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Tutorial Structure

• I will start with applications and talk about 
algorithms after that.

• There will be four Q&A segments. Please hold 
your question till the next segment.

• There is a feedback form available. 
Negative/positive, anonymous/known 
feedbacks are welcome.

• There will be a break at 5:00PM for 10 
minutes.
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What are Time Series?

A time series is a collection of 
observations made sequentially in 
time. 
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Repeated Pattern (Motif)

Find the subsequences having very high 
similarity to each other.

0 2000 4000 6000 8000 10000
0
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20
30

0 100 200 300 400 500 600 700 800

Finding Motifs in Time Series, Jessica Lin, Eamonn Keogh, Stefano Lonardi, Pranav Patel,  KDD 2002

时间序列中的重复模式
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General Outline

• Applications (50 minutes)

– As Subroutines in Data Mining

– In Other Scientific Research

• Algorithms (100 minutes)

– Uni-dimensional

– Multi-dimensional

– Open Problems
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Applications Outline

• Applications
– As Subroutines in Data Mining

• Never Ending Learning
• Time Series Clustering
• Rule Discovery
• Dictionary Building

– In Other Scientific Research
• Data center chiller management
• Worm locomotion analysis
• Physiological Prediction
• Activity recognition

– Motifs in Other Data-types
• Audio
• Shapes
• Motion
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…Y dijo Dios: Sea la luz; y fue la luz. Y vio Dios que la luz era buena . Y llamó Dios a …

…And God said, “Let there be light”; and there was light. And God saw the light, that it was good. And God … 

If you have parallel texts, then over time you 
can learn a dictionary with high accuracy. 

Motifs allow us to learn, forever, without an explicit teacher…
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…Y dijo Dios: Sea la luz; y fue la luz. Y vio Dios que la luz era buena . Y llamó Dios a …

…And God said, “Let there be light”; and there was light. And God saw the light, that it was good. And God … 

Suppose however that the unknown “language” is 
not discrete, but real-valued time series? In this 
case, repeated pattern discovery can help*… 

*Yuan Hao, Yanping Chen et al (2013). Towards Never-Ending Learning from Time Series Streams. SIGKDD 2013

Note the mapping is non-linear, the learning algorithms in this domain are non-trivial. 

If you have parallel texts, then over time you 
can learn a dictionary with high accuracy. 

Motifs allow us to learn, forever, without an explicit teacher…
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Motifs allow us to learn, forever, without an explicit teacher…

This dataset contains standard IADL housekeeping activities 
(vacuuming, ironing, dusting, brooming,, watering plants etc). 
We have a discrete (binary) “text” that notes if the hand is near 
a cleaning instrument, and a real-valued accelerometer “text”

P (X-axis acceleration of  wrist)

0 1000 2000 3000

off
on

Glove

B (RFID tag)

off
on

Iron
(omitted)

5 seconds

Binary “text” 

Real-valued  
“text” 
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We can run motif discovery on the time series stream. If we find 
motifs, we can see if they correlate with the discrete streams…

P (X-axis acceleration of right wrist)

0 1000 2000 3000

off
on

Glove

B (RFID tag)

C1 observed C1 observed C1 observed

Glove 1/1

Iron  0/1

(omitted)

off
on

Iron

(omitted)

Glove 2/2

Iron  0/2

(omitted)

Glove 3/3

Iron  0/3

(omitted)

5 seconds

In this snippet, the motifs seem to correlate with the presence 
of a glove…
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How well does this work?

Over a hour of activity, we learn to recognize a behavior in the time series that 
indicates the user is putting on a glove.   

0 200 400
0 200 400

Learned concept  C1

True positives

False positives

Discovered pattern

0 minutes

0

0.5

1

iron P(C1=fan) = 0.07

P(C1=iron) = 0.23

P(C1=glove) = 0.70

fan

P(X-axis acceleration of right wrist)
Events shown in last slide take place here

55 minutes

glove

Note: There are 
false positives, but 
we considered 
only a single axis 
for simplicity. 11



200 400 600 800 1000 12000

And how would we evaluate our answer?

