this

resolution requires 86, 400, 0002 computations, which amounts

to more than a day in an off-the-shelf machine. The number of

activities performed by average users are on the order tens or

hundreds. Clearly, the current amount of computation required

to calculate DTW distance is excessive.
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Fig. 1. (left) Day-long signals generated from the front doors of two single-
resident apartments of two users. (right) Euclidean distance cannot capture
the difference between the two users, while DTW distance can.

We develop a time warping distance measure, AWarp, for

sparse time series data that works on run-length encoded

time series. Run-length encoded time series are much shorter

than their versions before encoding; for example, in Figure

1 the run-length encoded time series for instance 7 will

have only eight numbers, as opposed to 86,400 observations

for a day. AWarp is exact for binary-valued time series

and closely approximates the DTW distance for any-valued

time series. AWarp is extendable to constrained warping and

multidimensional warping. We have shown three applications

of AWarp in the important areas of bot discovery, human

activity classification, and unusual review pattern discovery.

We give necessary background (Section II) on sparse time

series and their various representations, and on Dynamic Time

Warping. Next we describe the core AWarp algorithm and its

variants in Section IV. We show performance analysis of the

algorithm in Section V and demonstrate potential applications

in Section VI. We conclude in Section VII.

II. ENCODING SPARSE TIME SERIES

We first define time series and dynamic time warping

distance (DTW). We then discuss sparse time series and run-

length encoding and show a motivating example.

A. Definition

A time series is defined as a vector T =< v1, v2, . . . , vn >
of observations made at equal intervals. Most distance mea-

sures and mining algorithms are invariant to the absolute start

time and sampling interval of the time series [11][25].

For two series x = x1, x2, . . . , xn and y = y1, y2, . . . , ym
of length n and m, where n > m without losing generality, the

classic Dynamic Time Warping distance is defined as below.
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DTW (x, y) = D(n,m)

D(i, j) = (xi − yj)
2 +min

⎧⎨
⎩

D(i− 1, j)
D(i, j − 1)
D(i− 1, j − 1)

D(0, 0) = 0, ∀ijD(i, 0) = D(0, j) = ∞
We intentionally skip taking the square root of D(n,m), as

it does not change the relative ordering of pairs and makes

it efficient for speedup techniques. A dynamic programming

algorithm to populate the DTW matrix and calculate the DTW

distance is well known. An example DTW matrix for two time

series is given in Figure 2(a).

Constrained DTW distance is a variant that limits the the

allowed time gap between two aligned observations. In effect,

the DTW matrix is populated partially around the diagonal

(readers can find details about DTW in many online resources

such as Wikipedia and also in [13]).

B. Sparse Time Series and Representations

A time series is simply a sequence of observations made

in temporal order. The phenomena that we observe can be

continuous or discrete in time. For example, the temperature

of a sea surface at specific point on earth is a continuous

phenomenon. In contrast, the activities of a user on social

media are discrete because the user can be inactive at times.

When observing a discrete phenomena, a sparse time series is

produced, which is the focus of this work.

A sparse time series has many more zero-valued observa-

tions than non-zero observations. We define the sparsity factor,

s, of a time series as the ratio between the length of the time

series and the number of non-zero observations. The higher the

sparsity factor, the more sparse a time series is. Representing

a sparse time series in the traditional vector format wastes

significant amount of space. For example, the REFIT [15]

datasets are stored in this format. A more optimal way to

store sparse time series is as a sequence of time-value pairs.

Time-value Sequence: Each observation is stored as a

(t, v) pair and a sparse time series is an ordered set Tv =
{(ti, vi)|ti < ti+1, i = 1 . . . n− 1}. For example, the CASAS

datasets [10] are represented in this format. This is the most

common representation of sparse time series. Example: The

time series T =< 7, 0, 0, 9, 6, 0, 0, 0, 1 > can be represented

equivalently as Tv = {(1, 7), (4, 9), (5, 6), (9, 1)} if the start

time is 1.

In this paper, we use a well known compression technique,

run-length encoding [2], to represent sparse time series. We

differ from the classic run-length encoding as we only encode

the runs of zeros and leave the runs of non-zero observations

as they are.

Length-Encoded series: Let us assume we have a time

series T . A length-encoded time series is Te where we replace

a run of k zeros in T with a (k). Here we use the parenthesis to

represent the duration of zeros. Example: For the same sparse

time series, T =< 7, 0, 0, 9, 6, 0, 0, 0, 1 >, the length-encoded

series is Te =< 7, (2), 9, 6, (3), 1 >.

We can also define length-encoded series in a rather com-

plex way from the time-value sequence Tv as Te =< v1, (t2−
t1 + 1), v2, (t3 − t2 + 1), . . . , vn−1, (tn − tn−1 + 1), vn >.

