
Byzantine Agreement in Polynomial Expected Time

[Extended Abstract]

Valerie King
∗

Dept. of Computer Science, University of Victoria
P.O. Box 3055

Victoria, BC, Canada V8W 3P6
val@cs.uvic.ca

Jared Saia
†

Dept. of Computer Science, University of New
Mexico

Albuquerque, NM 87131-1386
saia@cs.unm.edu

ABSTRACT
In the classic asynchronous Byzantine agreement problem,
communication is via asynchronous message-passing and the
adversary is adaptive with full information. In particular,
the adversary can adaptively determine which processors to
corrupt and what strategy these processors should use as
the algorithm proceeds; the scheduling of the delivery of
messages is set by the adversary, so that the delays are
unpredictable to the algorithm; and the adversary knows
the states of all processors at any time, and is assumed to
be computationally unbounded. Such an adversary is also
known as “strong”.

We present a polynomial expected time algorithm to solve
asynchronous Byzantine Agreement with a strong adversary
that controls up to a constant fraction of the processors.
This is the first improvement in running time for this prob-
lem since Ben-Or’s exponential expected time solution in
1983. Our algorithm tolerates an adversary that controls up
to a 1/500 fraction of the processors.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems

General Terms
Theory, Algorithms, Reliability, Security

Keywords
Byzantine Agreement, Distributed Computing, Randomized
Algorithms, Consensus

∗This research was partially supported by an NSERC grant
†This research was partially supported by NSF CAREER
Award 0644058, NSF CCR-0313160, and an AFOSR MURI
grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1Ð4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

1. INTRODUCTION
How can we build a reliable system out of unreliable parts?

Byzantine agreement is fundamental to addressing this ques-
tion. The Byzantine agreement problem is to devise an algo-
rithm so that n agents, each with a private input can agree
on a single common output that is equal to some agent’s
input. For example, if all processors start with 1, they must
all decide on 1. The processors should successfully termi-
nate despite the presence of t = θ(n) bad processors. An
adversary controls the behavior of the bad processors which
can deviate from the algorithm in arbitrary ways. Byzan-
tine agreement is one of the most fundamental problems in
distributed computing; it has been studied for over 30 years
and is referenced in tens of thousands of papers.

In this paper, we consider Byzantine agreement in the
challenging classic asynchronous model. The adversary is
adaptive: it can determine which processors to corrupt and
what strategy these processors should use as the algorithm
proceeds. Communication is asynchronous: the scheduling
of the delivery of messages is set by the adversary, so that
the delays are unpredictable to the algorithm. Finally, the
adversary has full information: it knows the states of all pro-
cessors at any time, and is assumed to be computationally
unbounded. Such an adversary is also known as “strong” [6].

The major constraint on the adversary is that it cannot
predict future coinflips, and we assume that each processor
has its own fair coin and may at any time flip the coin and
decide what to do next based on the outcome of the flip.

Time in this model is defined to be the maximum length
of any chain of messages (see [12, 6]). In particular, all com-
putation by individual processors is assumed to be instan-
taneous, and sending a message over the network is counted
as taking 1 unit of time.

The only results known to the authors for this classic
model are the works of Ben-Or (1983) [8] and Bracha (1984)
[7]. Ben-Or gave a Byzantine agreement (BA) algorithm tol-
erating t < n/5. Bracha improved this tolerance to t < n/3.
Unfortunately, both of these algorithms run in exponential
expected time if t = Θ(n). As recently as 2006, Ben-Or,
Pavlov and Vaikuntanathan [9] wrote:

“In the case of an asynchronous network, achieving even a
polynomial-rounds BA protocol is open. We note that the
best known asynchronous BA protocols [8, 7] have exponen-
tial expected round-complexity”

To the authors’ knowledge, we present the first algorithm
for this problem to achieve better than exponential expected
run time. Our main result is the following.

Theorem 1. Let n be the number of processors. There is
a t = Θ(n) such that Byzantine Agreement can be solved in
expected time O(n2.5) and expected polynomial bits of com-
munication, in the asynchronous message passing model with
an adaptive, full-information adversary that controls up to t
processors.

1.1 Technical Overview
We start with Ben-Or’s 1983 algorithm. In this algorithm,

roughly speaking, the processors take the majority of each
others’ votes. When there is a sufficiently large majority
of processors which agree on the same bit, the adversary
cannot affect the outcome. When there is not a sufficiently
large majority, some or all of the processors flip their coins.
If the processors which flip their coins happen to all flip
them to the same value and that value happens to agree
with the value held by the processors which do not flip, the
algorithm terminates successfully in the next round. Ben-
Or’s algorithm reduces Byzantine agreement to the problem
of generating a mutually agreed upon coinflip. In this sense
it is similar to Rabin’s global coinflip algorithm [20], which
however assumes the existence of a global coin.

We thus follow the technique in the consensus literature
of reducing the agreement problem to the problem of pro-
ducing a commonly agreed upon coinflip (see the survey [2];
we were particularly inspired by the result in [5] for produc-
ing consensus in a shared memory model). The consensus
problem is equivalent to Byzantine agreement, except that
processors taken over by the adversary suffer crash faults
and thus no longer send out messages.

In the consensus problem, a prevalent technique for gen-
erating a common coin is to have the processors generate
and send out many coinflips. If the sum of these coinflips
deviates sufficiently far from 0, then if each processor takes
the majority value of the coinflips, 1) all processors will ob-
tain the same value; and 2) that value will be a fair coinflip.
It suffices to generate n2 individual coinflips to ensure that
with constant probability, the sum generated by these coin-
flips will have absolute value exceeding the O(n) deviation
(from 0) that the adversary can introduce through schedul-
ing of messages and crash faults.

