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Abstract

Recent advances in high throughput data collection and stor-

age technologies have led to a dramatic increase in the avail-

ability of high-resolution time series data sets in various do-

mains. These time series reflect the dynamics of the underly-

ing physical processes in these domains. Detecting changes

in a time series over time or changes in the relationships

among the time series in a data set containing multiple con-

temporaneous time series can be useful to detect changes in

these physical processes. Contextual events detection algo-

rithms detect changes in the relationships between multiple

related time series. In this work, we introduce a new type

of contextual events, called group level contextual change

events. In contrast to individual contextual change events

that reflect the change in behavior of one target time series

against a context, group level events reflect the change in

behavior of a target group of time series relative to a con-

text group of time series. We propose an online framework

to detect two types of group level contextual change events:

(i) group formation (i.e., detecting when a set of multiple

unrelated timeseries or groups of time series with little prior

relationship in their behavior forms a new group of related

time series) and (ii) group disbanding (i.e., detecting when

one stable set of related time series disbands into two or

more subgroups with little relationship in their behavior).

We demonstrate this framework using 2 real world datasets

and show that the framework detects group level contextual

change events that can be explained by plausible causes.

1 Introduction

Recent advances in high throughput data collection and
storage technologies have led to a dramatic increase in
the availability of high-resolution time series data sets
in many areas including remote sensing, structural and
functional brain data in magnetic resonance imaging,
and in finance. Mining these time series provide im-
portant clues on the nature of the physical processes
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Figure 1: A set of EVI time series which disbands in August
2009 because of forest fire. Such disbanding pattern is useful
to detect events from time series datasets. Red and green
points show the time series of points inside (marked as the
red locations) and outside (marked as the green locations)
the fire affected region, respectively.

generating this data. For example, a change in the tem-
poral pattern of precipitation may indicate a climate
event (e.g., drought), while a change in the pattern of
vegetation coverage over time might be an indicator of
changes in the underlying land use (e.g., change in land
cover type from forests to urban). As a result, change
detection in time series is an active topic in data mining
with applications in a variety of domains.

The relationships among multiple contemporaneous
time series in a dataset are guided by processes generat-
ing their corresponding signals. Time series generated
by related physical processes often demonstrate high
coherence while time series generated by independent
processes are expected to show low coherence. Discov-
ering changes in the relationships among the time se-
ries in a dataset containing multiple contemporaneous
time series can be useful to detect events that change
the underlying process(es) that generate these time se-
ries. For example, greenness of a patch of vegetation is
determined by many factors including the type of vege-
tation, temperature, soil-moisture etc. The time series
of greenness at geographically proximal locations will
show highly coherent behavior if they are covered by the
same type of vegetation. Fig. 1 shows a group of such
locations and their corresponding time series from year
2007 to year 2009. Their greenness” time series (called
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Figure 2: Illustration of two types of group level contextual
changes. Top: Group disbanding events. Bottom: Group
formation events.

as Enhanced vegetation index or EVI) are very similar
to each other during normal years (year 2007 and year
2008). In year 2009, some of these locations (marked by
red dots) were burned because of a natural forest fire,
leading to a change in the relationship of EVI time series
of some nearby locations. It is easy to see two distinct
groups of time series (shown in red and green) after the
forest fire. All the red time series (whose EVI values
dipped in tandem as they are all affected by the fire)
are located inside the burnt region while all the green
time series (whose EVI values remain relatively unaf-
fected by the fire) are located outside the region of the
fire. Hence, by discovering this group level contextual
change in the EVI spatio-temporal dataset, we are able
to infer when (the time) and where (the geographical
locations) the forest fire event occurred.

In this paper, we define group level contextual
change detection which is a new type of change detection
method for time series data. We focus on detecting
two types of group level contextual change events, as
shown in Fig. 2: (i) group formation, where a set of
multiple unrelated time series (bottom right panel) or
subgroups of time series with little correlated behavior
(bottom left panel) merge to form a new group of time
series with similar behavior at a later time, and (ii)
group disbanding, where one set of time series with
correlated behavior at some time disbands into two or
more subgroups with little correlation (top left panel)
or dissipates into uncorrelated individual components
(top right panel) at a later time. We propose an
online framework to detect these two types of group
level contextual change events, present the results of
applying the the group level contextual change detection
framework on real datasets from 2 different domains
that detect events with plausible real world causes,
and propose two enhancements to speed up the group
detection method in this framework.

