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Abstract— Time series motifs are repeated patterns in long and
noisy time series. Motifs are typically used to understand the
dynamics of the source because repeated patterns with high sim-
ilarity evidentially rule out the presence of noise. Recently, time
series motifs have also been used for clustering, summarization,
rule discovery and compression as features. For all such purposes,
many high quality motifs of various lengths are desirable and
thus, originates the problem of enumerating motifs for a wide
range of lengths.

Existing algorithms find motifs for a given length. A trivial
way to enumerate motifs is to run one of the algorithms for
the whole range of lengths. However, such parameter sweep is
computationally infeasible for large real datasets. In this paper,
we describe an exact algorithm, called MOEN , to enumerate mo-
tifs. The algorithm is an order of magnitude faster than the naive
algorithm. The algorithm frees us from re-discovering the same
motif at different lengths and tuning multiple data-dependent
parameters. The speedup comes from using a novel bound on
the similarity function across lengths and the algorithm uses only
linear space unlike other motif discovery algorithms. We describe
three case studies in entomology and activity recognition where
MOEN enumerates several high quality motifs.

I. INTRODUCTION

Time series motifs are repeated patterns in a noisy and
long time series data. Typical use of time series motifs is in
unsupervised data exploration or analytics. Figure 1 shows
two real examples where enumeration of multiple repetitions
or motifs from a time series are used for knowledge discovery.
First example is in understanding clusters of genes affecting
the locomotion of a nematode (Caenorhabditis elegans) [3]
and the second example is in understanding the repetitive
structure of human brain activity recorded through Electroen-
cephalography (EEG) [13]. In both of the examples, scientists
have run a motif discovery algorithm numerous times to find
the repeated patterns for a range of lengths and process the
patterns to mine the data.

We refer the problem of finding repetitions at different
lengths as enumeration of motifs in a time series. The enu-
merated motifs can be used in many data mining tasks. The
set of motifs work as a summarization of the data [4], when
the time series data contains a lot of noise. Clustering the
enumerated motifs is shown to be better than clustering all of
the subsequences in time series [20]. Enumerated motifs can
be used to compress time series data tightly [12]. Finally, all of
these applications work better if we can find a comprehensive
enumeration over a range of lengths.

There has been a considerable amount of work on time
series motif discovery that successfully find motifs from a
variety of time series data. Exact algorithms find motifs for
a given length [12][13] and are believed to be intractable for
enumeration because of the massive computation time required

(a)

(b)

Fig. 1. Two examples of enumeration of time series motifs. (a) In the top,
a sample time series projected from moving Caenorhabditis elegans and a
sample motif in the time series are shown. Eleven of the fourteen motifs are
shown in three of the four clusters found. The shapes of the worm are shown
at the top of the bars and the motifs in the four channels are shown below
them [3]. (b) A set of repeated EEG patterns collected to study the hierarchical
structure of human EEG data [13]. There are approximately 114,000 distinct
motifs found so far, spanning a wide range of lengths.

to find motifs for all lengths. For example, to find all the motifs
in Figure 1(a), it takes about fifteen hours on a four way down-
sampled data. A number of approximate algorithms exist that
project the data in lower dimensions and find approximate
motifs in the lower dimensional space [10][15]. None of them
guarantees finding motifs of various lengths and all of them
require a set of data-dependent parameters. Multiple trials are
needed to tune those parameters for arbitrary data and often
times, the process is equally as time consuming as running
the exact methods. In the worst case, different segments of
the time series may require different sets of parameters and
thus, making the search for the best parameters infeasible.

In this paper, we describe an exact algorithm to enumerate
motifs of all lengths. The algorithm searches for the entire
range of motif-lengths and outputs only maximally covering
motifs. Figure 2 shows a set of maximally covering motifs of
various lengths discovered by our tool from an EEG trace. The
algorithm is significantly faster than running the existing exact
algorithms multiple times and an order of magnitude faster
than the naive solution. We demonstrate the application of
the algorithm to discover high quality motifs in entomological
exploration and activity/dance pattern recognition.

The key feature of the algorithm is a novel bound on the
similarity function to prune most of the similarity computa-
tions for successive lengths once the motifs for the first length
is found. The algorithm is free of data-dependent parameter
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Fig. 2. An EEG trace is shown at the top. Four different motifs of different
lengths are shown at the bottom.

and uses only linear space, just enough to store the time series
and some additional statistics. We add a knob to configure the
number of motifs to output for iterative exploration.

We organize the rest of the paper in traditional fashion
starting with some background on existing work (Section II).
We define the necessary notations in Section III. In Section IV
we give the trivial algorithm first and then provide an intuitive
description of the method and finally describe the algorithm
and its variants. In Section V we show experimental results
and show the case studies in Section VI.

II. BACKGROUND AND RELATED WORK

Time series motif discovery was introduced in 2002 [10]
with a hash based technique to find repeated patterns. Since
then numerous algorithms have been proposed focusing on
many applications [22][17] [5][23][15]. Many of the methods
for motif discovery are based on searching a discrete approx-
imation of the time series, inspired by and leveraging off the
rich literature of motif discovery in discrete data such as DNA
sequences.

Several of the algorithms are based on SAX (Symbolic
Aggregate approXimation) representation that discretizes both
time and y-values and represents the time series with symbols
[24][17][5]. The quality of the discretization process depends
on two parameters w and α. For example, large w on a noisy
time series can be massively lossy. Some algorithms are based
on locality sensitive hashing and depends on optimal setting of
at least four independent parameters. Beside the undesirable
list of parameters, the algorithms also have some complexity
in space usage. They extract all the contiguous subsequences
(n) for a specific length (m) and convert all of them to SAX
representation. Therefore, the space requirement is O(nmw ).
In motif enumeration, the maximum length of a motif can be
arbitrarily large limiting the largest time series we can input.