Motifs allow us to cluster subsequences of a time series…

12Thanawin Rakthanmanon, Eamonn Keogh, Stefano Lonardi, and Scott Evans (2011). Time Series Epenthesis: Clustering Time Series Streams 

Requires Ignoring Some Data. ICDM 2011



== Poem ==
In a sort of Runic rhyme,
To the throbbing of the bells--
Of the bells, bells, bells,
To the sobbing of the bells;
Keeping time, time, time,
As he knells, knells, knells,
In a happy Runic rhyme,
To the rolling of the bells,--
Of the bells, bells, bells--
To the tolling of the bells,
Of the bells, bells, bells, bells,
Bells, bells, bells,--
To the moaning and the groan-
ing of the bells.

Data: last 30 seconds from 4-min poem, The Bells by Edgar Allan Poe
Edgar Allan Poe

200 400 600 800 1000 12000

And how would we evaluate our answer?

Motifs allow us to cluster subsequences of a time series…
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== Poem ==
In a sort of Runic rhyme,
To the throbbing of the bells--
Of the bells, bells, bells,
To the sobbing of the bells;
Keeping time, time, time,
As he knells, knells, knells,
In a happy Runic rhyme,
To the rolling of the bells,--
Of the bells, bells, bells--
To the tolling of the bells,
Of the bells, bells, bells, bells,
Bells, bells, bells,--
To the moaning and the groan-
ing of the bells.

== Text in each clusters ==
bells, bells, bells,
Bells, bells, bells,

Of the bells, bells, bells,
Of the bells, bells, bells--

To the throbbing of the bells--
To the sobbing of the bells;
To the tolling of the bells,

To the rolling of the bells,--
To the moaning and the groan-

time, time, time,
knells, knells, knells,

sort of Runic rhyme,
groaning of the bells.

And how would we evaluate our answer?

200 400 600 800 1000 12000

Motifs allow us to cluster subsequences of a time series…
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Key observations that make this possible:

• Time Series Motifs!

• We are willing to allow some data to be unexplained by the clustering

• We score the possible clustering's with MDL, this is parameter-free!

• Allowing the clusters to be of different lengths/sizes

Thanawin Rakthanmanon, Eamonn Keogh, Stefano Lonardi, and Scott Evans (2011). Time Series Epenthesis: Clustering Time Series Streams 

Requires Ignoring Some Data. ICDM 2011

200 400 600 800 1000 12000

Motifs allow us to cluster subsequences of a time series…
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Motifs are useful, but can we predict the future?

0 1000 2000 3000 4000 5000 6000 7000 8000-30

-25

-20

-15

-10

What happens next?

Prediction vs. Forecasting (informal definitions)

Forecasting is “always on”, it constantly predicts a value say, two minutes out (we are not doing this)

Prediction only make a prediction occasionally, when it is sure what will happen next  

(unpublished work, email Dr. Keogh for preprint)
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Why Predict the (short-term) Future?
If a robot can predict that is it about to fall, it may 
be able to..

• Prevent the fall
• Mitigate the damage of the fall

More importantly, if the robot can predict a 
human’s actions

• The robot could catch the human!
• This would allow more natural human/robot 
interaction.
• Real time is not fast enough for interaction! 
We need to be a half second before real time.
•

• Other examples:
• Predict a car crash, tighten seatbelts, apply brakes
• Predict the next spoken word after ‘data’ is 
‘mining’, then begin prefetching WebPages..
• etc

17



Previous attempts at this have largely failed…

However, we can do this, and time series 
motifs are the key tool

The rule discovery technique will use:
• Time Series Motifs
• MDL (minimum description length)
• Admissible speed-up techniques (not 
discussed here)

18



Let us start by finding motifs

0 1000 2000 3000 4000 5000 6000 7000 8000 9000-30

-25

-20

-15

-10

0 20 40 60 80 100

First occurrence 

Second occurrence 
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We can convert the motifs to a rule

0 1000 2000 3000 4000 5000 6000 7000 8000 9000-30

-25

-20

-15

-10

0 20 40 60 80 100

0 20 40 60 0 20 40

t1 = 7.58

maxlag = 0

We can use the motif to make a 
rule…

IF we see thisshape, (antecedent)

THEN we see thatshape, (consequent)

within maxlag time

The Euclidean distance between thisshape and 
the observed window must be within a 
threshold t1 = 7.58
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We can monitor streaming data with our rule..