The structure of this paper is as follows. We give

a formal definition of group level contextual changes in
Section 2 and present the related work in Section 3.
In Section 4, we propose an online framework to detect
group level contextual change events. Besides, two tech-
nology is introduced to our framework in order speed
up the proposed framework. Section 5 first compares
the scalable algorithm with the original algorithm and
then presents the results of our experiments using 2 real
world datasets. Section 7 concludes the paper with a
discussion of future work.

2 Definition and problem formulation

In this section, we formally define group level contextual
changes. We first introduce the concept of a contextual
change. A contextual change refers to a deviation in the
behavior of one or a group of time series with respect
to its context, where the context is a collection of time
series that behaves similar to the target group of time
series over a time window.

Definition 2.1. (Contextual Changes) Let X =
{x1,x2, · · · ,xn} be a set of n time series and let Y1 and
Y2 be two mutually disjoint subsets of X . X changes
contextually between t1 and t2 if

• The time series in Y1 and Y2 exhibit similar
behavior at time t1 or t2.

• fd(Y1,Y2, t1) 6= fd(Y1,Y2, t2)

where fd(Y1,Y2, t) is a function that measures the
similarity of two sets Y1 and Y2 at time t.

In general, the function fd is determined by two com-
ponents: (i) a dissimilarity metric (d) to measure the
difference between two time series and (ii) a function
(f) to tell the difference between two sets of time series
based on this dissimilarity metric.

The choice of dissimilarity metric d(.) and function
f(.) is governed by the desired type of change detec-
tion. For example, we use Pearson’s correlation coeffi-
cient as the dissimilarity metric in the event detection
for finance data, and Euclidean distance in the event de-
tection using remote sensing data. There are multiple
choices for f(.) as well. The commonly used ones are
mean, median, maximum and minimum. We define a
function called similarity-aware entropy (which will be
introduced in Section 4.2) as our choice of f(.).

Chen et al. [6] proposed a framework to detect one
type of contextual change. We refer to that framework
as individual contextual event detection because it
involves only one target time series. Specifically, they
detect contextual changes assuming that Y1 contains
only one time series. In this paper, we relax this
constraint and propose a new type of contextual change
called group level contextual changes where the



target Y1 can be a set of time series. We define two
types of Group level contextual change events called
group disbanding and group formation.

Definition 2.2. (Group Level Contextual
Changes) Let X be a time series set that changes
contextually between t1 and t2 and t be the time when
all the individual time series elements in the set X are
in the same cluster (i.e have a small distance between
each other). We call the event as

• group disbanding when t = t1

• group formation when t = t2.

3 Related work

There has been a wide array of “change detection”
algorithms in the literature, many of which are on
univariate time series detecting break points where
the predefined features (e.g., mean, variance and any
statistics calculated from the given time series) change
[1, 2, 5, 10, 11]. For example, CUSUM searches for
break points when the means of the subsequences shift;
BIFAST detects a change point when the coefficients
of subsequence models change; GPchange [4] considers
variation in auto-covariance of a time series as “change.”

We can classify all the above work, in general, as
traditional algorithms for time series change detection
in that they detect changes in some characteristic of
the same time series over time. Different from change
detection algorithms that consider auto-correlation in
the same time series, contextual change detection algo-
rithms detect events that change cross-correlation. Con-
textual changes refers to a deviation in the behavior of
one or a group of time series (called the target set of
time series) with respect to its context, where the con-
text is defined as another collection of time series that
exhibit similar behavior to the target set of time series
over a period of time. [6] proposed a framework to de-
tect one type of contextual change which involves only
one target time series. Therefore, we call the method
in [6] as individual contextual change detection as op-
posed to the group level contextual changes discussed
in this paper. Previous works have considered defining
the context based on other source of information such
as event log [9], geo-location, etc. Our method builds
context entirely using the time series based on similarity
between the time series.