Unfortunately, in Byzantine agreement, the adversary can
introduce Θ(nt) = Θ(n2) deviation through adversarially
determined “coinflips”. Thus, we need a new technique for
limiting adversarial deviation. Our basic approach is to run
Ben-Or’s algorithm multiple times and to add processors
with suspiciously large deviation to a “suspect list” so that
their coinflips are subsequently ignored.

In particular, over enough iterations of Ben-Or’s algo-
rithm, if no decision has occurred, there must be a group
of t or fewer processors that have produced coinflips with
suspiciously high deviation. These coinflips with high devi-
ation must have been received by enough good processors
to prevent a decision. We show that a good processor can
use information about these coinflips to maintain its suspect
list in the following way. First, if Ben-Or’s fails over many
iterations, eventually all bad processors will be added to the
suspect list. Second, no more than t good processors are
ever added to the suspect list.

When all bad processors are added to each good proces-
sor’s suspect list, agreement is reached within an expected
constant number of iterations of Ben-Or’s algorithm. One

challenge is to show that not too many good processors are
added to the suspect list of any good processor.

Paper Organization: The rest of this paper is organized
as follows. In Section 2, we discuss related work. In Section
3, we present a slightly modified version of the Ben-Or al-
gorithm, MODIFIED-BEN-OR, which calls upon a coinflip
algorithm we call GLOBAL-COIN . The GLOBAL-COIN
procedure, presented in Section 4, attempts to generate a
commonly agreed upon coin. In Section 5, we analyze prop-
erties of the streams of coinflips generated and broadcast
during multiple calls to GLOBAL-COIN . In Section 6, we
present and analyze our main algorithm. Section 7, discusses
future directions and open problems.

Throughout this paper, we will use the phrase with high
probability (w.h.p.) to mean with probability 1 − 1/nc for
any fixed constant c.

2. RELATED WORK
Below, all discussion concerns the asynchronous model of

computation, where the maximum delay is unknown to the
algorithm, and time is defined as described in Section 1.

The Byzantine agreement problem was introduced over 30
years ago by Lamport, Shostak and Pease [18]. In the model
where faulty behavior is limited to adversary-controlled stops
known as crash failures, but bad processors otherwise fol-
low the algorithm, the problem of Byzantine agreement is
known as consensus. In 1983, Fischer, Lynch and Paterson
(FLP) showed that a deterministic algorithm cannot solve
the consensus problem in an asynchronous model even with
one faulty processor [14].

In 1983, Ben-Or introduced randomization, where each
processor can flip a random private coin, as a way to avoid
the FLP impossibility result. His algorithm solved Byzan-
tine agreement in time exponential in the number of proces-
sors n, if t < n/5. The algorithm consists of multiple rounds
in which each good processor tosses a coin. The running time
is proportional to the expected number of rounds before the
number of heads exceeds the number of tails by more than
t. Thus, in expectation, this algorithm has constant running
time if t = O(

√
n) but has exponential running time for t

any constant fraction of n.
The resilience (number of faulty processors tolerated) was

improved to t < n/3 in 1984 by Bracha [7]. The run-
ning time remained exponential. This resilience is the best
possible [16]. To the authors’ knowledge, these two works
represent the state of the art for randomized algorithms
for Byzantine agreement in the asynchronous model with a
strong adversary, i.e., fully adaptive, with full information.

Randomized algorithms for Byzantine agreement with re-
silience t = Θ(n) and constant expected time have been
known for 25 years, under the assumption of private channels
(so that the adversary cannot see messages passed between
processors) [13]. Under these assumptions, more recent work
shows that optimal resilience can be achieved [11].

Byzantine agreement was also more recently shown to re-
quire only polylogarithmic time in the full information model
if the adversary is static, meaning that the adversary must
choose the faulty processors at the start, without knowing
the random bits of the algorithm [15]. The technique is
to elect a very small subset of processors which contain a
less than 1/3 fraction of faulty processors; this subset then
runs the exponential time algorithm on their inputs. Such

a technique does not seem applicable when the adversary is
adaptive and can decide to corrupt the elected set after it
sees the result of the election.

A similar approach was used, however, to give a Byzantine
agreement algorithm with low communication cost, given an
adaptive adversary and private channels in [17] . Essentially,
the randomness is “elected” but spread among many proces-
sors and kept secret through secret sharing. However, this
technique does not seem applicable in the situation where
there are no private channels.

Randomized consensus (and Byzantine agreement) algo-
rithms are discussed extensively in Aspnes’s 2003 survey on
the topic [2]. That paper includes a discussion of the solu-
tion to consensus in the shared memory model when up to
n − 1 crash failures occur. In the shared memory model,
cost is measured by the total step complexity. Algorithms
with expected polynomial steps for consensus with shared
memory were introduced in 1990 [3].

In 1998, Aspnes showed a Ω(n2/ log2 n) bound on the
number of coinflips required for consensus [1]. In 2008, At-
tiya and Censor-Hillel showed tight upper and lower bounds
of Θ(n2) on the total number of steps required for consensus
in the shared memory model [4]. Any shared memory algo-
rithm for consensus can be simulated by a message passing
algorithm with constant time overhead, provided that the
number of faults is less than n/2. The lower bound of Ω(n2)
steps implies a Ω(n) time bound for consensus1 in the mes-
sage passing model, where at least n/2 processors may be
executing in parallel.