In other words, we insert the duration between each pair of

observations in between the observations to create a length-

encoded series. From now on, we use simply use encoded

series to denote length-encoded series.

Note that a time series of four observations, such as Tv ,

needs eight integers for storage in the time-value sequence

representation. In traditional representation, T could require

any number of integers larger or equal to eight to store the

series because the lengths of the runs of zeros can arbitrarily

vary in size. In an encoded series, Te needs at most eight

integers. Thus, for a fixed sparsity factor, the encoded series

require the lowest amount of space.

Run-length encoding compresses a run of zeros by the

length of the run. There is no better compression than just

one number. In that sense, run-length encoded series are also

fully encoded series. We can also define partially encoded

series, which will be useful to calculate multidimensional

DTW distance.

Partially encoded series: Given an encoded series Te, a

partially encoded series Tpe is an equivalent series where one

or more of the runs of zeros are split into parts. Example:
Tpe =< 7, (2), 9, 6, (2), (1), 1 > is a partially encoded series

of Te from the previous example. If we keep splitting the

runs of zeros in a partially encoded series, we reach the same

length as the traditional series, with zero being represented by

(1) and no more possible splits.

If a time series starts with a run of zeros, we treat the

first zero as an observation and encode the rest of the run.

This ensures that an encoded series always starts with an

observation, and not with a run of zeroes. Similarly, we ensure

that the series ends with an observation. Since Te and Tpe are

equivalent, their DTW distances to any other series remain

identical. The conversion between the three representations of

sparse time series can be performed in time linear to the length

of the time series.

C. Motivating Example

We now present an example to motivate AWarp. In Figure

2(a), we show two toy time series x and y of lengths 14 and 11,

respectively. The DTW distance between the two time series is

1. The DTW matrix is a 14×11 matrix as shown in Figure 2(a).

If we encode the time series x and y, the two time series shrink

to X (length 8) and Y (length 5), respectively. The AWarp

matrix calculated on these encoded time series is only of size

8×5 (shown in (b)). The AWarp distance is the same as the

DTW distance, 1. The computation in each boxed sub-matrix

of the DTW matrix is replaced by a one cell in the AWarp

matrix. The value in the bottom-right corner of a sub-matrix

is identical to the corresponding cell in the AWarp matrix.

Note that a sub-matrix is not always a constant matrix with

identical values. Some of the sub-matrices are monotonically

increasing sequences. To complete the example, we also show

the constrained AWarp matrix for a constraint window of size
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Fig. 2. (a) Two sparse time series x and y and their DTW matrix. (b) The AWarp matrix for their encoded versions, X and Y. (c) The AWarp matrix for a
constraint window of size 5.

5 in Figure 2(c). The constrained warping distance is always

larger than the optimal DTW distance. In this example, the

constrained AWarp distance is 2, which is exactly the same

as the constrained DTW distance under the same constraint

window.

III. RELATED WORK

Dynamic time warping is a long-studied algorithm in many

research communities, including signal processing [7], speech

recognition [19][12], data mining [14], and image processing

[18]. We adopt warping distance for sparse time series. Al-

though many human activity datasets are publicly available,

warping-invariant mining has not been applied to sparse time

series from discrete human activities (to the best of our

knowledge). Our work is the first to exploit sparsity for time

efficiency in warping-invariant mining.

Some works exploit other forms of sparsity in DTW cal-

culations [4][24]. In [4], the authors reduce space complexity

by approximating the distance; however, there is no reduction

in time complexity. In contrast, our method reduces both time

and space complexity with negligible difference in accuracy. In

[24], the authors have not used the sparsity of the time series

or the sparsity of the DTW matrix, rather sparsity is used

when combining features that are independently calculated

without using DTW. We claim our work as the first to calculate

warping similarity on an encoded representation of sparse time

series data.

A significant body of research exists on efficient DTW

calculation [9][20][21]. In all of these work, calculation of

one global DTW distance has a worst-case time complexity

of O(n2), where n is the length of the time series and w is

the warping window. AWarp has a worst-case complexity of

O(m2), where m is the number of non-zero observations. This

makes a significant difference in performance for sparse time

series.

DTW-based similarity search in streaming or database

settings has been made efficient by indexing [13], hybrid

bounding [16], admissible pruning [6], and filter-and-refine [5]

approaches. These approaches are equally applicable for sparse

time series and can use AWarp, instead of DTW, for un-pruned

distance comparisons. We leave it as a future work to adopt

these techniques to perform similarity search under AWarp. In

[8], the authors have shown that locally-relevant constraints

learned from salient features of the comparing time series are

better than a fixed constraint for the entire time series. We will

evaluate this approach on constrained AWarp in future.

IV. AWARP DISTANCE MEASURE

We start by describing the AWarp algorithm for simple

binary valued series. We then relax this simplification and

discuss the general case of any-valued time series. Finally we

show the constrained and multidimensional versions of AWarp.