8000 9000

0 20 40 60 0 20 40

t1 = 7.58

maxlag = 0
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The rule gets invoked…

0 20 40 60 0 20 40

t1 = 7.58

maxlag = 0

5685 5735 5785 5835 5885

rule fires here          predicting this shape’s occurrence
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It seems to work!

0 20 40 60 0 20 40

t1 = 7.58

maxlag = 0

5685 5735 5785 5835 5885

rule fires here          predicting this shape’s occurrence
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What is the ground truth?

0 1000 2000 3000 4000 5000 6000 7000 8000 9000-30

-25

-20

-15

-10

0 20 40 60 80 100

at door  chambermy

The first verse of The Raven by Poe in MFCC space

Once upon a midnight dreary, while I pondered weak and weary.. ..rapping at my chamber door……

The phrase “at my chamber door” does appear 6 more times, and we do fire our rule 
correctly each time, and have no false positives.

What are we invariant to? 
• Who is speaking? Somewhat, we can handle other males, but females are tricky.
• Rate of speech? To a large extent, yes.
• Foreign accents? Sore throat? etc

0 20 40 60 0 20 40

t1 = 7.58

maxlag = 0
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Why we need the Maxlag
parameter

Here the maxlag depends on the number 
of floors we have in our building.

We can hand-edit this rule to generalize 
for short buildings to tall buildings

Can physicians edit medical rules to 
generalize from male to female…

t1 = 0.4

maxlag = 4 sec 0 40 80 120
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maxlag = 20 minutes

0 120 1800
15500 16000 16500 17000

IF we see a Clothes Washer used 

THEN we will see Clothes Dryer used within 20 minutes
27

This works, really!



Insect Behavior Analysis
Beet Leafhopper  (Circulifer tenellus) 

plant membrane
Stylet

voltage source

input resistor

V

0 50 100 150 2000

1

2

to insect
conductive glue

voltage reading

to soil near plant

0 1 2 3 4 5 6 7 8
x 104
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Additional examples 

of the motif
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Instance at 20,925

Instance at 25,473

The electrical penetration graph or EPG is a 
system used by biologists to study the 
interaction of insects with plants.

15 minutes of EPG recorded on Beet Leafhopper

As a bead of sticky secretion, which is by-
product of sap feeding, is ejected, it 
temporarily forms a highly conductive 
bridge between the insect and the plant.

Exact Discovery of Time Series Motifs. A Mueen, et al. SDM, 2009.
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Insect Behavior Analysis

More motifs reveal different feeding patterns of Beet Leafhopper. 30



Applications Outline

• Applications
– As Subroutines in Data Mining

• Never Ending Learning
• Time Series Clustering
• Rule Discovery
• Dictionary Building

– In Other Scientific Research
• Data center chiller management
• Worm locomotion analysis
• Physiological Prediction
• Activity recognition

– Motifs in Other Data-types
• Audio
• Shapes
• Motion
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Sustainable Operation and Management of Data 
Center Chillers using Temporal Data Mining

HP Labs with Virginia Tech

“Our primary goal is to link the time series temperature data gathered from 
chiller units to high level sustainability characterizations… thus using time series 
motifs as a crucial intermediate representation to aid in data reduction.”

“switching from motif 8 to motif 5 gives us a nearly 
$40,000 in annual savings!” Patnaik et al. SIGKDD09
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A dictionary of behavioral motifs reveals clusters 
of genes affecting C. elegans locomotion

Brown et al. PNAS 2013; 110(2): 791–796.

Laboratory of Molecular Biology, Cambridge, 
United Kingdom

Goal: Detect genotype by 
using the locomotion only.
Convert postures to four 
dimensional time series.
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Brown A E X et al. PNAS 
2013;110:791-796

A dictionary of behavioral motifs reveals clusters of genes affecting C. elegans
locomotion
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Variability in motif structure is lower in juvenile Directed 
than in Undirected and similar to that in adult song.