It has long been held that the exact motif discovery is
intractable even for datasets residing in main memory. In
a recent work the current authors have shown that motif
discovery is tractable for large in-core datasets [13]; however,
the algorithm we proposed (called MK) also suffers from a
very demanding parameter m and O(nm) space requirement.
Enumerating motifs of all lengths can be done by repeatedly
running MK but, very quickly becomes intractable for mod-
erate sized datasets.

There are algorithms to discover variable-length motifs
[9][16][23]. The method in [9] uses SAX representation and
thus, the method is an approximate one. The method in [23]
doesn’t even normalize the subsequences and therefore, can’t
detect motifs with a shift and scaling.

III. DEFINITION

In this section, we define the problem and the other nota-
tions used in the paper.

Definition 1: A Time Series T is a sequence of real numbers
t1, t2, . . . , tn. A time series subsequence Ti,m = ti, ti+1, . . . ,
ti+m−1 is a continuous subsequence of T starting at position
i and length m.

A time series of length n can have n(n+1)
2 subsequences of

all possible lengths from one to n.
If we are given two time series X and Y of same length

m, we can use the euclidean norm of their difference (i.e.
X −Y ) as the similarity function. To achieve scale and offset
invariance, we must normalize the individual time series using
z-normalization before the actual distance is computed. This
is a critical step; even tiny differences in scale and offset
rapidly swamp any similarity in shape [7]. The normalized
euclidean distance is generally computed by the formula√∑m

i=1(xi − yi)2 where xi = 1
σx

(Xi − µx) and yi =
1
σy

(Yi − µy). Thus, computing a distance value requires time
linear on the length of the time series.

In contrast, we can compute the normalized Euclidean
distance between X and Y using five numbers derived from
X and Y . These numbers are denoted as sufficient statistics
in [21]. The numbers are

∑
x,

∑
y ,

∑
x2 ,

∑
y2 and

∑
xy.

It may appear that we are doing more work than necessary;
however, as we make clear in section IV-A, computing the
distance in this manner enables us to reuse computations and
reduce the amortized time complexity from linear to constant.

The sample mean and standard deviation can be computed
from these statistics as µx = 1

m

∑
x and σ2

x = 1
m

∑
x2 −

µ2
x, respectively. The positive correlation and the normalized

euclidean distance between X and Y can then be expressed
as below [14].

C(x, y) =
∑
xy−mµxµy

mσxσy

dist(x, y) =
√
2m(1− C(x, y))

Now we define motif and the enumeration problem.
Definition 2: A motif (Ti,m,Tj,m) is the most similar pair

of non-overlapping subsequences of length m where i < j.
To extend the above definition for a range of lengths is not

as straight forward as making the length of the motifs (m) vari-
able. In Figure 3, we illustrate the locations of different motifs
for four hundred different lengths i.e. [100 500]. Let’s take an
example to describe the covering relationship between motifs.
The first locations of the motifs (see Figure 3) at lengths 250
and 175 are identical (100% overlap) and therefore, we say
250 covers 175. The number of such covering motifs can vary
in different time series. We see, in Figure 3, there are only ten
different motifs present among the 400 different lengths. For
most smooth time series, only a few motifs cover the entire
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Fig. 3. Locations of the motifs’ first occurrences for 400 different lengths.
There are only a few different motifs that show up. In this example we have
only ten covering motifs among the 400 lengths.

range. Therefore we need a way to remove this redundancy
by showing only the covering motifs.

Definition 3: A subsequence Ti,m covers another
subsequence Tu,p, p ≤ m, if the overlap between Ti,m
and Tu,p is more than a threshold c%. More mathematically,
any of the two conditions is true.

i− u ≥ 0 and i− u ≤ (1− c%) ∗ p
i− u < 0 and m+ i− u ≥ c% ∗ p

The conditions cover both complete and partial overlaps.
One point is worth mentioning here. The definition of mo-
tif does not allow any overlap between the subsequences.
Whereas the definition of cover does allow c% overlap.

Definition 4: A motif, (Ti,m,Tj,m), of length m covers a
motif of length p ≤ m, (Tu,p,Tv,p), if any of (Ti,m,Tj,m)
covers any of (Tu,p,Tv,p). A motif is maximally covering when
no motif covers it.

Problem 1 (Motif Enumeration): Given a time series T ,
find all the maximally covering motifs.

We would like to solve the above problem exactly. Recall,
the motivation for finding motifs is to retrieve the most similar
segments that, by definiton, are the least noisy segments for
further investigation by human. Therefore our algorithm keeps
minimizing similarity as the primary goal while finds as many
motifs as possible for different lengths.

Note that the definition is free from any parameter. Reader
may think c as a parameter of the enumeration algorithm. It
is a configuration parameter for the output. We don’t use this
parameter in speeding up the enumeration algorithm.