A. Binary-valued Series

Algorithm 2 is the AWarp distance function for run-length

encoded time series. The inputs to the algorithm are two run-

length encoded time series. The algorithm fills in a matrix D
of size lx × ly in the same way as the DTW algorithm. Here

lx and ly are the lengths of the two encoded series x and y,

respectively. The algorithm has two loops in lines 4 and 5

that go over all the cells of the AWarp matrix. The algorithm

calculates three costs for a cell based on three other cells:

(diagonal, left, and top) relative to the cell being populated.

Finally, in line 11, the algorithm takes the minimum of the

costs as per the definition of DTW.

While calculating the cost of a pair of values xi and yj ,

Algorithm 1 treats various mutually exclusive cases differently

based on the values of xi and yj (i.e. a real observation or a run

of zeros), and the direction of the cell (i.e. Di−1,j−1, Di−1,j

or Di,j−1) to which the cost will be added to. The following

facts describe the cases in UBCosts, one by one.

Observation 1: AWarp (Algorithm 2) is identical to DTW

for any traditional time series, although it is designed for

encoded series.
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It is a trivial observation. If x and y are traditional vectors,

there is no run of zeros in x and y by definition. Therefore,

the UBCosts algorithm must always execute the first case in

line 1, which is the squared error between the values, as in

the definition of DTW.

Observation 2: AWarp distance of encoded binary-valued

series is identical to the DTW distance of their traditional

representations.
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Fig. 3. Twelve cases covered by the Algorithm 1. OBS: observation, ROZ:
run of zeros.

Algorithm 1 describes the cases we need to treat separately

for binary-valued encoded series. The case in line 1 is the triv-

ial case when both of the inputs a and b are real observations.

The value v is simply the squared error. In line 2, we have one

observation (a=1) and one run of zeros (b). There can be two

inner cases: the run of zeros has already been aligned (left)
or it is being aligned for the first time (right or diagonal).
If the run of zeros is being aligned for the first time, we have

no choice other than aligning all of the zeros with some real

observation(s). In the case of a binary-valued series, the real

observation(s) are always identical and their values are one,

no matter where they are located. Thus the term ba2 aligns the

zeros. If the run of zeros has already been aligned to previous

value(s) of the real observation a, we just align a with the

last zero of the run, hence the term a2 = 1. The case in

line 4 is the mirror of the case in line 2. The default case

in line 6 is triggered when both a and b are runs of zeros,

which can only result into a distance of zero. In Figure 3,

we show twelve cases, which are all of the possible cases

in binary-valued time series, and we illustrate how UBCosts
calculates the optimal alignment. The solid lines (aligning the

red and blue time series) represent the so-far-alignment, and

the dotted lines show the new alignment for which UBCosts
is calculating the cost.

As shown in Figure 2, if we take the DTW matrix of the

traditional binary-valued time series and remove the rows and

columns corresponding to zeros that are followed by other

zeros, we obtain the matrix calculated by the AWarp algorithm.

B. Any-valued Series
As we have described the exactness of AWarp in case

of binary-valued time series, the natural question is if the

exactness holds for any-valued time series. The answer is no.

Algorithm 1 UBCosts(a, b, c)

Require: a ← an observation, b ← another observation, c ←
a case identifier

Ensure: Output the distance value v between a and b
1: case: a and b are observations: v ← (a− b)2

2: case: a is an observation and b is a run of zeros:

3: if c = left v ← a2 else v ← ba2

4: case: a is a run of zeros and b is an observation:

5: if c = top v ← b2 else v ← ab2

6: case default: v ← 0
7: return v

Algorithm 2 AWarp(x, y)

Require: x, y ← two encoded time series for comparison

Ensure: Output warping distance between x and y
1: lx ← length(x), ly ← length(y)
2: D(0 : lx, 0 : ly) ← ∞
3: D0,0 ← 0
4: for i ← 1 to lx do
5: for j ← 1 to ly do
6: ad ← Di−1,j−1 + UBCosts(xi, yj , diagonal)
7: al ← Di,j−1 + UBCosts(xi, yj , top)
8: at ← Di−1,j + UBCosts(xi, yj , left)
9: Di,j ← min(ad, al, at)

10: return Dlx,ly

Observation 3: AWarp on any-valued encoded series ap-

proximates the DTW distance between their traditional rep-

resentations.

We first discuss why AWarp is not exact for any-valued time

series. Although the encoded representation is not lossy, the

optimal alignment, which is similar to classic DTW, is not

possible for any-valued encoded series. This is because run-

length encoding treats all zeros as identical, while an optimal

warping alignment may treat zeros in the same run differently.
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Fig. 4. An example demonstrating that optimal alignment in the encoded
representation is not possible.

