Algl —

CS 361, Lecture 5

Algl (int n){
if (n<=1) return 1;
else
return Algl(n/2) + Algi(n/2) + n;

Jared Saia
University of New Mexico

}
2
Today's Outline —— Examplel —
— Y — P

e Let T(n) be the run time of Algl on input n
e Recurrence Relations e Then we can write T'(n) =2T(n/2) + 1
e Recursion Trees e How to solve for T'(n)?

e Up to this point, I've been supplying you with good ‘““guesses”

for recurrence solutions
Q: How do we get these guesses?

—— Getting Good Guesses (I —— —— Recursion-tree method ——

Following are some good guesses for solutions to recurrences.

logn
vn e Each node represents the cost of a single subproblem in a
n recursive call
n2|09n e First, we sum the costs of the nodes in each level of the tree
n3 e Then, we sum the costs of all of the levels
n
QTL
4 . 6
Better Techniques (II) ——— Recursion-tree method ——
— ques (1) —
We will review three useful techniques:
e Used to get a good guess which is then refined and verified
' using substitution method
e Recursion tree method e Best method (usually) for recurrences where a term like
e Master Theorem T(n/c) appears on the right hand side of the equality

e Annihilators

— Example 1 ——

e Consider the recurrence for the running time of Mergesort:
T(n) = 2T(n/2) +n, T(1) = O(1)

/”\

w2 2 N
RN SN
n/4 n4 n/4 n/4
/ \ / /\H/B n/Z \n/8 n
xoRo@pR X A N A

— Example 1 ——

We can see that each level of the tree sums to n

Further the depth of the tree is logn (n/2d = 1 implies that
d=logn).

Thus there are logn + 1 levels each of which sums to n
Hence T'(n) = ©(nlogn)

— Example 2 ——

e Let’s solve the recurrence T'(n) = 3T(n/4) + n?

e Note: For simplicity, from now on, we'll assume that T'(z) =
©(1) for all small constants . This will save us from writing
the base cases each time.

m2

/ MZA\MAZ @Eem2
NIt AN AN

ier2 (V162 (Wiep2 (VIe2 (VIE2 (V162 (wiep2 (VIS2 (Wigrz (31622

JN/N/N NN N

10

— Example 2 ——

e We can see that the i-th level of the tree sums to (3/16)n2.

e Further the depth of the tree is loggn (n/4d = 1 implies that
d =logan)

e So we can see that T(n) = ¥1°%"(3/16)in?

11

Solution —— —

L
logan)
T(n) = Y (3/16)'n? (1)
i=0
< n? §<3/16)" (2)
=0
_ 1 2
- 1-Gne”)
= 0(n?) (4)
12
—— Master Theorem ———

e Divide and conquer algorithms often give us running-time
recurrences of the form

T(n) =aT(n/b) + f(n) (5)

e Where a and b are constants and f(n) is some other function.
e The so-called “Master Method” gives us a general method
for solving such recurrences when f(n) is a simple polynomial.

13

—— Master Theorem ——

e Unfortunately, the Master Theorem doesn’'t work for all func-
tions f(n)

e Further many useful recurrences don't look like T'(n)

e However, the theorem allows for very fast solution of recur-
rences when it applies

14

—— Master Theorem ——

e Master Theorem is just a special case of the use of recursion
trees

e Consider equation T'(n) = aT(n/b) + f(n)

e \We start by drawing a recursion tree

15

—— The Recursion Tree —— Recursion Tree —

e Let T'(n) be the sum of all values stored in all levels of the

e The root contains the value f(n) ¢
ree:

e It has a children, each of which contains the value f(n/b)
e Each of these nodes has a children, containing the value T(n) = f(n)+af(n/b)+a2f(n/b2)+~-~—|—aif(n/bi)—|—-~-—|—aL f(n/bL)
F(n/b?) | |
e In general, level i contains a* nodes with values f(n/b")
e Hence the sum of the nodes at the i-th level is a’f(n/b")

e Where L = logyn is the depth of the tree
e Since f(1) = ©(1), the last term of this summation is ©(al) =
@(alogbn) — @(nlogba)

16 18

—— Details ——— —— A ‘“Log Fact” Aside ———

e It's not hard to see that /%" = plogya
e The tree stops when we get to the base case for the recur-

alogbn — nlogba (6)
rence alogbn — alogan*logba (7>

e We'll assume T(1) = f(1) = ©(1) is the base case
logyn = log,n xlogya (8)

e Thus the depth of the tree is log,n and there are logyn + 1
levels e We get to the last egn by taking log, of both sides
e The last eqn is true by our third basic log fact

17 19

—— Master Theorem —— —— Proof ——

e If f(n) is a constant factor larger than a f(n/b), then the sum
is a descending geometric series. The sum of any geometric
series is a constant times its largest term. In this case, the
largest term is the first term f(n).

o If f(n) is a constant factor smaller than a f(n/b), then the
sum is an ascending geometric series. The sum of any ge-
ometric series is a constant times its largest term. In this
case, this is the last term, which by our earlier argument is
@(nlogba)_

e Finally, if a f(n/b) = f(n), then each of the L 4+ 1 terms in
the summation is equal to f(n).

e We can now state the Master Theorem

e We will state it in a way slightly different from the book

e Note: The Master Method is just a ‘“short cut” for the re-
cursion tree method. It is less powerful than recursion trees.

20 22

—— Master Method ——— —— Example ——

The recurrence T(n) = aT(n/b) + f(n) can be solved as follows:
e T(n)=T{Bn/4)+n

e If a f(n/b) < Kf(n) for some constant K < 1, then T(n) = e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b =
o(f(n)). 4/3,f(n) =n

o If a f(n/b) > K f(n) for some constant K > 1, then T'(n) = e Here a f(n/b) = 3n/4 is smaller than f(n) =n by a factor of
©(n'°%a). 4/3, so T(n) = ©(n)

o If a f(n/b) = f(n), then T (n) = S(f(n) logyn).

21 23

Example

—

e Karatsuba’s multiplication algorithm: T(n) = 3T(n/2) +

n
o If we write this as T'(n) = aT(n/b) + f(n), then a = 3,b =
2,f(n)=n

e Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of
3/2, so T(n) = ©(nl°923)

24

Example

—

e Mergesort: T'(n) = 2T (n/2) +n

o If we write this as T'(n) = aT(n/b) + f(n), then a = 2,b =
2,f(n)=n

e Here a f(n/b) = f(n), so T(n) = ©(nlogn)

25

Example

—

e T(n) =T(n/2) +nlogn

e If we write this as T'(n) = aT(n/b) + f(n), then a = 1,b =
2,f(n) =nlogn

e Here a f(n/b) = n/2logn/2 is smaller than f(n) = nlogn by
a constant factor, so T(n) = ©(nlogn)

26

—— In-Class Exercise

e Consider the recurrence: T'(n) = 4T (n/2) +nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

27

—— In-Class Exercise ——

e Consider the recurrence: T'(n) = 2T (n/4) +nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

28

— Take Away ——

e Recursion tree and Master method are good tools for solving
many recurrences

e However these methods are limited (they can't help us get
guesses for recurrences like f(n) = f(n—1) + f(n —2))

e For info on how to solve these other more difficult recur-
rences, review the notes on annihilators on the class web
page.

29

TodO —

e Read Chapter 4 (Recurrences) in text

30