A. Why the Problem is Difficult?

Finding motifs for all possible lengths is an inherently
difficult problem. Here we describe why. Let’s assume we have
two time series subsequences Ti,5 = [3 7 3 5 3] and Tk,5 =
[10 6 9 8 9]. Let’s also consider that z-normalization is not
required. The distance between the subsequences Ti,4 and Tk,4
is d =

√
72 + 12 + 62 + 32 = 9.75. Computing the distance

between Ti,5 and Tk,5 is now a straight forward process, which
is adding the squared difference of the fifth elements to d2.
Therefore, dist(Ti,5, Tk,5) =

√
d2 + 62 = 11.45 (see Figure

4(a)).
When we compute z-normalized euclidean distance the

situation becomes difficult. The primary reason is that we

cannot use the overlap between Ti,4 and Ti,5 while computing
dist(Ti,5, Tk,5). The normalized version of Ti,4 and Ti,5,
usually, do not share any common subsequence. In Figure 4(b)
the normalized Ti,4 and Tk,4 are shown by the dotted lines
and the normalized Ti,5 and Tk,5 are shown by the solid lines.
Clearly, the values of the first four elements change with the
length of the subsequences and we cannot just add the squared
difference of the fifth elements to get dist(Ti,5, Tk,5). There-
fore, both dist(Ti,4, Tk,4) and dist(Ti,5, Tk,5) require adding
four and five squared differences, respectively. And more im-
portantly, dist(Ti,5, Tk,5) can be smaller than dist(Ti,4, Tk,4).
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Fig. 4. (a) If we do not require normalization, the distance between slightly
longer subsequences can reuse the distance between shorter subsequences.
(b) If we normalize, the overlapping values change and we cannot reuse the
distance.

In this paper, we show a way to use the overlaps between
subsequences to create bounds on the distances of the longer
subsequences. We use the bounds in speeding up the motif
enumeration algorithm.

IV. MOTIF ENUMERATION

We start with the smartest trivial algorithm that can be
designed using known optimization techniques. We then de-
scribe our novel bound on distance function and give a faster
algorithm to enumerate motif.

A. Smart Brute Force

A brute force algorithm compares all possible pairs of
subsequences of all possible lengths. If the length of the time
series is n then there are O(n3) comparisons each taking
O(n) time. Thus a naive brute force algorithm takes O(n4)
computation time.

A smart brute force algorithm can use the known techniques
described in [19]. Precisely, we can cache and reuse the dot
products of a subsequence with all other subsequences in the
entire time series. It costs only linear space and enables a way
to compute distances in constant time. Thus the additional
linear space saves us the O(n) factor of computation required
for distance computation in the naive brute force.

The Algorithm 1 describes the smart brute force algorithm.
It takes the time series T and the minimum (m) and maximum
(mx) length of the motifs as input. Note that, the parameters
m and mx can easily be set to 0 and n/2 to enumerate all
motifs of all lengths although it is not meaningful to do so.
The parameters are more amenable for exploratory analysis
than exactly one length m for the motif. They are not data
dependent and can be set flexibly to cover a wide range of
meaningful lengths.

The lines 3-5 computes the cumulative sum of the time
series values and the square of the values. In lines 6-9 the dot



Algorithm 1 SmartBruteForce(T,m,mx)
Require: T ← a time series, m,mx ← minimum and

maximum length of a time series motif
Ensure: Output motifs for lengths m to mx and return a List

of distances computed
1: n← |T |
2: x0 ← 0, xx0 ← 0
3: for i← 1 to |T | do
4: xi ← xi−1 + ti
5: xxi ← xxi−1 + t2i
6: for i← 1 to n−m do
7: xyi ← 0
8: for j ← 1 to m do
9: xyi ← xyi + ti+j−1tj

10: prevXY ← xy
11: for i← 1 to n−m do
12: if i > 1 then
13: for k ← i+m to n−m do
14: xyk ← prevXYk−1 − tk−1ti−1 + tk+m−1ti+m−1

15: prevXY ← xy
16: for j ← m to mx do
17: for k ← i+ j to n− j do
18: if j > m then
19: xyk ← tk+j−1ti+j−1

20: d← ctDistance(T, i, k, j, x, xx, xy)
21: List.Add(d, i, k)
22: Update the best pair for length j if necessary
23: Output the best pair for all the lengths
24: return List

product of T1,m with Ti,m is computed and stored in xyi. A
copy of this dot product array is stored in prevXY to use
later in line 10. This dot product could have been computed
in O(n log n) time using fast Fourier transform. We skip this
efficient method for simplicity and it doesn’t hurt the overall
complexity of the algorithm.

Line 11,16,17 shows the main three loops of the algorithm.
Logically, the loop at line 17 finds the nearest neighbor of
Ti,j . Lines 12-15 computes the dot products for Ti,j given
we have the dot products for Ti−1,j in prevXY and store
that back in prevXY for future use (line 15). Lines 18-19
compute the dot products for the next length i.e. from Ti,j to
Ti,j+1. In aggregate, lines 12-15 and 18-19 maintain the xy
array for constant time distance computation and it is done
at line 20. Note that, all the arrays are of the same size as
the time series. Line 21 adds the distance values of the pairs
in a list to return. This is not a mandatory statement for the
smart brute force algorithm. We use the List data structure
later as we will be using the Algorithm 1 as a subroutine in
our proposed algorithm.

At line 22, after the nearest neighbor of Ti,j is found, we can
update the best pair for the length of j. And finally when all
of the loops are done, we can output the bests for all lengths.