Example: In Figure 4, two time series x =< 1, 2, 3, 0, 1 >
and y =< 1, 0, 0, 4, 1 > are shown in red and blue, respec-

tively. Note that these time series contain various positive

observations as opposed to just one. The optimal DTW aligns
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the first zero of y with the first one of x and the second zero

of y is aligned with the two of x. Such a scenario of aligning

part of a run of zeros to one observation and the remaining

part of the run to another observation is not possible in the

encoded representation, where we treat all the zeros as one

entity. If we encode x and y and calculate the AWarp distance,

the UBCosts function aligns the run of two zeros of y to the

first one of x. Therefore, AWarp accumulates a higher distance

than the optimal DTW and forms an upper-bounding function

of the DTW distance measure. Similarly, if in the UBCosts
algorithm, we skipped aligning the run of two zeros of y with

the first one of x, AWarp would have accumulated a smaller

distance than the optimal DTW and formed a lower-bounding

function of the DTW distance.

Algorithm 3 LBCosts(a, b, c)

Require: a ← an observation, b ← another observation, c ←
a case identifier

Ensure: Output the distance value v between a and b
1: case: a and b are observations: v ← (a− b)2

2: case: a is an observation and b is a run of zeros:

3: if c = top v ← ba2 else v ← a2

4: case: a is a run of zeros and b is an observation:

5: if c = left v ← ab2 else v ← b2

6: case default: v ← 0
7: return v

We define the lower-bounding cases in Algorithm 3, where

the term ba2 is applied to only the top case and the term

ab2 is applied to only the left case. The difference between

the UBCosts and LBCosts is that the diagonal cost in the

former is always equal or larger (ab2 or ba2) than the latter

(b2 or a2). From now on, we will use AWarp UB and AWarp

interchangeably to refer to Algorithm 2 and AWarp LB to the

refer to the same algorithm where UBCosts are replaced with

LBCosts.
At this point, the most important question is: how good

are these bounding functions? To test them, we generate

a comprehensive set of synthetic datasets in the following

way. Each dataset has a sparsity factor from the following:

2, 4, 8, 12, 16, 24, 32. Each dataset is associated with a

distribution (uniform, normal, binomial and exponential) to

generate random numbers from. To generate a dataset, we

create 1000 pairs of zero vectors of length 128. We insert

random values between one and five in the zero vectors at

random locations drawn from the associated distribution. The

number of values that are inserted depends on the associated

sparsity factor.
For each pair of time series in a dataset, we calculate the

upper bound (i.e. AWarp), the lower bound as described above,

and the DTW distance in the traditional representation. We

calculate the percentage of exact and approximate matches

(up to 5% error) between the bounds and DTW distances.

The results are shown in Figure 5. AWarp UB, approximately

90% of the times, is within 5% of the true distance value. The

accuracy converges to 100% as data becomes sparser. These

results empirically support that AWarp distance for sparse time

series in the encoded form is almost identical to the DTW

distance in the traditional form.

The cup-shapes of the approximate matches in Figure 5 can

be explained. For low sparsity factor, the number and length of

the runs of zeros are smaller than that when sparsity factor is

high. Thus, for low sparsity factor, high accuracy is achieved

by exploiting the observation 1.
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Fig. 5. AWarp LB and AWarp UB on encoded series with respect to DTW
on vector representation. On average, 90% of the times the upper bound is
within 5% of the true distance. Sample time series are shown inside.

Although AWarp is not exactly identical to DTW, there is a

simple way to test if AWarp distance is exact. we can calculate

Awarp LB and check if it is equal to AWarp. If they are the

same, the distance must be exactly equal to the DTW distance.

Thus, we can validate the exactness without calculating the

expensive DTW distance by just two AWarp calculations on

encoded series, and use AWarp as a pre-processing step ahead

of the exact DTW calculation on sparse data.

C. Invariance to Partial Encoding

As mentioned before, a partially-encoded series is a longer

version of an encoded series where a run of zeros can follow

another run of zeros. Let us informally define order of

partially encoded series as the number of zeros that have been

encoded.

Observation 4: AWarp is invariant to the order of partial

encoding.

Let us first give an example. If x =< 7, (2), 9, 6, (3), 1 >
is an encoded series and x′ =< 7, (2), 9, 6, (2), (1), 1 > is

a partially encoded series of x, then the above fact ensures

AWarp(x,y) = AWarp(x′,y). This observation can be easily

explained by the UBCosts algorithm, which solely depends

on the two values, a and b, and is not impacted by prior

or later values in the series. Since x and x′ are equivalent

series, the distance values must be identical. Optimality in

substructures is a classic property of dynamic programming.

This fact is simply an alternative description of the optimal
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substructure of the AWarp algorithm that we will exploit in

the multidimensional version.