35
Social performance reveals unexpected vocal competency in young songbirds
Satoshi Kojima and Allison J. Doupe, PNAS 2011, 108 (4) 1687-1692.

Amplitude Envelop



Motif discovery in physiological datasets: A 
methodology for inferring predictive elements

University of Michigan and MIT

We evaluated our solution on a population of patients who 
experienced sudden cardiac death and attempted to discover 
electrocardiographic activity that may be associated with the 
endpoint of death. To assess the predictive patterns discovered, 
we compared likelihood scores for time series motifs
in the sudden death population…

Zeeshan Syed et al. TKDD 2010
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Constrained Motif Discovery in Time Series
Toyoaki Nishida, Kyoto University

“we use time series motifs to find gesture patterns with 
applications to robot-human interactions” Okada, 
Izukura and Nishida 2011
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Discovering Characteristic Actions from On-Body 
Sensor Data

David Minnen, Thad Starner, Irfan Essa, and Charles Isbell, Georgia Tech

Our algorithm successfully discovers motifs that correspond to the real 
exercises with a recall rate of 96.3% and overall accuracy of 86.7% over 
six exercises and 864 occurrences.

Minnen et al. Symp. Wearable Computers 2006
38



Motifs can Spot Dance Moves…

x 104
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Data: H. Pohl et al. SMC 2010
Algorithm: Mueen, ICDM 2013

Step Action

A Side steps with no arm movement

B Rock steps sideways without arm movement

C Rock steps sideways with arm movement

D Side steps with arm movement

E Side steps with arms up in the air

F Standing still with head bopping

Motifs are from the same 
dance steps or the same 
transitions 86% of the time.

Choreography

Time
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Applications Outline

• Applications
– As Subroutines in Data Mining

• Never Ending Learning
• Time Series Clustering
• Rule Discovery
• Dictionary Building

– In Other Scientific Research
• Data center chiller management
• Worm locomotion analysis
• Physiological Prediction
• Activity recognition

– Motifs in Other Data-types
• Audio
• Shapes
• Motion
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Motifs in Audio
Mice calls are inaudible and have significant noise

Manual inspection over temporal signal is impossible

Features like MFCC are not good for animal song

Just use the raw spectrogram to find repeated calls

43
Yuan Hao et al. Parameter-Free Audio Motif Discovery in Large Data Archives. ICDM 2013: 261-270



Projectile shapes

Petroglyphs

Lampasas River Cornertang

Castroville Cornertang

0 50 100 150 200 250 300 350

Algorithm detects a rare 
cornertang segment – an 
object that has long intrigued 
anthropologists. 

Algorithm detects similar 
petroglyphs drawn across 
continents and centuries

Motifs in Shapes

44



Motifs in Motion

Two motion can be stitched 
together by transiting from one 
motif to the other, a very useful 
technique for motion synthesis.

45
Yankov et al. Detecting time series motifs under uniform scaling. KDD 2007

Mueen et al. A disk-aware algorithm for time series motif discovery. Data 

Min. Knowl. Discov. 2011.



Time Series Motifs have 1,000 of Uses

• ..for discovering motifs in the music data is called the Mueen-Keogh (MK) 
algorithm.. Cabredo et al. 2011

• we apply the MK motif algorithm to time series retrieved from seismic
signals… Cassisi et al 2012

• we take motif developed by Keogh in order to support a medical expert in 
discovering interesting knowledge. Kitaguchi.

• for the problem of estimation of Micro-drilled Hole Wall of PWBs we take 
the Motif method developed by Keogh... Toshiki et al. (fabrication)

• the most efficient motif provided a power savings of 41 This translates to 
an annual reduction of 287 tons of CO2. Watson InterPACK09.

• We use Keogh's Motifs for unsupervised discovery of abnormal human
behavior in multi-dimensional time series data... Vahdatpour SDM 2010.