In 2011, Lewko [19] considered a certain class of “fully
symmetric round protocols” for solving Byzantine agreement
in the asynchronous model with an an adaptive adversary
with full information. In a fully symmetric protocol, “a pro-
cessor computes its message to broadcast in the next round
as a randomized function of the set of messages it has vali-
dated, without regard to their senders.” Lewko showed that
any such protocol could be forced by an adversary to run
in exponential expected time. Since our algorithm consid-
ers the IDs of processors when processing messages (notably
through suspect lists), our algorithm is not a fully symmetric
round protocol.

3. MODIFIED-BEN-OR ALGORITHM
We now describe MODIFIED-BEN-OR, a slight modifi-

cation of Ben-Or’s algorithm for Byzantine agreement [8].
We refer to each iteration of the while-loop as an iteration

of MODIFIED-BEN-OR. The only change to Ben-Or’s pro-
tocol is that instead of flipping a private coin, a processor
uses a coinflip generated by the algorithm GLOBAL-COIN .
The GLOBAL-COIN algorithm takes as an argument the
iteration number of MODIFIED-BEN-OR and attempts to
generate a fair global coin for that iteration; we describe
GLOBAL-COIN later as Algorithm 2.

Note that some processors may participate in GLOBAL-
COIN even though they do not use its outcome, to ensure
full participation by good processors. In MODIFIED-BEN-
OR, vp is initialized to be the processor p’s input bit for
Byzantine agreement.

The following lemma follows from the result in [8].

Lemma 1 (Ben-Or [8]). In an iteration of MODIFIED-
BEN-OR with t < n/5:

1as well as Byzantine agreement

Algorithm 1 MODIFIED-BEN-OR

1: k ← 1
2: while not decided do
3: send the message (1, k, vp) to all processors;
4: wait until messages of type (1, k, ∗) are received from

n− t processors;
5: if there are more than (n+ t)/2 messages of the form

(1, k, v) then
6: send the message (2, k, v,D) to all processors;
7: else
8: send the message (2, k, ?) to all processors;
9: end if

10: wait until messages ,of type (2, k, ∗) are received from
n− t processors;

11: if there are more than (n + t)/2 D-messages of the
form (2, k, v,D) then

12: decide v;
13: else if there are at least t+ 1 D-messages (2, k, v,D)

then
14: run GLOBAL-COIN(k) but set vp ← v;
15: else
16: vp ← GLOBAL-COIN(k);
17: end if
18: k ← k + 1;
19: end while

1. If greater than 4n/5 good processors have the same vote
value v, then every good processors will decide on v in
that iteration.

2. If a good processor sends (2, r, v,D), then no other good
processor sends (2, r, v′, D) for v′ 6= v.

3. If at least 2t + 1 D-messages are sent by good proces-
sors, then the outcome from GLOBAL-COIN is not
used and there is a decision in the next iteration.

4. If no more than 2t D-messages are sent by good proces-
sors then all good processors participate in GLOBAL-
COIN.

5. If GLOBAL-COIN(k) returns v to 4n/5 good proces-
sors and no good processor has received at least t + 1
messages (2, r, v′, D) for v′ 6= v, then every good pro-
cessor comes to agreement in the next iteration.

Proof. The proof follows from the correctness of Ben-
Or’s algorithm and the observation that if no more than 2t
D-messages are sent by good processors, then no more than
3t ≤ (n+ t)/2 D-messages are received by all processors and
lines 13-17 apply. Otherwise, if at least 2t + 1 D-messages
are sent by good processors, then each processor receives at
least t+ 1 D-messages and so only lines 11-14 apply and the
output of GLOBAL-COIN is not used.

4. GLOBAL-COIN ALGORITHM
The goal of GLOBAL-COIN (Algorithm 2) is to generate

a fair coinflip which is agreed upon by a large fraction of
good processors. The algorithm requires each processor to
repeatedly perform a coinflip where heads is +1 and tails is
-1, and broadcast up to n of these coinflips. Upon receiving
sufficiently many coinflips, each processor computes a sum
of coinflips received from each processor, and then decides

on the sign of the total sum of coinflips received. For a
processor p, Vp is a subset of V whose coinflips p uses to try
to decide on a value of the global coin. Initially Vp consists
of all the processors.

The results of this section are summarized in the following
lemma.

Lemma 2. If t < n/11 then GLOBAL-COIN has the fol-
lowing properties:

1. There is a set S of n−4t good processors which receive
n coinflips generated by each of at least n−2t good pro-
cessors and receives all but 2 of the coinflips generated
by the remaining t good processors, before deciding on
the sign of the sum. We use the term “common coins”
to refer to this set of at least n(n− 2t) + (n− 2)t coin-
flips generated by good processors that are received by
all members of S.

2. All good processors p decide on a sum of the coinflips
generated by each processor q ∈ Vp which is within 3 of
the actual sum of coinflips generated, before deciding
on the sum of all the coinflips.

3. W.h.p. the absolute value of the sum of coinflips gener-
ated by any one good processor is less than c3n

.5 lnn−3
and if any processor p receives coinflips generated by
a processor q with absolute value at least c3n

.5 lnn, p
removes q from from Vp, for c3 a constant.

The algorithm makes use of the reliable broadcast primi-
tive from Bracha [10]. In this primitive, a single player calls
broadcast for a particularly message m, and subsequently,
all players may decide on exactly one message. The reliable
broadcast primitive guarantees the following:

1. If a good player broadcasts a message m, then all good
players eventually decide m.

2. If a bad player p broadcasts a message then either all
good players decide on the same message or no good
players decide on a message from p.

The algorithm assumes that all broadcasts are reliable
broadcasts; we use the word broadcast to refer to reliable
broadcast, and the word r-received to refer to deciding on
a message which was reliably broadcast. The algorithm has
the following types of messages.