AWarp(x′,y′) is always closer to the DTW distance on tra-

ditional representations than AWarp(x,y), where x′ and y′ are

partial encodings of x and y, respectively. The reason is that

the more runs of zeros are split, the closer the partial encoding

is to the traditional representation. To test this statement, we

define an operation, split, on an encoded series that splits

every run of two or more zeros into half. If we iteratively

split an encoded series, the series is eventually converted to

the traditional version. The impact of such iterative splits on

exactness is shown in the Figure 6(right). As we split more,

the error decreases and the exactness increases.
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Fig. 6. (left) The exactness of constrained AWarp LB and AWarp UB
for various windows. (right) The error and exactness of partially encoded
representation as we split runs of zeros into halves iteratively.

D. Multidimensional Warping

We have so far discussed the one dimensional algorithms

for calculating AWarp. We consider the multidimensional ex-

tension of AWarp using approaches similar to those developed

for traditional DTW in [23]. There are three general ways to

extend DTW to multidimensional time series:

Independent: Calculate the individual optimal distances and

sum them after normalization by the path length.

Aggregate: Sum up the individual dimensions into one su-

perposed time series and encode them to calculate the

AWarp distance using Algorithm 2.

Dependent: Calculate the global optimal distance assuming

that all of the observations at a timestamp must be aligned

together to the observations of another timestamp.

Extending AWarp to multidimensional-encoded time series

is trivial for the independent scenario. In the aggregate sce-

nario, we sum up the individual dimensions. A simple way

to sum two encoded sparse time series is to convert them to

traditional time series, add the series, and encode them back

to obtain the aggregated time series. It is even more simple to

aggregate two time-value sequences. We concatenate the two

sequences, sort the concatenated sequence based on time, and

add observations which appear at the same time. The time cost

is linear in both the cases.

In the dependent scenario, it is non-trivial to calculate the

global optimal distance. The recursive step of the dependent

version of multidimensional warping distance is given below.

D(i, j) =
d∑

k=1

(Xik − Yjk)
2 +min

⎧⎨
⎩

D(i− 1, j)
D(i, j − 1)
D(i− 1, j − 1)

The above definition of the multidimensional DTW does

not work on encoded series directly. For example, if a two-

dimensional series is (x1, x2) = (< 1, 0, 0,−1, 0, 0, 0, 1 >
,< 1, 0, 0, 0, 0, 1, 0, 1 >), then the encoded representation

is (x1, x2) = (< 1, (2),−1, (3), 1 >,< 1, (4), 1, (1), 1 >).
Clearly, the locations of real observations are not aligned in x1

and x2. In order to convert them to a workable representation,

we partially encode x and y in a way that runs of zeros

always end at an observation in one of the dimensions.

For example, (x′
1, x

′
2) = (< 1, (2),−1, (1), (1), (1), 1 >,<

1, (2), (1), (1), 1, (1), 1 >) is an equivalent representation of

x and y where the values are time aligned. On sequences of

different lengths, aligning them requires managing the ends

carefully. In [3], we provide an algorithm which shows how

to align two dimensions for multidimensional AWarp. When

there are more than two dimensions, the process will be to

align pairs of dimensions until no change is needed.

The AWarp algorithm will need to calculate the sum of

UBCosts over all of the dimensions in lines 8-10 to accom-

modate the recursion specified above. We skip the details due

to lack of space and will explain in detail in an extended

version of this paper. In [23], the authors have shown that

a combination of the dependent and independent algorithms

can beat both of them individually. We will consider such

extensions for multidimensional AWarp in future.

E. Constrained Warping

It is widely accepted that constraining the warping between

two time series in a user-given window not only helps data

mining algorithms to run more quickly, but also enforces

physical laws in the matching process [19][13][16]. Figure

2(right) shows an example of a constrained (Sakoe-Chiba

band) AWarp matrix. The constrained AWarp algorithm for

encoded time series is shown in Algorithm 4. This algorithm

is identical to Algorithm 2 except the lines 6-9. In line 6, the

absolute difference between the timestamps of xi and yj is

calculated. We assume that the timestamp of every observation

in the encoded series is available to us. It takes linear time to

calculate these absolute timestamps if we know t0, and the

overhead is minimal compared to the overall computational

cost.

The condition on line 7 ensures that if txi > tyj + w then

txi−1 > tyj + w must be true to set a cell to infinity. If

txi > tyj + w and txi−1 < tyj + w, then xi is a run of

zeros, which contains the timestamp tyj +w (boundary of the

Sakoe-Chiba band). As mentioned before, AWarp cannot align

a run of zeros in parts, therefore, when a run of zeros contains

the boundary of Sakoe-Chiba band, we extend the band until

the next observation after the run of zeros. This forces us

to calculate some extra cells that would have been infinity if

we used the traditional representation. However, constrained
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AWarp ensures that no cell within the band is skipped, as Line

7 also checks the mirror case for tyj > txi + w.