Our algorithm uses dynamic clustering of the time
series. We perform density based clustering as opposed
to methods that detect only spherical clustering. We
do not assume that the time series are either stationary,
periodic etc. [14]. We re-cluster the set of time series
at every time instance and therefore, our method can
detect both insertion (i.e. formation) into clusters, as

well as deletion (i.e. disbanding) of clusters. Methods
that maintain clusters only after insertions [3] are not
suitable for our purpose. Finally, we cluster the time
series using both correlation and Euclidean distances
without normalization for different datasets [12].

4 Online Framework for Group Level
Contextual Change Detection

Fig. 3 shows the proposed online framework to detect
group level contextual events. As new observations are
collected, the method performs three steps; (i) group
time series according to their similarity (Section 4.1),
(ii) calculate event scores at the current time based on
the updated groups (Section 4.2), and (iii) report group
level events using the event scores obtained (Section
4.3).

New data 
obtained?

Time series grouping

Scoring event

Report events

YesNo
(4.1)

(4.2)

(4.3)

Figure 3: Flowchart illustrating the key steps in the
proposed group level contextual change event detection
method: (i) Grouping time series by similarity (ii) Scoring
events and (iii) Reporting events based on the event scores

4.1 Grouping time series: AutoDBSCAN In
this section, we propose a method called AutoDBSCAN
for automatically clustering subsequences from each
time series (over the same temporal window) into groups
based on their (domain dependent) similarity functions.
Since we use a financial dataset and a remote sensing
dataset in our experimental results, we demonstrate the
method using two similarity functions viz., Pearson’s
correlation (for the currency exchange rate dataset) and
Euclidean distance (for the remote sensing data). Our
framework can be easily extended to work with other
similarity functions.

4.1.1 AutoDBSCAN AutoDBSCAN (shown in Al-
gorithm 1) is an online method to detect group level
contextual changes in a large dataset. It starts by
detecting clusters using DBSCAN with a maximum
value of neighborhood size (ε2) and iteratively searches
for higher density clusters, progressively reducing the
neighborhood size by δ at each iteration, till either a
minimum neighborhood size is reached, or there are no
more higher density clusters detected by DBSCAN. Its
advantages in contextual group level change detection



Algorithm 1: AutoDBSCAN

Input: data, ε1, ε2, minPts, δ
Output: Clusters

1 Clusters← DBSCAN(data,ε2 ( > ε1), minPts);
2 if ε2 > ε1 and |Clusters| > 1 then
3 for each non-noise cluster c in Clusters do
4 dataT ← time series in c;
5 output c;
6 AutoDBSCAN(dataT, ε1,ε2 − δ, minPts) ;

7 end

8 end

are as below.

1. It can be used even when several time series do not
belong to any group, which is a common occurrence
in real applications.

2. It returns all possible groups with different densi-
ties (above a threshold)

3. It is computationally efficient.

In real datasets, many time series do not fall into
any cluster. Hence, we need to form an “unclustered-
set” that includes all these unclustered time series. Au-
toDBSCAN utilizes DBSCAN [8] to form the contexts
or groups and hence is a density based grouping method.
By definition, it reports points in low-density regions as
noise. These time series points form the “unclustered-
set”.

By Definition 2.2, if a set of objects forms a group or
a group of objects splits into multiple groups, any valid
algorithm should report it as a group level contextual
event. Hence, we need to extract groups with different
density. DBSCAN clusters objects with fixed density
that is given by two parameters (i) the size of the neigh-
borhood (ε) of each point, and (ii) the minimum number
of points within the ε−neighborhood of a point required
to form a cluster (minPts). A naive method to mod-
ify DBSCAN for contextual event detection is to run it
using multiple thresholds. We call this method as Mul-
tiDBSCAN. The proposed AutoDBSCAN is equivalent
to MultiDBSCAN but computationally more efficient.
Next, we first describe a containment property of DB-
SCAN that shows the equivalence of AutoDBSCAN and
MultiDBSCAN. Then, we compare their computational
cost.