• coinflip message (p, c, i): broadcast by processor p when
p generates its i-th coinflip that has value c

• received-coinflip message (p, q, c, i): broadcast by pro-
cessor p when p r-receives the coinflip message (q, c, i)

• release message, (p, i): sent by processor p only to pro-
cessor q after p r-receives n − t received-coinflip mes-
sages of the type (∗, q, c, i)

• received-sum message: broadcast by processor p once
it completes the last round of the algorithm. This
message consists of n values: for each processor q, there
is a value giving the sum of all coinflips that p received
for q

We assume that every broadcast by a processor p includes
all received-coinflip messages that p previously broadcast.

In the algorithm, ip is the number of coinflips p has gen-
erated to completion, and jp is the number of rounds which
p has observed to completion.

Algorithm 2 GLOBAL-COIN

Assumptions: Below, i, j are understood to mean ip
and jp. Initially i, j ← 0. Let c3 be a constant
which we set later (specifically in the proofs of Lemmas 7
and 14).

1: (WAIT STEP) Whenever p has r-received t+1 received-
coinflip messages of the type (∗, q, c, k) for some pro-
cessor q and for any k ≤ j, then p waits until it has
r-received the coinflip message (q, c, k).
The following steps are carried out in any order if p is
not waiting:

2: Whenever i ≤ j and p has not yet initiated the ith coin-
flip, then p flips a coin c and broadcasts the coin flip
message (p, c, i) {“p initiates the ith coinflip”}.

3: Whenever p r-receives a coinflip message (q, c, i′), then
p broadcasts the received-coinflip message (p, q, c, i′).

4: Whenever p r-receives n − t received-coinflip messages
(∗, q, c, i′), then p sends to q the release message (p, i′).

5: Let S(p, j) be a maximum sized set of processors (pos-
sibly including p) such that for all a ∈ S(p, j), p has r-
received coin-flip message (a, c, j), and for all b ∈ S(p, j)
p has also r-received received-coinflip message (b, a, c, j).
Whenever |S(p, j)| ≥ n − t then p increments j. {“p
completes a round”}

6: When p r-receives release messages (∗, i) from n− t pro-
cessors, then p increments i. {“p completes a coinflip”}

7: if j = n+ 1 then
8: p broadcasts a received-sum message containing for

each processor q, the sum of the coin flips that p re-
ceived from q

9: p waits to r-receive received-sum messages from n− t
other processors

10: For each processor q and value x between −n and n,
p sets votep(q, x) to be the number of processors from
the previous step that claim that the sum of coinflips
they received from processor p is equal to x.

11: For each processor q, p determines if there is a value
−c3n.5 lnn ≤ x ≤ c3n.5 lnn such that votep(q, x−1)+
votep(q, x)+votep(q, x+1) ≥ n−5t. If so, sump(q)←
x, for the smallest such x. If not, q is removed from
the set Vp.

12: p decides on the value of the global coinflip, based on
the sign of the sum of the values sump(q) over all pro-
cessors q ∈ Vp. Then p stops broadcasting messages,
but continues to participate in the reliable broadcast
of messages sent by other processors.

13: end if

4.1 Analysis of GLOBAL-COIN

Lemma 3. In GLOBAL-COIN, every processor will even-
tually decide a value of the global coinflip.

Proof. We prove this by induction on the number of
rounds. We will show that for all 0 ≤ j ≤ n, if all good
processors reach round j, then all good processors will reach
round j + 1. The lemma then follows since a processor de-
cides a value of the global coinflip as soon as it reaches round
n+ 1.

For any processor p, there are two conditions that must
be satisfied for p to advance from round j to round j + 1.

The first is that the processor is not in the WAIT state of
Step 1; the second is the condition in Step 5.

The first condition will always eventually occur for any
processor p. To see this, note that if there is some coinflip c,
and some k ≤ j, and p has r-received at least t+ 1 received-
coinflip messages of the type (∗, b, c, k), then at least one
good processor has r-received the coinflip message (b, c, k).
Thus eventually, p will r-receive the coinflip message (b, c, k).
Hence, for the remainder of this proof, we focus solely on the
condition of Step 5.

Assume all good processors reach round x. We note that
if one good processor then reaches round x+1, that all good
processors will eventually reach round x+ 1. To see this, let
p be one of the good processors that eventually reach round
x+ 1. This implies that p satisfied the condition of Step 5,
namely there is a set S(p, x) of size at least n− t. Any other
processor q will eventually r-receive any message r-received
by p. Hence, there will eventually be some set S(q, x) of size
at least n− t.

We finally show that at least one good processor will even-
tually reach round x+1, given that all good processors have
reached round x. Assume not. Then all good processors are
stuck in round x indefinitely. Thus, for any good processor
p that has broadcast coin flip i ≤ x, the coinflip message
(p, c, i) will eventually be r-received by every good proces-
sors q. Then at least n − t processors q will broadcast the
received-coinflip message (q, p, c, i), which will eventually be
received by all good processors q′, which will send a release
message (q′, i) to p. Thus, p will eventually complete its i-th
coin toss, for all i ≤ x.

But then eventually all good processors p will broadcast
their x-th coinflip; the coinflip message (p, c, x) will be r-
received by all good processors; all good processors q will
broadcast the received-coinflip message (q, p, c, x); and all
processors will r-receive these coinflip messages (p, c, x), and
received-coinflip messages, (q, p, c, x). Thus for any good
processor g there will be a set S(g, x) of size n − t. Hence,
g will advance to round x+ 1, which is a contradiction.

Lemma 4. There is a set of n − 2t good processors that
r-receive all n coinflip messages from all processors in some
fixed set S of size n − t, before they set their value of the
global coin.