In Figure 6(left), we show the correctness of the

AWarp LB and AWarp UB algorithms as we increase

constraint window size. We generate a time series of length

200 with 50% sparsity and normally distributed observations.

We calculate 10,000 random distances using Algorithm 4

and check what percentage of the distances match the exact

constrained DTW distance. We find that the accuracy increases

as the window grows. AWarp UB converges quickly to

100%, while AWarp LB show some variance. Note that the

exactness is always above 96.5% for AWarp LB and above

99% for AWarp UB.

Algorithm 4 Constrained AWarp(x, y, w)

Require: x ← a sequence of timestamps, y ← another

sequence of timestamps

Ensure: Output warping distance between the two sequences

x and y
1: lx ← length(x), ly ← length(y)
2: D(0 : lx, 0 : ly) ← ∞
3: D0,0 ← 0
4: for i ← 1 to lx do
5: for j ← 1 to ly do
6: gap ← |txi − tyj |
7: if gap > w and

(tyj−1 − txi > w or txi−1 − tyj > w) then
8: Di,j ← ∞
9: else

10: ad ← Di−1,j−1 + UBCosts(xi, yj , diagonal)
11: al ← Di,j−1 + UBCosts(xi, yj , left)
12: at ← Di−1,j + UBCosts(xi, yj , top)
13: Di,j ← min(ad, al, at)
14: return Dlx,ly

V. EXPERIMENTS

Reproducibility Statement: We share everything related to

this paper in our anonymous repository [3]. We share code for

AWarp in two languages (C++ and MATLAB), presentation

slides, datasets, experimental results, additional experiments,

and additional data.

Dataset Instances Length Resolution Duration

TA 4,170 36,799 1 Second One Day

AR 3,755 1,334 1 Day Years

HA 1,628 288 5 Minutes One Day

PW 3,089 288 5 Minutes One Day

TABLE I. Dataset summary

Datasets: We use four real datasets from diverse domains

to demonstrate the scalability of AWarp. The datasets are:

Twitter user activity time series (TA), app review time series

(AR), human activity time series (HA) and power usage time

series (PW). In Table I, we briefly describe the datasets.

The resolutions of the datasets are very carefully chosen to

be relevant for the respective domains. In human behavioral

activity and electric power usage, a resolution of five minutes

is reasonable. In online reviewing activity, a resolution of a

day is enough. In Twitter activity time series, a resolution of a

second is required because many actions in Twitter only need

mouse clicks (e.g. follow, retweet). Detailed descriptions of

the datasets are given in the subsequent application sections.

1) Speedups: We generate 100,000 pairs of sparse time

series for various sparsity factors and lengths where the

activities are uniformly distributed. We calculate the average

speedup achieved by AWarp over DTW for these pairs and

show the results in Figure 7.
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Fig. 7. Speed and accuracy with respect to the sparsity and size of the
datasets.

As data becomes more sparse, speedup increases. As data

gets larger, the speedup increases even more.This is an in-

credible feature of AWarp that can enable applications of
warping distance to datasets where DTW cannot run on the
uncompressed sparse time series.

2) Tractability: A valid question at this point is: are the

sizes and sparsity factors of real datasets large enough to

require a method like AWarp? We first validate the major moti-

vation of AWarp. We test the speed of AWarp by comparing the

running time of AWarp in the encoded representation with that

of DTW in the traditional representation. The gain in speed

naturally depends on the resolution of the time series. The

higher the resolution, the more sparse the data becomes and

the more speedup we gain. We use reasonable resolutions for

all of our datasets as shown in the Table I.

We perform all-pair distance calculations on each of the

datasets using DTW and AWarp. All-pair distance calculations

is a basic operation for many data mining task including:

hierarchical clustering, outlier detection, and nearest neighbor

classification. We record the speedup and the respective spar-

sity factors for four real datasets in Table V-.2. The sparsity

factors in our real datasets are large enough to extract at least

2×, and up to 557×, speedup. In each of these domains, the

data owners (e.g. Twitter, Google Play) have several orders of

magnitude more data than what we use for this experiment.

AWarp will be very useful at that scale for performing many

basic data mining tasks under warping similarity. We describe

four such data mining tasks in the next section.

3) Comparison with a Baseline: As described earlier, the

purpose of AWarp is to calculate the warping similarity of

sparse time series much more quickly than the classic dynamic

time warping algorithm while retaining the accuracy of a

warping distance measure. There are other methods (e.g.
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Dataset s DTW AWarp SpeedUp

TwitterActivity 746 180 hrs 0.3 hr 557×
AppReviews 3 46 hrs 21 hrs 2×

HumanActivity 42 907 Sec 34 Sec 27×
PowerUsage 28 1170 Sec 40 Sec 29×

TABLE II. Speedup achieved on real datasets.