• variability of behavior, using motifs, provides more consistent groupings of 
households across different clustering algorithms… Ian Dent 2014
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Questions and Comments
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Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems

48



Definition of Time Series Motifs

1. Length of the motif

2. Support of the motif

3. Similarity of the Pattern

4. Relative Position of the Pattern

20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2
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Distance Measures

• The choices are

– Euclidean Distance

– Correlation

– Dynamic Time Warping

– Longest Common Subsequences

– Uniformly Scaled Euclidean Distance

– Sliding Nearest Neighbor Distance

50



Euclidean Distance Metric

y

x

d(x,y)

Given two time series

x = x1…xn

and 

y = y1…yn

their z-Normalized Euclidean distance is 

defined as:
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Early abandoning reduces 
number of operations 
when minimizing
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Pearson’s Correlation Coefficient

• Given two time series x and y of length m. 

• Sufficient Statistics:

• Correlation Coefficient:

𝑐𝑜𝑟𝑟 𝒙, 𝒚 =
 𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦

Where 𝜇𝑥 =
 𝑖=1
𝑚 𝑥𝑖
𝑚

and 𝜎𝑥2 =
 𝑖=1
𝑚 𝑥𝑖

2

𝑚
− 𝜇𝑥

2

• Early abandoning is possible when maximizing

• Correlation is not a metric, therefore, use of triangular 
inequality needs special attention

 𝑖=1
𝑚 𝑥𝑖𝑦𝑖  𝑖=1

𝑚 𝑥𝑖  𝑖=1
𝑚 𝑦𝑖  𝑖=1

𝑚 𝑥𝑖
2  𝑖=1

𝑚 𝑦𝑖
2
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Relationship with Euclidean Distance

𝑑  𝒙,  𝒚 = 2𝑚(1 − 𝑐𝑜𝑟𝑟(𝒙, 𝒚))

 𝑥𝑖 =
𝑥𝑖−𝜇𝑥

𝜎𝑥
and  𝑦𝑖 =

𝑦𝑖−𝜇𝑦

𝜎𝑦

𝑑2  𝒙,  𝒚 = 

𝑖=1

𝑚

 𝑥𝑖 −  𝑦𝑖
2

Minimizing z-normalized Euclidean distance and Maximizing 
Pearson’s correlation coefficient are identical in effect for 
motif discovery. 53



Euclidean Vs Dynamic Time Warping

Euclidean Distance
Sequences are aligned “one to one”.

“Warped” Time Axis
Nonlinear alignments are possible.
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C

QC

Q

How is DTW 
Calculated?

),(),( nmDCQDTW 

Warping path w
• Quadratic time complexity
• DTW is not a metric

 )1,1(),,1(),1,(min)(),( 2  jiDjiDjiDcqjiD ji
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A four-slide digression, to make sure you understand 
what invariances are, and why they are important 

56



Suppose we are walking in a 
cemetery in Japan.

We see an interesting grave 
marker, and we want to 
learn more about it.

We can take a photo of it 
and search a database…. 

57



Campana and Keogh (2010). A Compression Based Distance 
Measure for Texture. SDM 2010. 

58



In order to do this, we must have a 
distance measure with the right 
invariances

Color invariance

Occlusion invariance

Size invariance

Rotation invariance
59



Time Series Data has Unique Invariances

• These invariances are domain/problem dependent

• They include

– Complexity invariance 

– Warping invariance

– Uniform scaling invariance 

– Occlusion invariance 

– Rotation/phase invariance

– Offset invariance

– Amplitude invariance 

• Sometimes you achieve the invariance in the distance 
measure, sometimes by preprocessing the data.

• In this work, we will just assume offset/amplitude 
invariance. See [a] for a visual tour of time series invariances.

[a] Batista, et al (2011) A Complexity-Invariant Distance Measure for Time Series. SDM 2011

Z-normalization of each subsequence removes these

60
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Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems
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Simplest Definition of Time Series 
Motifs

1. Length of the motif = Given

2. Support of the motif = 2

3. Similarity of the Pattern = Euclidean distance

4. Relative Position of the Pattern = non-overlapping

20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

Given a length, the most similar/least 
distant pair of non-overlapping 
subsequences
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Problem Formulation

The most similar pair of 
non-overlapping 

subsequences

100 200 300 400 500 600 700 800 900 1000

-8000

-7500

-7000

1
2
3
4
5
6
7
8
.
.
.