Proof. By Lemma 3, all processors eventually decide the
value of the global coin. Let p be the first good processor
to do so. By the condition of Step 5, p has r-received coin-
flip messages (q, ∗, n) from all processors q ∈ S(p, n) and p
also received received-coinflip messages (s, q, ∗, n) from all
processors s, q ∈ S(p, n) before any other good processor
set the global coin value. Note that the coinflip messages
(q, ∗, n) from a processor q also contain all previous coinflip
messages (q, ∗, x) for all x < n. Hence, all the processors
in S(p, n) have r-received the coinflip messages about all n
of each other’s coin flips, and have done so before they set
their value of the global coin. To complete the proof, we
note that there are at least n−2t good processors in S(p, n)
and we let S = S(p, n).

Lemma 5. Consider the coinflip messages broadcast by
processors in the set V \S, where S is as defined in Lemma 4.
There is a set of n− 2t good processors that r-receive, before
they set their value of the global coin, all but possibly two
coinflip messages broadcast by each good processor in V \S.

Proof. Order the coinflip messages of good processors
by when their broadcasts are begun.

Let b1 and b2 be the last two coin flip messages broadcast
by processor B, where processor B is chosen over all good
processor to maximize the time that b1 was broadcast.

Let t be the time of b1’s broadcast. Consider any other
good processor A which broadcasts at least three coinflip
messages. All but one of these were broadcast at time no
later than t. Let a1 and a2 be the last two coinflip messages
broadcast by A at time no later than t. Let Sa1 and Sb1 be
the sets of processors which broadcast release messages for
a1 (resp. b1) before a1 (resp. b1) were completed. Let Rb1
be the set of processors which broadcast received-coinflip
messages for b1.

Then since the broadcast of a2 occurred by time at most t,
every processor in Sa1 received receive-coinflip messages for
a1 from n− t processors by time t. Clearly all broadcasts of
received-coinflip messages for b1 occurred after time t. Since
|Sa1 | ≥ n − t and |Rb1 | ≥ n − t, then |Sa1 ∩ Rb1 | ≥ n − 2t,
of which at least n− 3t are good processors.

Note that each processor in Sb1 received received-coinflip
messages for b1 from n− t processors in Rb1 , and that there
are at least n − 3t good processors in Sa1 ∩ Rb1 . Thus, at
least n− 4t > t of the received-coinflip messages for b1 that
are received by each processor in Sb1 contain the received-
coinflip messages for a1.

Therefore every processor in Sb1 will wait to r-receive a
coinflip message for a1. Hence all processors in Sb1 will r-
receive all but possibly two coinflip messages of every good
processor. This will occur before each of them sets their
global coinflip, as it occurs before they send a release mes-
sage for b1.

Fix a set S of n− 2t good processors from Lemma 4, and
another set Sb1 of n − 2t good processors from Lemma 5.
There are at least n − 4t good processors in the intersec-
tion of these two sets. This new set of good processors
has r-received all coinflips of good processors which were
r-received by any processor, except possibly the last two
generated by each of 2t good processors. We call the coin-
flips in this set common coins.

Lemma 6. There are at least n(n − 2t) common coins,
and no more than 2t coins from good processors, no more
than 2 per processor, which are not common. The common
coins are known to n− 4t good processors.

Lemma 7. Let t < n/11. Then the following hold.

1. W.h.p. no good processor will be removed from Vp for
any p from Step 11.

2. For any good processor q, let sum(q) be the sum of
all the coin flips broadcast by q during the course of
GLOBAL-COIN. Then for any good processor p, it
must be the case that |sump(q)− sum(q)| ≤ 3.

3. For any bad processor q, let p1 and p2 be good pro-
cessors that have not eliminated q from Vp1 or Vp2 in
Step 11 of GLOBAL-COIN, then it must be the case
that |sump1(q)− sump2(q)| ≤ 2.

Proof. We begin with part (2). In step 9 of GLOBAL-
COIN , n − t received-sum messages are r-received, and at
least n−2t such messages must come from good processors.

By Lemma 7, w.h.p., there are no more than 4t good pro-
cessors which are not in S as defined in the statement of
that lemma. Thus, in step 9 of GLOBAL-COIN , each pro-
cessor r-receives n− t received-sum messages, at least n−5t
of which are from good processors that know the common
coins.

Now fix a good processor q and let c`−1 and c` be the
last two coinflips of processor q. By Lemma 6, there are
no more than two coins per processor that are not common
and the common coins are known by all but 4t good pro-
cessors. Thus, by the above paragraph, votep(q, sum(q)) +
votep(q, sum(q)−c`)+votep(q, sum(q)−c`−c`−1) ≥ n−5t.
Now assume that at the end of Algorithm 2, processor p
sets sump(q) to be some value x such that |sum(q)−x| ≥ 3.
Then by step 11, votep(q, x− 1) + votep(q, x) + votep(q, x+
1) ≥ n− 5t. But since x− 1, x and x+ 1 are disjoint from
sum(q), sum(q)− c`, sum(q)− c` − c`−1, this implies there
are at least 2n − 5t votes distributed across these 6 values.
This is a contradiction since 2n− 5t > n provided t < n/10.

We now show part (1) of the lemma. Let X be the sum of
at most n coinflips. The Chernoff bound given in Fact 1 in
the following section shows that Pr(|X| ≥ −3 + c3n

.5 lnn ≤

2e(
(3−c3n.5 lnn)2

2n
) = n−c for any c where c3 is a constant

dependent on c. Thus, by part (2) of the lemma, it must be
the case that |sump(q)| ≤ c3n.5 lnn.