Property 4.1. (Containment Property) Let A1,A2,
· · · ,Am and B1,B2, · · · , Bn be clusters discovered by
DBSCAN using neighborhood size εa and εb, respectively
(with εa < εb). Then for any i ∈ [1, · · · ,m], there is a
j ∈ [1, · · · , n] such that Ai ⊂ Bj.

Property 4.1 means that any cluster A detected using
a smaller ε is a subset of a cluster B detected using a

larger ε. Therefore, after obtaining B using a higher ε,
A can be obtained by searching within B. Hence, Mul-
tiDBSCAN and AutoDBSCAN provide same outputs.

The computational cost of DBSCAN is O(n2w)
where n is the number of time series and w is the
window size used to compute the dissimilarity between
subsequences. MultiDBSCAN executes DBSCAN for
J = b ε2−ε1δ c times and its cost would be O(n2wJ).
AutoDBSCAN uses Property 4.1 to reduce this cost.
For example, the computational cost at the second
iteration (i.e. for ε2 − δ) is O(

∑k
i=1 n

2
i × w), where

k is the number of clusters detected by DBSCAN
in the first iteration and ni is the number of time
series in the ith cluster. Since

∑k
i=1 n

2
i < (

∑k
i=1 ni)

2

and
∑k
i=1 ni << n in many applications due to the

large number of “unclustered” time series. Hence, the
computation cost of AutoDBSCAN is significantly lower
than MultiDBSCAN.

4.1.2 Scalable Region Query for AutoDBSCAN
A straightforward implementation of AutoDBSCAN in
C++ language took more than 20 hours to process a
patch of 5,000 EVI time series over a mere 200 time
steps (at this geographical resolution, the entire earth
generates over 150 millions of EVI time series). Au-
toDBSCAN iteratively runs DBSCAN multiple times in
different subsets of the dataset and the computational
cost is dominated by searching for ε−neighbors (See [7]
for detailed explanations). We use two techniques to
speed up ε−neighbors searching function (the region-
Query algorithm described in Algorithm 2), that makes
AutoDBSCAN fast enough to be used in online appli-
cations. In the following section, we denote D as the
dataset and D(i, :) as its ith object.

Indexing-technique Indexing-technique builds an in-
dex to speed up the algorithm for searching
ε−neighbors. This method can be used on all types of
datasets for which indices can be built, including time
series datasets. A few preprocessing steps are needed to
create an index. These steps are: (1) Select one time
series (r, say the first time series) from the dataset D.
(2) Calculate the distance d(., .) between r and all the
other time series. This is an O(nw) operation. (3) Re-
order all time series based on the distance calculated
from step 2. This is an O(n log n) operation.

We refer to this preprocessed dataset as a reordered
dataset. This preprocessing adds two properties to the
reordered dataset, that are useful for speeding up the
algorithm.

Property 4.2. For any i and j such that i > j, in the
reordered dataset, d(i, r) > d(j, r).

Property 4.3. For any positive integer a, the re-



ordered dataset satisfies the following two properties.

• If d(i, r) − d(i − a, r) > ε, then d(i, j) > ε for any
j ≤ i− a.

• If d(i + a, r) − d(i, r) > ε, then d(i, j) > ε for any
j ≥ i+ a.

We use the reordered dataset as follows. Let us
assume that the rank of the given time series in the
reordered dataset is k. We test against its neighbors
in the reordered dataset with ranks k − 1, k − 2, . . . ,
until d(k, r) − d(k − a, r) > ε is satisfied. Similarly,
we test against its neighbors in the reordered dataset
with ranks k+ 1, k+ 2, . . . until d(k+ a, r)− d(k, r) > ε
is satisfied. The Pseudocode for Indexing DBSCAN is
given in Algorithm 2

Algorithm 2: regionQuery function Used in
Indexing DBScan

Input: k, ε, D(:, r)
Output: NeighborPts

1 i = k-1;
2 while D(k, r)−D(i, r) < ε do
3 Calculate D(i,k) ;
4 if d < ε then

5 Add the ith time series into NeighborPts;
6 end
7 i = i− 1;

8 end
9 i=k+1;

10 while D(i, r)−D(k, r) < ε do
11 Calculate D(i,k) ;
12 if d < ε then

13 Add the ith time series into NeighborPts;
14 end
15 i = i+1;

16 end
17 return NeighborPts;

Iterative-technique In Algorithm 2, the distance
computation in preprocessing step 2 is O(nw). Using
Iterative-technique, we iteratively compute the current
distance value using the distance calculated from the
previous time step.