873

time:1000

The closest pair of points 
in high dimensional 

space

Optimal algorithm in two dimension : Θ(n log n)
For large dimensionality d, optimum algorithm is 

effectively Θ(n2d) 64



Lower Bound

 If P, Q and R are three points in a d-space

d(P,Q)+d(Q,R) ≥ d(P,R) 

d(P,Q) ≥ |d(Q,R) - d(P,R)|

 A third point R provides a very inexpensive lower 
bound on the true distance

 If the lower bound is larger than the existing best, 
skip d(P, Q)

d(P,Q) ≥ |d(Q,R) - d(P,R)| ≥ BestPairDistance

P Q

R


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Circular Projection

r

Pick a reference point r

Circularly Project all points 
on a line passing through the 
reference point

Equivalent to computing 

distance from r and then 
sorting the points according 

to distance
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The Order Line

r

P Q

r

|d(Q, r) - d(P, r)|

d(Q, r) 

d(P, r)

k = 1
k = 2
k = 3

k=1:n-1
• Compare every pair 

having k-1 points in 
between

• Do k scans of the order 
line, starting with the 
1st to kth point

BestPairDistance
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Correctness

• If we search for all offset=1,2,…,n-1 then all possible 
pairs are considered.

– n(n-1)/2 pairs

• if for any offset=k, none of the k scans needs an 
actual distance computation 
then for the rest of the offsets=k+1,…,n-1 no 

distance computation will be needed.

r
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Performance

• Orders of Magnitude faster
• Exact in execution
• No sacrifice of the quality of the results
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• Use multiple reference points for tighter lower 
bounds.

Multiple References
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Pruning by Multiple References
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Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems
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Questions and Comments
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Simplest Definition of Time Series 
Motifs

1. Length of the motif = Given All

2. Support of the motif = 2

3. Similarity of the Pattern = Euclidean distance

4. Relative Position of the Pattern = non-overlapping

20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

The most similar/least distant pairs of 
non-overlapping subsequences at all 
lengths.
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Goals: Enumerating Motifs

1. Remove the length parameter 

2. Search for motifs in a range of lengths and 
report

– ALL of the motifs of all of the lengths

3. Retain Scalability
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Bound on Extension

1. Two time series 𝒙 and 𝒚 of length 𝑚

2. Their normalized Euclidean distance 𝑑  𝒙,  𝒚

3. Find 𝑑𝐿𝐵  𝒙+1,  𝒚+1 if we increase the length of  𝒙
and  𝒚 by appending the next two numbers.

Values Changed

1 2 3 4 5

3
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7
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10

Without Normalization

1 2 3 4 5
-4
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-2
-1
0
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4

With Normalization
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Intuition
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Area shrinks

Area between blue and red is 
the distance between the signals

Area shrinks further

If infinity is appended to both the signals, they will 
have zero area/distance. 77



Bounding Euclidean Distance

𝑑𝐿𝐵
2  𝒙+1,  𝒚+1 =

1

𝜎𝑚
2 𝑑𝑚

2  𝒙,  𝒚 < 𝑑𝑚
2 ( 𝒙,  𝒚)

Variances of  𝒙+1and  𝒚+1, 𝜎𝑚
2 =

𝑚

𝑚+1
+

𝑚

𝑚+1 2 𝑧
2

𝑧 = maximum normalized value in the database
A safe approximation 𝑧 = max(𝑎𝑏𝑠  𝒙 , 𝑎𝑏𝑠  𝒚 )
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Experimental Validation of the 
Bounds
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Intuition

3.94 =
4.57

1.16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-8.5

-8

-7.5

-7 x 103

145, 5410, 1.26
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6531, 2501, 3.17