FastDTW) that achieve the same for arbitrary time series

data, as opposed to sparse time series. We compare AWarp

to FastDTW [20] on 1000 pairs of sparse time series for

different values of the radius parameter. We measure total

execution times and percentages of exact distances produced

by FastDTW and show the results in Figure 8. On the same

chart, we point to the worst and median accuracy achieved

by AWarp (implemented in MATLAB) and the corresponding

execution time for various sparsity factors. Note that AWarp

has no input parameters. Also note that FastDTW does not

vary on sparsity. For completeness, we point to the timings

of two classic DTW implementations. FastDTW (Python) is

completely dominated by our implementations. We show a

hypothetical 10× accelerated curve for FastDTW, which is

also dominated by our implementations of AWarp and DTW.

Dozens of techniques are available to speedup similarity

search [13], subsequence search [17], and indexing time series

[22] data. These techniques are equally applicable to sparse

time series and can benefit from AWarp’s speedup just by

replacing DTW with AWarp when calculating true distances

to eliminate false positives. Comparing AWarp, DTW, and

FastDTW in searching or indexing algorithms is out of scope

of this work.
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Fig. 8. Speed accuracy trade-off for various methods and implementations.

VI. DATA MINING APPLICATIONS

AWarp is a distance measure that nearly optimally aligns

two discrete time series much more quickly than DTW aligns

them in their traditional representation. However, this work

needs to be justified by showing the utility of this speedup

in real data mining tasks. In this section, we show four cases

of important data mining tasks that require time warping and

could not have been performed using time warping distance

functions without the speedup provided by AWarp.

A. Bot Discovery in Twitter

We evaluate the performance of AWarp for clustering the

Twitter activities of thousands of users. We assemble a dataset

of every activity, including tweet, retweet, follow, unfollow,

delete, and many others from 4,170 randomly chosen users

for a day. We form activity time series for each of the users at

a resolution of seconds (the data is available at milliseconds

resolution).

Activity time series can be very useful for finding sur-

prisingly correlated user groups that are mostly bot operated.

To find such correlated user groups, we hierarchically cluster

the users based on their AWarp distances. We use the single

linkage technique and a threshold of 1 to create the clusters.

We find ten clusters that are very dense groups of ten or

more users with highly synchronous activities. Several of these

clusters can be further merged to form four semantically coher-

ent clusters. One of the clusters was spreading pornographic

content and is now mostly suspended by Twitter. Another clus-

ter is spreading news, videos, and images about Selena Gomez

(wedselena13,wedselena,wedselena12). The re-

maining two clusters were spreading identical content

in two specific languages: Portuguese (patetamos,
IndiretasMusica, LoucoDeVodka) and Malaysian

(elzmn01, ItSy4mimi, zazaizzaty96).

We show some of the activity time series from the cluster

of Portuguese language in Figure 9(left). The time series show

arbitrary shifts in tweet timestamps because of queuing delay,

transmission delay, tweet registration delay, geographically

separated data centers, and many other reasons. Such un-

structured delay between synchronous tweets breaks Euclidean

distance- and lagged Euclidean distance-based methods and

prevents this bot group from being detected and suspended.

Since AWarp is two orders of magnitude faster on Twitter

data, we could perform the clustering under warping distance

and discover such a cluster.

B. Behavioral Classification

We evaluate the classification performance of AWarp in

a real-world setting. We use two human activity datasets

(HH102 and HH104) from the WSU CASAS repository [10].

Each dataset is from a single-resident apartment recording

the activities (e.g. door open, light on, etc.) of the resident.

The datasets are partially annotated by labeling the beginning

and end of some day-to-day activities, such as toilet, dress,

sleep, cook, leave home, etc. Instead of using the annotations

to classify the activities, we ask an alternate question: can we
identify a person based on the status (e.g. opened or closed)
of the front door of his apartment? We pick the daily time

series of the front door of the two apartments for over two

years and create a balanced two-class classification problem

of 1,628 instances of daily time series of length 288 (i.e. one

observation every five minutes). A sample of the dataset is

shown in the Figure 1.

We use a 1-NN classifier under Euclidean distance, DTW

distance (global and constrained), and our proposed AWarp

357



0

0.5

1

1.5

2

2.5

3

3.5

�������	 
��	���


�
	�
��
�

50 100 150 200 250 300 350 400

5

10

15

20

25

30

35

�����	
0

5

10

15

20

25

30

Fig. 9. (Left) Time series of a cluster of 35 bots. Each spike is one tweet. Note the warping in time axis. (Right) Dendrogram of the Twitter accounts using
constrained (60 sec) AWarp. Most of the random users are outliers and several clusters of bots are formed.

distance (global and constrained). We evaluate the leave-one-

out accuracy for each of these classifiers (see Table VI-B).