B. MOEN: Efficient Enumeration of Motifs
The smartest brute force algorithm for motif enumeration

described in the previous section runs in O(n3) time. In this

Algorithm 2 ctDistance(T, i, k, j, x, xx, xy)
Ensure: Return the distance between Ti,j and Tk,j

1: sumX ← xi+j−1 − xi−1

2: sumX2← xxi+j−1 − xxi−1

3: sumY ← xk+j−1 − xk−1

4: sumY 2← xxk+j−1 − xxk−1

5: µi,j ← sumX/j
6: µk,j ← sumY/j

7: σi,j ←
√
sumX2/j − µ2

i,j

8: σk,j ←
√
sumY 2/j − µ2

k,j

9: C ← (xyk − (j ∗ µi,j ∗ µk,j))/(j ∗ σi,j ∗ σk,j)
10: d←

√
2 ∗ j ∗ (1− C)

section we describe an order of magnitude faster algorithm.
The algorithm is called MOEN (i.e. MOtif ENumerator). The
algorithm is based on a novel bound on normalized Euclidean
distance for longer subsequences.

1) Bounding Distances for Longer Lengths: We gave an
example in Section III-A to demonstrate the difficulty of using
the overlap between successive subsequences while computing
the distance metric. Since the values of the overlapping
portion change after normalization we cannot reuse compu-
tation directly. Instead we can build bounds for distances of
the longer subsequences using the distances between shorter
subsequences. More formally, we want to find upper and
lower bound of the distance between Ti,j and Tk,j given that
d = dist(Ti,j−1, Tk,j−1). We use the lower bounds to speed-
up the algorithm. We don’t use the upper bounds, yet we show
the derivation for completeness.

Let’s assume x and y are two normalized sequences of
length j − 1 where xr = (ti+r − µi,j−1)/σi,j−1 and yr =
(tk+r − µk,j−1)/σk,j−1 for r = 0, 1, . . . , j − 2. We know the
following tautologies.∑j−2

r=0 xr =
∑j−2
r=0 yr = 0∑j−2

r=0 x
2
r =

∑j−2
r=0 y

2
r = j − 1

Let the distance between Ti,j and Tk,j be dnext. We would
like to append the values of ti+j−1 and tk+j−1 to the end
of x and y. For that we have to first normalize them using
the means and variances of x and y. Therefore we must add
xj−1 = (ti+j−1 − µi,j−1)/σi,j−1 and yj−1 = (tk+j−1 −
µk,j−1)/σk,j−1 and let the new subsequences after appending
xj−1 and yj−1 are x̂ and ŷ. The new mean and variance of x̂,
after the increase in length, can be computed as follows. The
mean µ̂y and variance σ̂2

y can also be computed in the same
manner.

µ̂x = 1
j

∑j−1
r=0 xr =

1
j

∑j−2
r=0 xr + xj−1 =

xj−1

j

σ̂2
x = 1

j

∑j−1
r=0 x

2
r − ( 1j

∑j−1
r=0 xr)

2

= 1
j (
∑j−2
r=0 x

2
r + x2j−1)− 1

j2 (
∑j−2
r=0 xr + xj−1)

2

= j−1
j + 1

j x
2
j−1 − 1

j2x
2
j−1

= j−1
j + j−1

j2 x
2
j−1

Thus the distance dnext can be computed by computing the
sum of squared error of the new normalized subsequences.



dnext = dist(x̂, ŷ) =∑j−1
r=0 ((xr − µ̂x)/σ̂x − (yr − µ̂y)/σ̂y)2

At this point, we are in position to define the lower and
upper bounds for dnext.

Lower Bound: We start with the lower bound. Imagine we
do not know the values of ti+j−1 and tk+j−1. We would like
to choose the values of xj−1 and yj−1 as such we achieve the
smallest possible dnext.

We argue that we achieve a lower bound for dnext if we set
z = xj−1 = yj−1. Let’s verify why it is true. If z = xj−1 =
yj−1, then means and variances of x̂ and ŷ become equal.

µ̂x = µ̂y = z
j

σ̂2
x = σ̂2

y = j−1
j + j−1

j2 z
2

Clearly, the contribution of xj−1 and yj−1 to dnext becomes
empty. Depending on the value of z the contribution of the
first j − 1 values also change. The larger the value of z, the
larger the means and variances are and the smaller the values
of (xr− µ̂x)/σ̂x are for r = 0, 1, . . . , j− 2. If we set z to the
maximum value of ti normalized by the means and standard
deviations of the immediately preceding subsequence of length
j − 1, we are guaranteed to have the smallest value for dnext
(see Figure 5).

More formally, we get the lower bound dLB for dnext when
we set the following.

z = xj−1 = yj−1 = maxi(ti − µi−j+1,j−1)/σi−j+1,j−1

The lower bound can then be computed as below.

d2LB =
∑j−1
r=0 ((xr − µ̂x)/σ̂x − (yr − µ̂y)/σ̂y)2

= 1
σ̂2
x

∑j−1
r=0 ((xr − yr)− (µ̂x − µ̂y))2

= 1
σ̂2
x

∑j−1
r=0 (xr − yr)2

= 1
σ̂2
x

∑j−2
r=0 (xr − yr)2 + (xj−1 − yj−1)

2

= ( j−1
j + j−1

j2 z
2)−1d2
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Fig. 5. (a) Before and (b) After re-normalization when the maximum value
is appended to a pair of subsequences. Note that the scales in the y-axes are
aligned and the area in between the subsequences shrunk as we re-normalize
the subsequences.

The bounds use the maximum value of a sample (i.e. z)
which can be efficiently computed from the time series and
the algorithm for that is described in the next section.