851, 1440, 3.73

2512, 3110, 3.98

1685, 9260, 4.57

Length 𝑚=7

𝑂 𝑛 pairs 
in order of 

the 
distances for 

length 𝑚

145, 5410, 1.79
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Length 𝑚=8
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𝜎7
2=1.16

Location 1
Location 2

Distance
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2.77 =
3.68

1.32

Intuition

8345, 4211, 1.63

145, 5410, 1.79

6531, 2501, 2.71

1655, 9461, 3.61

851, 1440, 3.83

Length 𝑚=8

8345, 4211, 1.23

145, 5410, 1.98

6531, 2501, 1.71

1655, 9461, 3.68

851, 1440, 3.61

Length 𝑚=9

8345, 4211, 1.23

6531, 2501, 1.71

145, 5410, 1.98

851, 1440, 3.61

1655, 9461, 3.68

𝜎8
2=1.32

• Once in every 10 lengths, the exact ordered list is 
required to be populated.

• This yields a 10x speed-up from running fixed-
length motif discovery for all lengths.
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Sanity Check
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White Noise

http://www.cs.unm.edu/~mueen/Projects/MOEN/index.html

• Three Patterns planted in a random signal 
with different scaling. 

• The algorithm finds them appropriately.
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Experimental Results: Scalability
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Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems

84



Simplest Definition of Time Series 
Motifs

1. Length of the motif = Given All

2. Support of the motif = 2 k and τ

3. Similarity of the Pattern = Euclidean distance

4. Relative Position of the Pattern = non-overlapping

20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

The non-overlapping subsequences at 
all lengths having k or more τ-
matches.
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Optimal algorithm is hard

• Search for locations of the  τ-balls that contain 
k subsequences

• NP-Hard

• Instead we search for a motif representative 
that has k subsequences within τ
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How do we find the motif 
representative?

• Simply take one of the two occurrences as the 
representative 

• Take the average of the two

• Find all occurrences within a threshold of pair 
and train a HMM to capture the concept 
(Minnen’07)
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Using each one in the pair as the 
representative (k=4, τ=0.9)
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Finding top-K motif
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• Run MK for K times
• Replace occurrences by random noise 

between iterations



Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems
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• Streaming time series

• Sliding window of the recent history
– What minute long trace repeated in the last hour?

Online Time Series Motifs
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Discovery
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Problem Formulation
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• A subsequence is a high dimensional point

– The dynamic closest pair of points problem

• Closest pair may change upon every update

• Naïve approach: Do quadratic comparisons.
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• Goal: Algorithm with Linear update time

• Previous method for dynamic closest pair 
(Eppstein,00)  

– A matrix of all-pair distances is maintained

• O(w2) space required

– Quad-tree is used to update the matrix

• Maintain a set of neighbors and reverse 
neighbors for all points

• We do it in O(        ) spaceww

Related Work
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• Smallest nearest neighbor → Closest pair

• Upon insertion

– Find the nearest neighbor; Needs O(w) comparisons.

• Upon deletion

– Find the next NN of all the reverse NN
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Maintaining Motif
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1 2 3 4 5 6 7 8
FIFO Sliding window 

N-lists
Neighbors in order 

of distances
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Data Structure
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While inserting
 Updating  NN of old points is not necessary
 A point can be removed from the neighbor list if it 

violates the temporal order

Average
length O(        )w

Observations
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• Up to from general dynamic closest pair
per point with increasing window size
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Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems
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Questions and Comments
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Abdullah Mueen
University of New Mexico, USA

Eamonn Keogh
University of California Riverside, USA

Finding Repeated 
Structure in Time 
Series: Algorithms and 
Applications

Break; We meet back in 
this room at 5:15PM

Slides available at: http://www.cs.unm.edu/~mueen/Tutorial/SDM2015Tutorial2.pdf102



General Outline

• Applications (50 minutes)

– As Subroutines in Data Mining

– In Other Scientific Research

• Algorithms (100 minutes)

– Uni-dimensional

– Multi-dimensional
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Algorithms Outline

• Algorithms
– Definition, Distance Measures and Invariances
– Exact Algorithms

• Fixed Length
• Enumeration of All length
• K-motif Discovery
• Online Maintenance

– Approximate Algorithms
• Random Projection Algorithm

– Multi-dimensional Motif Discovery
– Open Problems
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How do we find approximate motif 
in a time series?