We now prove part (3). Assume p1 and p2 are good pro-
cessors that have not removed q from Vp1 or Vp2 in Step 11
of the algorithm. Let x1 = sump1(q) and x2 = sump2(q)
be the values set in Step 11 by p1 and p2 respectively. It
must be the case that both votep1(q, x1−1)+votep1(q, x1)+
votep1(q, x1+1) ≥ n−5t and votep2(q, x2−1)+votep2(q, x2)+
votep2(q, x2 + 1) ≥ n− 5t.

Assume by way of contradiction that |x1 − x2| ≥ 3. Then
the integer values x1 − 1, x1 x1 + 1, x2 − 1, x2 x2 + 1 are
all disjoint. We know that the n − t good processors each
send the same received-sum message for q to both p1 and p2.
Hence, votep1(q, x1− 1) + votep1(q, x1) + votep1(q, x1 + 1) +
votep2(q, x2 − 1) + votep2(q, x2) + votep2(q, x2 + 1) ≤ n+ t.
Thus, we have the following inequality 2n − 10t ≤ n + t.
This is a contradiction provided that t < n/11.

Lemma 2 follows immediately from the lemmas above.

5. ANALYSIS OF DEVIATION
The deviation of a stream of coinflips generated by a set

of processors is the absolute value of the sum of #1’s and
#-1’s in the stream. We refer to the sign of the deviation as
its direction. Below we set α = 2

√
n(n− 2t) and β = α−2t.

We first analyze the deviations of the coinflips generated
by the processors.

5.1 Useful lemmas about the distribution of
coinflips

We use the following facts about distributions of random
coinflips:
Fact 1: (Chernoff): Let X be the sum of N independent

coinflips. Then for any positive a, Pr(X ≥ a) ≤ e−a
2/2N .

Fact 2: Let X be the sum of N independent coinflips. Let

Φ(a) = 1/
√

2π
∫ a
−∞ e

−1/2y2dy. Then Pr(X > a
√
X) con-

verges to 1 − Φ(a) > (1/a − 1/a3)(1/
√

2π)e−a
2/2 [Feller in

AC]. E.g., Pr(X > 2
√
N) ≥ (3/8)(1/(

√
2π)e−2 > 1/32.

By Fact 2 and the symmetry of +1’s and -1’s:

Lemma 8. A set of at least n(n− 2t) good coinflips has a

deviation of α = 2
√
n(n− 2t) in any specified direction with

probability at least 1/32.

Lemma 9. A set of no more than nt good coinflips has a
deviation of more than β/2 =

√
n(n− 2t)−t with probability

at most e−(β/2)2/2tn. If t < n/20, then β/2 > .898n and this

probability is at most e(.898n)2/(2n2(1/20)) < e−8 < 1/2980.

5.2 No agreement implies unusual deviation
by bad processors

In this subsection, we assume no more than t good pro-
cessors have been removed from Vp for any p and show that
w.h.p., a failure to come to agreement over a large num-
ber of iterations implies there is a large subset of iterations
where there are coinflips generated by bad processors with
unusually high deviation.

For each iteration of MODIFIED-BEN-OR, there is a par-
ticular value for the global coin toss (1 or -1) which will re-
sult in agreement. We call this the correct direction. We
now show that for a large majority of processors p, there
are many iterations with high deviation of coinflips by good
processors in Vp in the correct direction.

Lemma 10. Assume that the number of good processors
in V \ Vp is no greater than t for all processors p. Then,
w.h.p., for sufficiently large constant c, in cn iterations of
MODIFIED-BEN-OR, there are at least cn/38 iterations I
with the following property. For each iteration i ∈ I:
(i) the deviation of coinflips of all good processors in itera-
tion i is at least α in the correct direction; and
(ii) there is a set of good processors S′ of size greater than
5n/6 such that for all p ∈ S′, the set of good processors in
V \ Vp generate coinflips with deviation less than β/2 in the
correct direction.

Proof. Fix a processor p. Since V \ Vp has less than t
good processors, Lemma 9 shows the probability that the
deviation of the coinflips of these good processors in V \ Vp
exceeds β/2 is less than 1/2980 in any fixed iteration. Hence,
in any fixed iteration, the expected number of processors
p such that the good processors in V \ Vp have deviation
exceeding β/2 is less than n/2980.

Consider the event that at least n/6 processors p have
good processors in V \ Vp with deviation exceeding β/2 in
one iteration. By Markov’s Inequality, the probability of
this event is less than 6/2980 < .003. Hence the expected
number of iterations in which this event occurs is at most
.003cn. Let X be the number of iterations in which the event
occurs. Since each iteration is independent, we can use Cher-

noff bounds to bound X: Pr(X ≥ .0035cn) ≤ e−c
′n−1, for

c′ any constant and sufficiently large constant c dependent
on c′.

Let Y be the number of iterations in which all good pro-
cessors have deviation in the correct direction of at least
α. From Lemma 8, E(Y) is at least cn/32. Using Cher-

noff bounds, Pr(Y < cn/33) = e−c
′n−1 for c′ any constant

and sufficiently large constant c dependent on c′. Then by a

union bound, Pr(X ≥ .0035cn or Y ≤ cn/33) ≤ e−c
′′n for

some c′′ > 0. But if both X < .0035cn and Y ≥ cn/33, then

0 α−β/2

Coins Sent by All Good Procs

Common Coins in V - Vp

Coins Sent by Good Procs in V - Vp

Coins Sent by Bad Procs

Coins Used by p to Compute Global Coin

α− β/2α− β/2− 2tα− β − 2t

Figure 1: Deviation observed in Lemma 11 by a pro-
cessor p ∈ G

there are at least cn/33− .0035cn > cn/38 iterations satis-
fying conditions (i) and (ii). Thus, w.h.p., there are cn/38
iterations satisfying condition (i) and (ii).