Upper Bound: The upper bound dUB can also be computed
as above except we set the following to ensure that xj−1 and
yj−1 are opposite to each other.

z = xj−1 = −yj−1 = maxi(ti − µi−j+1,j−1)/σi−j+1,j−1

Note that, the above assignment doesn’t change the vari-
ances while the means have opposite signs. The upper bound
can then be computed as below.

d2UB =
∑j−1
r=0 ((xr − µ̂x)/σ̂x − (yr − µ̂y)/σ̂y)2

= 1
σ̂2
x

∑j−1
r=0((xr − yr)− (µ̂x − µ̂y))2

≤ 1
σ̂2
x

∑j−1
r=0((xr − yr) + 2 zj )

2

= 1
σ̂2
x

∑j−1
r=0((xr − yr)2 + 2(xr − yr)2 zj + 4 z

2

j2 )

= 1
σ̂2
x

∑j−1
r=0((xr − yr)2 + 8 z

2

j + 4 z
2

j2 )

= 1
σ̂2
x

∑j−2
r=0(xr − yr)2 + (xj−1 − yj−1)

2 + 8 z
2

j + 4 z
2

j2 )

= 1
σ̂2
x

∑j−2
r=0(xr − yr)2 + 4z2 + 8 z

2

j + 4 z
2

j2 )

= ( j−1
j + j−1

j2 z
2)−1(d2 + 4z2(1 + 1

j )
2)

Example: Let’s take the example of Section III-A. Ti,5 = [3
7 3 5 3] and Tk,5 = [10 6 9 8 9]. We know the normalized
distance between Ti,4 = [3 7 3 5] and Tk,4 = [10 6 9 8] which
is 3.97 (rounded for simplicity). The normalized sequences are
xr = [-0.90 1.51 -0.90 0.30] and yr = 1.183 -1.52 0.51 -0.17].
Let’s assume we have computed the maximum normalized
value for z = 4;

Then the hypothetical sequences are xr = [-0.90 1.51 -0.90
0.30 4] and yr = 1.183 -1.52 0.51 -0.17 4]. The means and
variances are µ̂x = µ̂y = 0.8 and σ̂2

x = σ̂2
y = 3.36. Therefore

dLB = d
σ̂x

= 2.16 and dUB is 5.667. Since dnext = 4.43, the
bounding inequalities dLB ≤ dnext ≤ dUB hold.
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Fig. 6. The pairwise distances of 1000 random walks of length 255 in
ascending order shown in blue. After increasing the lengths of the random
walks by one, the bounds are shown in red and the true distances are shown
in gray. A zoomed-in segment is shown in the inset.

Before we end the section, we demonstrate the goodness
of the bounds. We perform an experiment on 1000 random
walks of lengths 255. We compute the normalized distances
between all possible pairs of the random walks and plot them
in ascending order in Figure 6. Then we increase the length
of the random walks by one and compute the dLB , dUB and
the dnext for all possible pairs. We plot the them together to
see the tightness of the bound.

As depicted in the Figure 6, the bounds are really tight and
the biggest advantage is that the bounds are constant factors
away from the distances at length 255. Therefore the orders
of the pairs are the same. More formally, if d(x, y) ≤ d(p, q)
then dLB(x, y) ≤ dLB(p, q). We use this fact in our algorithm
rigorously.



Algorithm 3 ComputeMax(T,m,mx)

Require: T ← a time series, m,mx ← minimum and
maximum length of a time series motif

Ensure: Return the maximums of the absolute values for ev-
ery length after normalization by the immediate preceding
subsequence

1: for j ← 0 to mx do
2: Maxj ← 0
3: for j ← m+ 1 to mx do
4: for i← 1 to n− j do
5: Y ← (ti+j−1 − µi,j−1)/σi,j−1

6: if |Y | > Maxj then
7: Maxj ← |Y |
8: return Max

2) Computing the Max Array: As described in the pre-
vious subsection, we use the maximum value of a sample,
ti, relative to its immediately preceding subsequence while
bounding the Euclidean distance. In effect, we want to com-
pute an array Max where

Maxj ← maxi(ti − µi−j+1,j−1)/σi−j+1,j−1 for j =
m to mx

Algorithm 3 describes how to compute the Max array. The
algorithm assumes the sum of values and sum of squared
values are accessible and therefore, means and variances of
arbitrary subsequences are ready to use. For every length j,
the algorithm loops through every position of the time series
and finds the one which is the most displaced form the mean
of the immediately preceding subsequence of length j−1. The
process takes O(nm) time and has no impact on the end-to-
end complexity of the algorithm.

3) Computing the Maximal Motif: In the last two sections
we show the ways to bound the distances of longer subse-
quences using the distances of the shorter ones in constant
time by using only one factor. In this section, we use the
lower bounds to speed-up the motif enumeration algorithm.
The algorithm is shown in Algorithm 4.

The algorithm first computes the Max array in line 1 and
then computes the motif pair and a sorted list of pairs in
ascending order of the distances in line 2. Note the call to the
Algorithm 1 by passing m as both the minimum and maximum
length to search. Thus the brute force algorithm runs once for
the length m and in return, sends a list of triplets < dist, i, k >
sorted by the dist field in ascending order.

If we wanted to return all the pairwise distances in the sorted
list, it would have required quadratic space. Instead, we use
only linear space to store the best O(n) pairwise distances.
The key idea is that there can be O(n) maximally covering
motifs among the O(n3) possible pairs and the covering motifs
roughly remain the same for segments of lengths. In our
implementation, we store exactly n pairs in the List.