Euclidean DTW DTW 100 AWarp AWarp 100

59.89% 62.71% 78.19% 76.78% 78.50%
TABLE III. Accuracies of different distance functions

It is interesting to note that there is a big gap between the

accuracy of global DTW distance (62.71%) and the accuracy

of the global AWarp distance (78.19%). Although global

DTW finds the optimal alignment between the two series,

AWarp penalizes a run of zeros being aligned with some real

observations more than DTW does. The difference goes away

when we use constrained versions of both of the measures with

100-minutes widows. Because long runs of zeros are broken

into at most 100 minute runs, the difference between the global

versions is reduced.

Irrespective of the difference noted above, a 1-NN classific-

ation using AWarp is 26× faster than the DTW based classifier.

This is a substantial difference for large datasets. We estimate

that if we use all of the fourteen CASAS datasets of single-

resident apartments, it would take 50 minutes to perform these

experiments using AWarp, versus 23 hours using a DTW-based

classifier.

C. Power Usage Classification

We also evaluate the performance of AWarp on a dataset of

the power usage of appliances from two different houses. This

dataset has been collected from [15]. Instead of considering all

the appliances, we first consider only the power usage of the

dishwasher appliance. Typically a dishwasher consumes more

than 2000 watts at regular operation. We discretize the power

usage time series to on-off time series at a resolution of five

minutes. In total we have 500 days of on-off time series for

the dishwashers. The two classes have 214 and 286 instances

of days. These data are very sparse because dishwashers are

not often in use. We consider classifying households by using

their dishwashing pattern.

We use a 1-NN classifier under Euclidean distance, DTW

distance (global and constrained), and our proposed AWarp

distance (global and constrained). We evaluate the leave-one-

out accuracy for each of these classifiers and report the results

in Table VI-C.
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Fig. 10. Multidimensional power usage data from two households. Each
time series is 1 day long at 5 minutes resolution starting at midnight. There
is neither a fixed schedule nor a fixed load to these appliances.

Eucl. DTW DTW1h AWarp AWarp1h
DW 79.56% 82.16% 76.95% 83.57% 77.15%

CW 81.96% 87.58% 82.77% 85.37% 81.16%

Both 82.16% 88.98% 85.77% 87.58% 71.34%

TABLE IV. Accuracy of different distance functions.

We also evaluate the classification accuracy of the same

two houses based on the power usage of washing machines.

We finally evaluate the accuracy considering both of the

appliances together using the multidimensional extension of

AWarp. In all three cases, global DTW or AWarp has the

highest accuracy compared to constrained DTW, constrained

AWarp and Euclidean distances. To perform a leave-one-out

cross-validation, DTW took 4.5 hours while AWarp took 9

minutes with a tiny reduction in accuracy of 1.4%.

D. Unusual Review Pattern Discovery

We collect a dataset of app reviews from the Google Play

Marketplace. This dataset contains the review time series for

3,755 mobile apps. To form review time series, we collect the

number of reviews an app receives in a day since the beginning

of data availability. The time series are therefore of varying

lengths, with an average length of 1,334 days.

We perform discord discovery [26] on these data to identify

the most anomalous review time series. The discord is the

object in a dataset whose nearest neighbor is the farthest

among all other nearest neighbors. We use AWarp as a distance

measure to identify the discord. We find a pair of apps that are

“far” from every other app while they are reasonably similar

to each other. These apps are com.facebook.katana and

com.supercell.clashofclans, which are two of the

most popular apps in the Google Play Marketplace [1]. These
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apps have received more than 20 million reviews each and

they receive several thousands of reviews every day, which

is much greater than the average number of reviews an app

receives in the store.
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Fig. 11. Review time series found as outliers illustrate the capacity hit and
subsequent two day cycle in the data collection system.

However, the success of AWarp is not catching the popular

apps, which can easily be found in Wikipedia, but in efficiently

identifying anomalous patterns. The patterns that cause AWarp

to detect these two apps as outliers are shown in Figure 11.

These pattern show that the apps receive thousands of reviews

in one day and do not receive any on another day, which

is an impossible scenario. The data collection system has a

dynamic limit on the number of reviews it can collect and

the system works in a two-day cycle. If an app is highly

popular, the number of reviews it receives in a day exceeds the

dynamic limit. For the two outlier apps, the limit is exceeded

every day and the collection system gets reviews written in

one day every two days, which is why the pattern appears.

Thus, the outliers represent the overloaded scenarios of the

data collection system.

VII. CONCLUSION

The goal of our work is to develop a time warping distance

measure for sparse time series to exploit sparsity for efficiency.

We develop AWarp, which is orders of magnitude faster than

DTW and calculates a close approximation of DTW, if not

a more accurate measure in some cases, such as in human

activity datasets. We show applications of AWarp to four

domains where DTW is unusable and AWarp can produce

interesting results. We discover new bot behavior in Twitter,

and we classify human activity much more quickly than with

DTW-based classifiers.
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