Assume that two time series x(t) and y(t) are col-
lected from time step t to time step t+ w. Let µx(t) =∑t+w
i=t xi, µy(t) =

∑t+w
i=t yi, Sx(t) =

∑t+w
i=t x

2
i , Sy(t) =∑t+w

i=t y
2
i and Px,y(t) =

∑t+w
i=t xiyi. The Pearson’s cor-

relation value between x(t) and y(t) (corr(x(t),y(t)))
can be calculated using the following formula.

corr(x(t),y(t)) =
Px,y(t)− µx(t)µy(t)/w√

Sx(t)− µx(t)2/w
√
Sy(t)− µy(t)2/w

Similarly, Euclidean distance can be calculated as

d2(x(t),y(t)) = Sx(t) + Sy(t)− 2Px,y(t)

To compute correlation between x(t) and y(t) in
an online manner, we update µx(t), µy(t), Sx(t), Sy(t)
and Px,y(t) using values µx(t− 1), µy(t− 1), Sx(t− 1),
Sy(t − 1) and Px,y(t − 1). For example, µx(t) can be
maintained iteratively (see [13][14] for details).

4.2 Scoring events using similarity-aware en-
tropy The second step in the framework assigns an
event score to each time series group (X ) discovered
by AutoDBSCAN at time t. According to Definition
2.2, a function fd(.) that measures the similarity of two
time series groups is required in group level contextual
change detection. As mentioned in Section 2, the choice
of fd itself is determined by two components (i) dissim-
ilarity metric (d) that measures the difference between
two time series and (ii) a function (f) that tells the dis-
similarity between two sets when d is given. The choice
of d is generally guided by the application domain (e.g.,
we use Pearson’s correlation coefficient is commonly in
the finance dataset and Euclidean distance when analyz-
ing the remote sensing dataset below). In this section,
we will introduce a new event scoring method called
similarity-aware entropy score. It is generalized from
traditional entropy and has the following properties that
make it useful in group level contextual change detec-
tion.

1. It converges to traditional entropy when the dis-
tance between groups is very large.

2. It is sensitive to the distance between different
clusters and hence highlights events that contain
significantly different subgroups.

3. It is calculated directly from pair-wise distances
between all subsequences, whereas discrete group
membership (or cluster ID) of each time series is
required when calculating traditional entropy.

In the remainder of this section, we will describe
similarity-aware entropy, demonstrate its properties
that are useful for detecting group level changes, and
also describe how to estimate the similarity-aware en-
tropy score from clusters of time series.

The outputs of AutoDBSCAN are groups of subse-
quences within a certain time window, where the sub-
sequences within a group are similar to each other ac-
cording to a dissimilarity metric. Let us assume a set
of time series X are discovered as a cluster within a
time window t = {t, t + 1, · · · , t + b}. A valid scoring
method should score high if time series in X cannot be
considered as a cluster (or a group) before t (for group
formation score) or after t+ b (for disbanding score).

Entropy is a plausible candidate scoring function.
Let us denote by t the time window when group
X is discovered and use t′ as the time period to
check whether or not a group level event happens.
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Figure 4: Sensitivity of the clustering results to the score
based on entropy. (a) The 10 points are clustered into 2
groups and hence the entropy for these points is 1. (b) All
the 10 points are clustered together in 1 group and hence
the entropy for these points is 0.