After the list is generated, the algorithm takes the maximum
distance in the list and computes the lower bound by multi-
plying the magic constant. This lower bound represents the
whole set of pairs that we did not keep in the List because
none of those pairs could have a smaller distance than LB

for length m+1. Thus LB helps the algorithm to confine the
search space for the next motif pair of length m + 1 within
the pairs in the List.

Let’s now look at the behavior of the algorithm for j =
m+ 1 at line 5. The algorithm loops through the pairs in the
List and compute the distances of all the pairs in it at line 8.
The distance function is not a constant time function as the
ctDistance used in Algorithm 1. It normalizes the sequences
and computes the distance and therefore, requires at least one
full scan of the sequences. By using more space and caching
techniques it can be optimized but, not required.

When the loop at line 6 is finished execution, we have all the
new distances for the pairs in the List stored in the NewList
and at line 9 we find the minimum of the NewList to get the
best pair of length m+ 1 among the O(n) pairs of length m
from List.

At line 11, the algorithm makes a key decision. If the best
distance is less than the LB then we know that none of the
pairs that are not in the list can be smaller than the best
distance and therefore, the algorithm has found the motif for
length m + 1. The algorithm updates the LB for the next
iteration at line 13. Since the lower bounds are constant factor
approximation of the truth, we can cascade the factor to find
the LB for length j+1 = m+2. The hypothesis remains the
same for the next iteration: none of the skipped pairs can have
a smaller distance than LB for length j+1. Figure ??(a) shows
how the cascade drops the the LB down to smaller values.

The algorithm stores the locations of the motif pair in two
parallel arrays L1 and L2 at line 14. These arrays will be used
to find the maximally covering set. The algorithm outputs the
best pair for the current iteration at line 15.

As the LB gets smaller and goes below best for some length
j, LB loses its pruning power. At this point, the algorithm is
no more confirm about finding the smallest distance for length
j + 1 and therefore, calls the SmartBruteForce algorithm
for length j. Thereafter, the algorithm has a new LB (line 18)
with a new List (line 17) of pairs that have more pruning
power and continues for j + 1.

One minor implementation detail is worth mentioning here.
The List is best implemented as a max-heap when we insert
and find the maximum in the SmartBruteForce algorithm.
In the MOEN algorithm we iterate and find the minimum
in the List and therefore, it is best implemented as a sorted
array. To facilitate the implementation, we change the data
structure of the List in MOEN algorithm after lines 2 and
17 from max-heap to sorted array.

4) Finding the Covering Motifs: In Algorithm 6, we
describe how to find the set of covering motifs given the
locations of the motifs for the whole range of lengths. The
algorithm uses the fact that L1i is always less than L2i and
it is ensured by both SmartBruteForce and MOEN . The
algorithm starts with the smallest length. For each length i,
it searches the motifs of length i + 1 to mx to see if any
motif covers the ith one. Line 4 calls the isCovering function
described in the Algorithm 5 which returns true if the longer
subsequence covers the shorter. Whenever a motif is covered,
the algorithm marks it. At the end, the motifs without mark
are collected as the covering motifs.



Algorithm 4 MOEN(T,m,mx)

Require: T ← a time series, m,mx ← minimum and
maximum length of a time series motif

Ensure: Output all the motifs and L1, L2← Locations of the
motif pairs for all lengths

1: Max← ComputeMax(T,m,mx)
2: List← SmartBruteForce(T,m,m)
3: z ←Maxm+1

4: LB2 ← List.Max2 ∗ (m+1
m + m

(m+1)2 z
2)−1

5: for j ← m+ 1 to mx do
6: for p← 1 to List.Count do
7: i← List(P ).i, k ← List(P ).k
8: d← distance(Ti,j , Tk,j)
9: NewList.Add(d, i, k)

10: best← NewList.Min
11: if best ≤ LB then
12: z ←Maxj
13: LB2 ← LB2 ∗ ( j

j−1 + (j−1)
j2 z2)−1

14: L1j ← i, L2j ← k
15: output List.Min for length j
16: else
17: List← SmartBruteForce(T, j, j)

18: LB2 ← List.Max2 ∗ ( j
j−1 + (j−1)

j2 z2)−1

Algorithm 5 isCovering(i,m, u, p)
Require: i,m and u, p for two subsequences

1: if i− u ≥ 0 and i− u ≤ (1− c%) ∗ p then
2: return true
3: else if i− u < 0 and m+ i− u ≥ c% ∗ p then
4: return true
5: else
6: return false

5) Enumerating More Motifs: It is possible that we find
only one motif that covers all the other motifs of smaller
lengths. The reason is that the longer motif is too similar to
each other and its shorter versions become motifs for smaller
lengths also. If we want more motifs, an obvious solution is
to remove the maximally covering motif from the data and
run the MOEN algorithm again to find more motif. A more
interesting approach would be to generate more motifs without
using additional space and time. We can maintain more (e.g.
K) pairs for every length and thus, increase the size of the
enumeration output. K motif has been studied previously in
[8][24] for a given length. We use them here for enumeration
purposes.

Definition 5: A K-motif is the K-most similar pairs of non-
over-lapping subsequences of length m such that none of the
K pairs cover each other.