The next lemma shows that if the conditions above hold,
and the deviation of the coinflips by bad processors is low,
agreement will result.

Lemma 11. Fix an iteration of MODIFIED-BEN-OR. Let
S be the set from Lemma 2 of good processors which receive
the common coins in the execution of GLOBAL-COIN in
that iteration. Let G ⊆ S with |G| > 4n/5. If:
(i) the coinflips of all good processors have deviation at least
α in the correct direction; and
(ii) for every p ∈ G, the coinflips of good processors in V \Vp
have deviation less than β/2 in the correct direction; and
(iii) for every p ∈ G the coinflips which are r-received by
p and generated by bad processors in Vp have deviation less
than β/2;
then the processors in G will agree on a global coin in the
correct direction, and all processors will come to agreement
in the next iteration of MODIFIED-BEN-OR.

Proof. We assume without loss of generality that the
correct direction for the global coin is +1, which corresponds
to the bit value 1 in MODIFIED-BEN-OR.

By Statement (1) of Lemma 2, the processors in G will
receive all coinflips generated by good processors except at
most 2 coinflips from each of as many as t good processors.
Hence the adversary may cause at most a 2t change in devi-
ation in the distribution of these otherwise random coinflips
r-received from good processors. If in addition, the deviation
of the coins from good processors in V \ Vp is less than β/2,
and the deviation of the coins from bad processors which
each processor in G r-receives is less than β/2, then the sum
of the coinflips which each processor in G uses to compute
the global coin is greater than α− β − 2t = 0.

Thus, the global coin will be in the correct direction for
all processors in G. Hence each processor p ∈ G will either
ignore the global coin and set vp = 1, or will set vp to the
outcome of GLOBAL-COIN which is also 1. Since |G| >
4n/5, the next iteration of MODIFIED-BEN-OR will result
in Byzantine agreement.

Figure 1 illustrates Lemma 11. This figure shows the
deviation observed by some processor p in an execution of

GLOBAL-COIN . The figure assumes: 1) the correct direc-
tion for the global coin is +1; 2) p is in the set G defined in
Lemma 11; and 3) conditions (i), (ii) and (iii) of the lemma
all hold.

The next lemma gives processors a tool for singling out
processors which are exhibiting unusually high deviation.

Definitions: Let isump(v, i) be the sum of coinflips by v
r-received by p in iteration i. We define the direction in an
iteration i for a set X of processors and a processor p as
follows: dirp(X, i) is 1 if

∑
v∈X isump(v, i) ≥ 0, and −1

otherwise.
We define processor p’s view of the deviation in an itera-

tion i for a set X of processors as follows:

idevp(X, i) = |
∑
v∈X

isump(v, i)| =
∑
v∈X

isump(v, i)dirp(X, i)

Lemma 12. Assume that: t < n/12; for each good pro-
cessor p, the number of good processors in V \Vp is no more
than t; and agreement is not achieved in an epoch e. Then,
w.h.p., there is a set of n/82 good processors P ′ such that
for every processor p ∈ P ′, there is a set of bad processors
Bp,e ⊂ Vp and a set Ie of cn/(38 ∗ 82) iterations in epoch e
such that for every iteration i ∈ Ie, idevp(Bp,e, i) ≥ β/2.

Proof. By Lemma 10, w.h.p., there is a set J of cn/38
iterations which satisfy precondition (i) of Lemma 11 and
for each such iteration, there is a set S′ of more than 5n/6
good processors which satisfy precondition (ii) of Lemma
11. By Lemma 2 part (1), there are no more than 4t good
processors which are not in S as defined in the statement of
that lemma. Thus for each iteration j ∈ J , there is a set
Gj ⊆ S ∩ S′, of more than 5n/6 − 4t good processors such
that precondition (ii) of Lemma 11 is satisfied for all p ∈ Gj .

By the above argument, if there has been no decision made
in cn iterations, then precondition (iii) of Lemma 11 must
not hold for any iteration in J . Thus, for every iteration j ∈
J , there must be a set Tj ⊆ Gj , |Tj | ≥ (5n/6− 4t)− 4n/5 ≥
n/40, such that for every p ∈ Tj , the coinflips generated by
bad processors in Vp have deviation at least β/2 in iteration
j.

By an averaging argument, for at least n/82 good proces-
sors p, p observes deviation of at least β/2 for coinflips by a
set of bad processors, Bp,e in Vp in at least cn/(38 ∗ 82)
iterations in J . The argument is as follows: There are
cn2/(38 ∗ 40) processor-iteration pairs in which a processor
observes β/2 deviation in the iteration. The maximum num-
ber of pairs in which less than n/82 processors can appear is
less than (n/82)(cn/38). Assume by contradiction that the
remaining less than n processors each appear in less than
cn/(38 ∗ 82) pairs. Then the total number of pairs is less
than (n/82)(cn/38) + n(cn/(38 ∗ 82)) = 2cn2/(38 ∗ 82) <
cn2/(38 ∗ 40). In the statement of the lemma, setting P ′ to
be this set of good processors completes the proof.

The above lemma shows that for every processor p and
epoch e, there exists a set of bad processors Bp,e ⊆ Vp with
high deviation in many iterations. Unfortunately, there may
be other sets which share this property, so it is not clear that
p can simply find any subset of processors with the requisite
deviation and then remove that subset from Vp.

In the next section, we show that p can use any subset
it finds to have sufficient deviation as a starting point. But
then p does not remove all processors in that subset from

Vp. Instead, we give a method for p to measure a processor’s
contribution to the deviation of this subset as a means of
deciding whether to remove that processor from Vp.