Let Y1,Y2, · · · ,Yk be mutually disjoint subsets of X
such that within t′ time series in the same subset are
“similar” to each other while time series belonging to
different subsets are dissimilar. Let us assume that the
set X has n time series and Yi contains ni time series
for any i ∈ {1, 2, , · · · , k}. Then, the entropy of X in
time period t′ is given as

H(X|Y1,Y2, · · · ,Yk) = −
k∑
i=1

pi log pi

where pi = ni/n. However, there are two challenges
when using entropy as the event score.

First of all, entropy requires the group membership
(or cluster ID) of each time series during the given time
period. Practically, clustering algorithm is used to ob-
tain such information. Hence, scores based on entropy
are sensitive to not only which clustering method is cho-
sen but also the parameters selected for the clustering
method. For example, let us assume that DBSCAN
method is used to identify cluster IDs for all subse-
quences. Fig. 4 shows the clustering results of 10 points
(subsequences) that were in the same group in an earlier
time window, for two different values of ε (and keeping
minPts = 3 in both clustering). Two equal sized clus-
ters are discovered for a smaller value of ε (Fig. 4a),
while all 10 points are clustered together for a larger
value of ε (Fig. 4b) Hence, the entropy of these points
is 1 for the smaller ε, which indicates that the cluster
has split into 2 distinct clusters, while the entropy is 0
for the larger ε, which indicates that there is no group
level event. Note that similar problems will be faced for
most of clustering methods.

Second, the entropy score only considers cluster
membership but is not aware of the distance among
clusters. Fig. 5 shows the current observations of two
sets of points. Each of the points is in a dense cluster
before their current observations. Assuming that points
in both figures are clustered into two groups based on
some algorithm as shown in Fig. 5, identical entropy

scores are provided for both of the two scenarios.
However, we can observe that the groups in Fig. 5b
are split more significantly compared with the groups
in Fig. 5a.

We now propose a new event score called similarity-
aware entropy, that is inspired by entropy but does not
suffer from the above two limitations.

Definition 4.1. (Similarity-aware entropy) Let
Y1,Y2, · · · ,Yk be mutually disjoint subsets of X such
that during time period t′, time series in the same subset
are “similar” to each other and also time series from
different subsets are different from each other. Assume
that the set X has n time series and Yi contains ni time
series for any i ∈ {1, 2, , · · · , k} and let pi = ni/n. The
similarity-aware entropy of X during t′ is defined as

E(X ) = −
k∑
j=1

pj log

k∑
i=1

pie
−d(Yi,Yj)

where d(Yi,Yj) measures the distance between two well
separated clusters.

We present two properties of similarity-aware en-
tropy. Property 4.4 illustrates the relationship between
similarity-aware entropy and traditional entropy. Prop-
erty 4.5 provides an opportunity to design a score that
can overcome the limitations of using traditional en-
tropy in scoring group level events.

Property 4.4. Let Y1,Y2, · · · ,Yk be mutually dis-
joint subsets of X such that for any i, j ∈ [1, · · · , k],
d(Yi,Yj) = ∞ when i 6= j, and d(Yi,Yj) = 0 when
i = j). Entropy of X based on Y1,Y2, · · · ,Yk is iden-
tical to its similarity-aware entropy. That is,

E(X ) = H(X|Y1,Y2, · · · ,Yk)

Property 4.4 shows the relationship between tradi-
tional entropy (H) and similarity-aware entropy (E). In-
tuitively, if a set of objects X can be divided into k dense
groups Y1,Y2, · · · ,Yk such that Yi and Yj are far away
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Figure 5: Both panels show 10 points that belong to the
same cluster before the current observation. Assuming that
a clustering method discovers 2 clusters in both, event scores
based on entropy are identical in the two scenario. However,
compared with the event shown in panel (a), the event in
panel (b) is more significant.



from each other when i 6= j, then its similarity-aware
entropy is same as its traditional entropy.

Property 4.5. Assume that X can be partitioned into
A1,A2, · · · ,Am or B1, B2, · · · , Bn. As long as all
these subsets are pure (i.e., the entropy of Ai and Bj
for ∀i ∈ [1,m] and ∀j ∈ [1, n] is zero, similarity-aware
entropy of such two partitions are same. That is,

E(X|A1,A2, · · · ,Am) = E(X|B1,B2, · · · ,Bn)

According to Property 4.5, we consider each time
series in the group as its own cluster and estimate the
similarity-aware entropy score as follows.