It is easy to find the K-motifs given the List data structure.
We do it with a linear scan. Let’s look at an example for a
length m. Imagine we have the pairs of subsequences in the
ascending order of the distances stored in the List at line 2
of the Algorithm 4. Recall they are all of the same length.
Imagine List(1) covers List(2), List(2) covers List(3),
List(3) covers List(4) and none covers List(5). Then 3-motif

Algorithm 6 CoveringMotifs(L1, L2)

Require: L1, L2 ← Locations of the motif pairs for all
lengths

Ensure: Output the covering motif pairs marked
1: for i← m to mx do
2: Marki ← 0
3: for j ← i+ 1 to mx do

4: if


isCovering(L1j , j, L1i, i) or
isCovering(L2j , j, L1i, i) or
isCovering(L1j , j, L2i, i) or
isCovering(L2j , j, L2i, i)

 then

5: Marki ← 1
6: break
7: return Mark

for length m consists of List(1), List(3) and List(5). We skip
the description of the algorithm for lack of space.

As we find the K-motifs for each length, we can use the
same definitions of cover and maximally covering motifs as
in Section III to define K-motif enumeration problem. Note
that the definition of motif in Section III is for 1-motif.

Problem 2 (K-Motif Enumeration): Given a time series T ,
find the maximally covering K-motifs.

Now that we have defined the K-motif enumeration prob-
lem, we show the changes required in the MOEN algorithm.
At line 2, after getting the List the algorithm finds the K-motif
of length m and stores them in L1 and L2. Then it enters the
loops and at line 10, instead of the Min, the algorithm uses
the distance of the K-th motif. This guarantees that LB is
good for the K-motif enumeration problem.

Since L1 and L2 are now having multiple motifs of the
same length, there is a change needed in the CoveringMotifs
algorithm. We have to add a loop to look for the covering
motif for each of the K motifs of length i. We also need
to add loop to try each of the K motifs of length j to see
if it covers the motif of length i. The addition of these loops
doesn’t change the overall complexity of the algorithm as they
run after MOEN outputs.

Note that the value of K doesn’t necessarily guarantee
there will be at least K motifs enumerated unless c = 0. By
changing K and c, we can only change the number of output
motifs flexibly without taking additional runs.

V. EXPERIMENTS

We have evaluated the MOEN algorithm experimentally.
We implemented the algorithm in C# language and run our
experiment on a commodity desktop computer. We argue that
the experiments are absolutely reproducible given the detailed
description in the paper and the free datasets used. The code,
the slides and raw numbers of the experiments of this paper
are available at [2].

We start with a sanity check by a “planted motif” problem.
We then show the scalability experiments.



A. The Planted Motif

We design a “planted motif” problem for motif enumeration.
We insert three patterns; a sinusoid wave, a square wave and
a sawtooth wave into a sequence of white noise having a ultra
low frequency trend. We insert two copies of the same pattern
with different scaling and noise addition. The resulting time
series is shown in Figure 7(a). The enumerator is expected to
find all of the three waves.
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Fig. 7. (a) The time series after plantation. A white noise series is used as
the ground. We plant three waveforms of different lengths, scales and noise
content. (b) The motifs we found.

In our experiment we indeed find the patterns. The success
in this experiment strongly depends on the scale of the waves,
the wandering baseline and the scale of the added noise. For
example, the plantation shown in Figure 7(a) is a difficult one
and the 1-motif enumerator fails to identify all of the three
waves. More precisely, 1-motif finds only motif 2 and 3 shown
in Figure 7(b).

At this point we employ our K-motif enumeration algorithm
and use K = 3 and successfully discover the four waves shown
in Figure 7(b). Note that the segments in motif 1 and 2 have
1420−1378

87 = 48.27% overlap which is less than the c = 80%
threshold set for the experiment.

B. Scalability

We use three datasets to compare the scalability against two
algorithms. EEG: An EEG trace of 180,000 samples [13].
Random Walk: A synthetic random walk data to model fi-
nancial time series. EOG: An Electro-Oculogram of 8 million
samples [6].

We use the SmartBruteForce algorithm and
IterativeMK algorithm to compare with the MOEN
algorithm. IterativeMK repeatedly uses the existing exact
algorithm (MK) [13] for finding motifs of all lengths. MK
algorithm uses pruning techniques after dimensionality
reduction to reduce the number of distance computations
and guarantees no false negatives. We choose iterative MK
because, it has been used in several works [3][13][4][20] to
iteratively enumerate motifs.

Note that, MOEN neither uses any dimensionality reduc-
tion technique nor it uses quadratic space. And more impor-
tantly, there is an opportunity to use both of these techniques
in MOEN for further improvement. We can easily optimize
the periodic calls to the SmartBruteForce algorithm in

MOEN by these techniques for more speedup. We leave such
improvement for future work.

Increasing the Data Size: Our first experiment is to em-
pirically show the growth of the execution time as the size
of the datasets grow. In Figure 8, we show the execution
time of MOEN for the three datasets mentioned above. Since
the smart brute force algorithm takes identical time for all
of the datasets, we show the curve once. We show the best
timing for IterativeMK. As claimed, we see an order of
magnitude speedup for all of the datasets from both of the
SmartBruteForce and IterativeMK.
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Fig. 8. Execution times of 1-motif, c = 80%, (left) for different size of the
datasets for the range 128 to 256 and (right) for different range of lengths for
n = 180k.
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Fig. 9. Execution times for (left) varying K, c = 80% and (right) varying
c, K = 15. Here the range is 128 to 256.

Increasing the Range of Lengths: We experiment on the
effects of larger range of lengths. The relationship is linear as
expected from the complexity expression and holds for all the
datasets and for both of the algorithms.

Changing K and c: K and c are two parameters to control
the number of outputs of the enumerator without additional
running time. The larger the K or the smaller the c, the more
the number of motifs are while the execution time does not
change significantly as we go to extreme values of K (=200)
and c (=0).