The obvious brute force search algorithm is just too slow…

Our algorithm is based on a hot idea from bioinformatics, random projection* and the fact 
that SAX allows us to lower bound discrete representations of time series.

* J Buhler and M Tompa. Finding motifs using random projections. In 
RECOMB'01. 2001.

Symbolic Aggregate ApproXimation
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How do we obtain SAX?

First convert the time 
series to PAA 
representation, then 
convert the PAA to 
symbols

It take linear time
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Time series subsequences tend to have a 
highly Gaussian distribution
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Visual Comparison

A raw time series of length 128 is transformed into the word 
“ffffffeeeddcbaabceedcbaaaaacddee.”

– We can use more symbols to represent the time series since each symbol 
requires fewer bits than real-numbers (float, double)
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Assume that we have a time series T

of length 1,000, and a motif of length 

16, which occurs twice, at time T1

and time T58. 

A simple worked example of approximate motif discovery algorithm

The next 3 slides
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A mask {1,2} was randomly chosen, 
so the values in columns {1,2} were 
used to project matrix into buckets.

Collisions are recorded by 
incrementing the appropriate 
location in the collision matrix

A simple worked example of approximate motif discovery algorithm
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A mask {2,4} was randomly chosen, 
so the values in columns {2,4} were 
used to project matrix into buckets.

Once again, collisions are 
recorded by incrementing the 
appropriate location in the 
collision matrix

A simple worked example of approximate motif discovery algorithm
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We can calculate the expected values in the 
matrix, assuming there are NO patterns…

two randomly-generated 
words of size w over an 
alphabet of size a, the 
probability that they 
match with up to d errors

t is the length of the 
projected string. We 
conclude that if we have k 
random strings of size w, 
an entry of the similarity 
matrix will be hit on 
average
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Motif significance involves several 
independent dimensions

Similarity

Support

Length/size

Assessing significance requires estimating a 
function S:Rd→R over these dimensions so 
we can rank the motifs 114



More invariances mean more 
independent dimensions

Similarity

Support

Length/size

Complexity

Dimensionality
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Multi-dimensional Motif

• Synchronous

– Treat it as an even higher dimensional problem

– Simple extensions of uni-dimensional algorithms 
work

– To find sub-dimensional motifs, all possible sub-
spaces have to be considered
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Multi-dimensional Motif

• Non-Synchronous

– Lags among motifs are common

– Subsets of dimensions can possibly construct a 
motif

David Minnen, Charles Isbell, Irfan Essa, and Thad Starner. Detecting Subdimensional Motifs: An Efficient Algorithm for 
Generalized Multivariate Pattern Discovery. ICDM '07

Alireza Vahdatpour, Navid Amini, Majid Sarrafzadeh: Toward Unsupervised Activity Discovery Using Multi-Dimensional Motif 
Detection in Time Series. IJCAI 2009: 1261-1266
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Coincidence table

coincident(ri, rj) is the 
number of overlapping 
occurrences of motif i
and motif j
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Single-dimensional motifs to graph
• Produce a co-occurrence graph

• Nodes are single dimensional motifs

• An edge between x and y denotes, x and y always co-occur within a time lag

• Cluster the graph using min-cut algorithms to find multi-dimensional motifs

x 104
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Open Problems

• New Invariances:
– P1: Find repeated patterns under warping 

distance.

– P2: Finding motifs under Complexity invariance.
• Uniform scaling (Yankov 06)

• Significance:
– P3: Assessing significance of motifs without 

discretization.
• Parameter-free

• Data adaptive
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Open Problems

• Algorithmic:
– P4: Optimal k-motif for a given threshold
– P5: Exact multi-dimensional motif discovery

• Application:
– P6: Finding hidden state machine from motifs

• States == clustering
• Rules between patterns only
• State machine is for rules among clusters
• Systems:

– A suite with all the techniques added

• Parallel motif discovery using GPU
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