Definition 4.2. (Similarity-aware entropy
score) Consider a set X = {x1, · · · ,xm} that contains
m time series. Then, its similarity-aware entropy score
S during time period t is defined as

S(X , t) = −
m∑
j=1

1

m
log(

m∑
i=1

exp(−d(xi,xj , t))
1

m
)

where, d(xi,xj , t) is the dissimilarity metric between
time series xi and xj during time t.

4.3 Reporting events We use the proposed
similarity-aware entropy score for group level contex-
tual change detection. In detail, let us assume that a
set of time series X is detected as one group during
time period t = {t, t+ 1, · · · , t+ b} and also define time
period t′ = {t − b, t − b + 1, · · · , t}. By Definition 2.2
and Definition 4.2, we say X formed at time t if

S(X , t′)/S(X , t) > th

Similarly, if t′ = {t+ b, t+ b+ 1, · · · , t+ 2b}, we say
that a group X is disbanding at t+ b if

S(X , t′)/S(X , t) > th

5 Experimental results

In this section, we first compare the running time of the
original DBSCAN with both the indexing technique and
the index + iterative distance computation. Then, we
describe two case studies in finance and earth science to
demonstrate the importance of group level contextual
changes. Due to the page limitation, we show one
event for each case study that our algorithm detects and
explain the events based on our investigation from other
source of information. More systermatic validation
results are included in the extended version [7].

5.1 Scalability Experiment We implemented the
two techniques in C++ and run the code on a desk-
top computer with an Intel Xeon 3.10GHz processor
and 8GB of RAM. We compared the running time of
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Figure 6: Running time of the original DBSCan imple-
mentation, the indexing and indexing + iterative distance
computation implementations

the original DBSCAN implementation with both the in-
dexing technique and the indexing + iterative distance
computations.

Figure 6 shows the running time of the original
DBSCAN implementation and the two optimized im-
plementations. We see a speedup of up to 57× over
the original implementation, which enabled us to search
over more land area as well as larger correlation window
in the experiments using EVI data.

5.2 Vegetation Index Data Group level contextual
change detection can be useful for detecting various
types land-cover changes. In this case study, we show
an example that uses the proposed method to detect
sudden change in land-cover by forest fire based on
Enhanced Vegetation Index (EVI) time series.

In general, EVI is an indicator of “greenness” of the
earth’s surface, which can be used for forest fire detec-
tion (See [7] for detailed descriptions of the dataset).
The idea is a fire would change the greenness of an
area drastically and thus, EVI would drop significantly.
A major unsolved challenge is to detect fire in non-
forest vegetation, such as Shrubland and Grassland.
The greenness of these vegetation highly depends on
the condition of mesoscale and microscale meteorology
(e.g., temperature and rainfall), which makes their EVI
time series varying a lot. In addition, these land cover
type recovers as fast as in 6 weeks. Hence, the drop in
EVI due to fire can be insignificant compared with their
nature variability.

Group level contextual change detection is a useful
technique to distinguish forest fires from events due
to mesoscale and microscale meteorology because in
such events EVI time series of proximal patches show
the same decrease in EVI (and are hence contextually
unchanged), while forest fires affect limited geographical
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Figure 7: Four sets of EVI time series which disbands in
August 2009 because of forest fire. Such disbanding pattern
is useful to detect events from time series datasets.

regions and the EVI time series exhibit contextual
changes with respect to the unaffected regions.

In this case study, we test the performance of our
proposed framework in a region in California that is
bounded by 36.5◦N, 35.9◦N, 121.2◦W and 122◦W and
contains 3345 objects, each of which covers approx-
imately 1 km2 area. Twenty-five group disbanding
events were detected for the period Aug 2008-May 2011
(See [7] for detailed analysis of the results).