We experiment to see the change in execution time for
increasing K and decreasing c. As shown in Figure 9, the
execution time remains flat for larger/smaller values of K/c
which confirms the algorithm is independent of the K/c.



VI. CASE STUDIES

The MOEN algorithm is directly motivated from real
scientific applications [3]. The case studies shown here, are not
designed to claim results in their respective domains, rather,
they demonstrate how the enumeration of time series motifs
across lengths can provide more precision in discovering
repetitions. We use MOEN on three different signals; Ac-
celerometer, Sound pressure and EPG (Electrical Penetration
Graph).

A. Activity Recognition: Sound Pressure

In this case study we use one signal (Environ-
ment:SoundPressure:Modest) from a benchmark dataset of
context recognition [11][1]. There are 5 activity scenarios
performed by two users. Each scenario has around 50 trace
instances performed by the two users. An example scenario is
given in TABLE I. All the instances are randomly concatenated
to form a time series of length 46,045. A segment of one such
concatenation is shown in Figure 10(a).

Our goal is to discover motif in this randomly concatenated
time series and see if the motifs come from the same the
scenarios. This task is inherently difficult because of two
reasons. First, we are using only one signal out of the 28
available signals in the dataset. Second, the scenarios have
many common activities (such as walking in the street) to
create confusion.
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Fig. 10. (a) Activity scenarios. (b) Four motifs found in the sound pressure
signal.

We use MOEN to find repetitions of length 128 to 256.
We performed ten different random concatenations and find
twelve motifs on average with 88.15% accuracy in finding
motifs from identical scenarios. Figure 10(b) shows four of
the motifs found. We further perform a similarity search for
all of these twelve motifs. We find 34 other occurrences with a
correlation threshold of 0.55 that yield an accuracy of 91.28%
of being generated from identical scenarios.

B. Activity Recognition: Accelerometer

In this case study, we have used a set of accelerome-
ter signals from [18]. In the original data, there were four
participants who danced with a remix of Lady Gaga’s song
“Just Dance.” The song has 119 beats per minute and it is
4:54 minutes long. The participants were equipped with four
accelerometer devices (with x, y and z axis in each) in four of
their body parts; hand, arm, hip and leg. The sampling rate of

TABLE I
A SCENARIO

Activity Location
start office

walking corridor
walking stairs
walking lobby
walking street
walking lobby
walking corridor
walking stairs

stop office

TABLE II
DANCE STEPS

Step Action
A Side steps with no arm movement
B Rock steps sideways

without arm movement
C Rock steps sideways

with arm movement
D Side steps with arm movement
E Side steps with arms up in the air
F Standing still with head bopping

the accelerometer was good enough to collect at about 10Hz
rate and we received a set of time series of length 29,700.

Six different dance-steps (shown in TABLE II) were defined
and assembled into a choreography for the study (shown in the
top of Figure 11).

Although there are six different dance-steps, individual body
parts have two or three distinct movements. We show the
motion transitions of the body parts in the Figure 11 by thick
waveforms.
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Fig. 11. The motifs found in the twelve accelerometer signals. Same colored
bars represents sequences of a motif pair. The four thick waveforms show the
state transitions of each of the body parts according to the choreography. The
number of motif-pairs spanning different motions are counted on the right
side of each axis line.

Our goal is to enumerate a set of maximally covering motifs
for a range of lengths and verify if the motifs align with
identical dance steps or step-transitions. We use our algorithm
to find 3-motifs for all the twelve accelerometer signals of one
participant. In Figure 11, we show all of the motifs aligned to
the known choreography. The motifs are grouped by the body-
parts carrying the sensors and acceleration axes are marked
on the left. For example, the green motif in the x-axis of the
hand are aligned with A to D transitions in the choreography.
Similarly, the red motif in the z-axis of the leg is aligned with
the motion “Rock steps sideways” although the dance-steps are



different (i.e. C and B). There are 37 motifs detected which
covers almost the entire song and only 5 of them span different
motions of their respective body parts. This corresponds to
about 86.5% accuracy.

C. Data Understanding: EPG

We use the EPG trace of the beet leafhopper [13] to
enumerate motifs. The motifs found are shown in Figure 12.

There are roughly two distinct shapes in the motifs. The
noise pattern (N) and the spikes (S) as shown in the figure.
We can use the pattern identifiers to describe the motifs. For
example, the motif 334 can be written as NSN. Similarly the
motif 384 can be written as NNS. As we go on with the next
motifs, we find other valid combinations of the two distinct
shapes. For example, the 799 motifs have NSNNSNN and
SSSNSSN patterns.

Entomologists confirm us the patterns N represent certain
excretion process of the insect [13]. With the longer motifs, we
now know that three successive excretions can happen. Simi-
larly, the motif 595 evidently says that two spikes can happen
successively. Thus enumerating more motifs of larger lengths
gives us more information about the possible arrangements of
the patterns and helps understanding the sequential structure
of the data.
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Fig. 12. Six motifs of different lengths found in the EPG trace. The motifs
reveal a hierarchy of structure.

VII. CONCLUSION

Enumerating motifs of a large unstructured time series
can potentially retrieve valuable structural information about
the data. In this paper, we have described the first exact
algorithm to find maximally covering motifs of all lengths.
The algorithm is upto 23x faster than the naive method and
produces the same results. We have empirically verified the
speedup and showed cases of motif discovery in entomology
and activity recognition. In future, we plan to investigate
new time series data using our enumerator including system
performance counters and resource usages.
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