Fig. 7 shows four of these group disbanding events
that correspond to the same fire event. These four
events are detected at different times. Fig. 7 (b) -
(e) show EVI time series corresponding to these events.
Event (b) and Event (c) indicated that two split events
happened between Aug. 2008 and Aug. 2010 and
Event (d) and Event (e) indicated that two split events
happened between May 2009 and May 2011. In each of
these events, EVI time series that show similar patterns
over two years are grouped together and then they split
into roughly two groups around Aug 2009, when the
patch bounded within the red line was burned. We
notice that all the time series that have low values
around 28 Aug. 2009 are located within the burned
patch.
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Figure 8: An event in the stock price data showing a change
in the grouping of REITs. The two Self-service Storage
companies forked out from the general REIT context.

Note that, the left side of the red polygon in Fig.
7 is farmland which has different greenness cycles than
the natural vegetation. Our method does not include
any location from the farmland into any of the four
events, while it automatically includes the locations
from the right side of the burned patch because they
have vegetation similar to the one that was burned.
(This demonstrates the efficacy of context building in
our algorithm.) The airport shown in the figure is
the Chalone Vineyard Airport region, which is different
land-cover type than all the locations marked by yellow
dots and is, again, not included in any of the groups for
the same reason.

5.3 Stock price data We use a dataset of 5825 time
series of the daily closing price of different stock tickers
starting from April, 1996 till July, 2013 in the NYSE
(See [7] for detailed descriptions of the dataset). We
have run our algorithm for a window of 60 business days
on this dataset to find historical contextual changes of
stock tickers. One of the interesting change point we
find is in June 2012 as shown in Figure 8. All the tickers
are REITs (Real Estate Investment Trust). Two of the
tickers significantly rise after June 2012 while, others
remain within the context and show stability for more
than six months after the event.

We investigate the fork and find the two rising time
series are stock tickers from two self-service storage
companies (EXR and SSS). The others are real estate
companies in different parts of US and none of them
does self-service storage business as per google finance.
The event started at June 2012 that is the usual time
of the year for publishing the quarterly/annual financial
reports.

6 Conclusion and Future work

We have proposed a framework for detecting group
level contextual changes in a dataset of multiple related
time series. The framework uses 3 components viz.



(a) detect groups of time series (b) score events at
each time instant and (c) report detected events. We
also proposed 2 modifications to speed up the core
AutoDBSCAN algorithm used in this framework. We
demonstrated the results of applying this framework on
2 real world datasets, which detected plausible change
events.

We identify the following four major items for future
exploration. First, since AutoDBSCAN is based on DB-
SCAN, it can detect arbitrary-shaped clusters in which
two members of the same cluster can be very different
from each other. In the 2 applications presented in this
paper, we did not encounter this problem. However, it
is a potential risk when using this framework in other
applications. A potential work-around is to add a con-
straint on the largest pair-wise distance within a cluster.
A future extension of this work is to design a clustering
method that returns all possible time series groups in
spherical clusters. Second, the framework as presented
here has 5 user defined parameters viz. (a) w: window
size used in constructing time series groups, (b) [ε1, ε2]:
the range of the size of the ε−neighborhood in the Au-
toDBSCAN method to detect groups of time series, (c)
δ: step size in ε used in AutoDBSCAN, (d) b: window
size of event scoring interval, and (e) the threshold used
to report events. (Of these (b) and (c) are specific to the
AutoDBSCAN clustering algorithm chosen for illustra-
tion). In this paper, all these parameters are empirically
chosen based on domain knowledge. Techniques to au-
tomatically determine (or at least estimate reasonable
values) of these parameters will be helpful in applying
this framework to new domains. Third, although the
framework assigns a higher similarity aware score for
more significant splits in group disbanding or tighter
clusters in group formation, it would be useful to esti-
mate a confidence value for the detected change event
(for example, the confidence value for a event detected
from a random walk dataset should be much lower than
a event detected from a normal time series dataset). Fi-
nally, we could extend this framework to detect other in-
teresting contextual events like loops, i.e., when one set
of time series first disbands and then merges back. Such
contextual events could provide interesting insights in
fields of Ecology and Meteorology.
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