6. ELIMINATING PROCESSORS
To perform the elimination procedure every processor p

must keep track of the observed deviation of every processor
v in every run of GLOBAL-COIN . Recall that GLOBAL-
COIN is run once per every iteration of MODIFIED-BEN-
OR, except the final iteration. Further recall that each pro-
cessor p maintains a view Vp ⊆ V of the current proces-
sors whose coinflips it will use to determine the outcome
of GLOBAL-COIN . The remaining coinflips are discarded.
Vp is updated at most once during every cn iterations of
MODIFIED-BEN-OR. We refer to these cn iterations as an
epoch.

[Jared: We should write Ip,e here since Ie can differ
based on p. Kind of hate to make the notation more cum-
bersome though - maybe we can let these subscripts be im-
plicit or write as B(p, e) or something?] During an epoch
e, when and if p determines there is a set Bp,e ⊆ Vp of no
more than t processors and a set of cn/(38∗82) iterations Ie
such that for each iteration i ∈ Ie, idevp(Bp,e, i) ≥ β/2,
p also determines for each processor v ∈ Bp,e the indi-
vidual epoch deviation of the processor v. This is the de-
viation of the coinflips p has received from v over itera-
tions in Ie where the direction of the deviation in each it-
eration is determined by the direction of the deviation of
Bp,e in that iteration. In particular, the epoch deviation
edevp(v, Ie, Bp,e) =

∑
i∈Ie isump(v, i)dirp(Bp,e, i). Once

these Ie iterations have occurred, p waits until the start of
the next epoch to again attempt to detect deviation for pro-
cessors.

For every processor v, processor p maintains the cumula-
tive sum of its edev over all epochs: cumdevp(v). When
cumdevp(v) ≥ 2(c3n

.5 lnn)(cn/(38∗82)), v is removed from
Vp.

Algorithm 3 Main Algorithm

1: while there is no decision, repeat do
2: For each v ∈ V , cumdevp(v)← 0
3: Vp ← the set of all processors
4: for e = 1 to c1n {“p runs epoch e”} do
5: Found← FALSE.
6: for i = 1 to cn do
7: p runs MODIFIED-BEN-OR
8: if Found = FALSE and p finds a set Bp,e of

processors of size at most t and a set of cn/(38 ∗
82) iterations Ie in epoch e such that for every
iteration i ∈ Ie, idevp(Bp,e, i) ≥ β/2 then

9: for each v ∈ Bp,e do
10: cumdevp(v) ← cumdevp(v) +

edevp(v, Ie, Bp,e).
11: if cumdevp(v) ≥ 2(c3n

.5 lnn)(cn/(38 ∗ 82))
then remove v from Vp

12: end for
13: Found← TRUE.
14: end if
15: end for
16: end for
17: end while

6.1 Analysis of Elimination Procedure
We show that the elimination procedure will enable good

processors to successfully remove bad processors, without
removing too many good processors.

Let Bad be the set of bad processors and Good be the
set of good processors. For a good processor p, a set of
processors S, and an epoch e, let cumdevp(S, e) be the
sum over all processors q ∈ S of the amount added to the
variable cumdevp(q) in epoch e.

Lemma 13. Assume Algorithm 3 runs for at most a poly-
nomial number of epochs and t < n/500. Then w.h.p., for
any good processor p and any epoch e, cumdevp(Good, e) ≤
(β/5)cn/(38 ∗ 82).

Proof. Let c2 = c/(38∗82). Assume that in some epoch
e, p finds a set of processors Bp,e and a set of c2n iterations
Ie such that for every iteration i ∈ Ie, idevp(Bp,e, i) ≥ β/2.
We note that p only increases cumdevp(q) for processors
q ∈ Bp,e. Therefore we would like to bound the amount
added for all q ∈ Good ∩Bp,e.

Let G = Good ∩ Bp,e and let X be a random variable
that is the sum of all coinflips generated by processors in G
during epoch e. By Lemma 5, the sum of coins r-received
from a good processor in any iteration differs by at most
3 from the sum of the coinflips which were generated by
that processor. Recall that β = 2

√
n(n− 2t) − 2t. Thus,

if X ≤ (β/6)c2n, this implies that cumdevp(G, e) ≤ X +
3tc2n ≤ (β/6 + 3t)c2n ≤ (β/5)c2n when 3t < β/30 which
occurs when t < n/46. Further note that the probability
that X ≥ (β/6)c2n is maximized when all processors in G
generate all n coinflips for each iteration in Ie. Thus, we
will pessimistically assume this is the case throughout the
proof.

We now fix a set G, a set Ie and a mapping d from itera-
tions in Ie to directions of the deviation {−1, 1}. Since X is
the sum of independent trials, by Fact 1, and the fact that
β2 ≥ 1.9n2 (which holds if t ≤ n/10), we have:

Pr(X ≥ (β/6)(c2n)) ≤ e−(c2nβ/6)2/2(|G|c2n2)

≤ e−c2β
2/(72|G|)

≤ e−.026c2n
2/t

There are
(

cn
cn/(38∗82)

)
≤ (38 ∗ 82e)cn/(38∗82) ways to pick

the iterations Ie; at most
∑t
i=1

(
n
i

)
≤ 2n ways to pick the set

G; and 2c2n ways to pick the mapping d. Let ξ be the event
that X ≥ (β/6)(c2n) for any sets G and I, and mapping d.
Then by a union bound, we have the following.

Pr(ξ) ≤ (38 ∗ 82e)c2n2n2c2ne−.026c2n
2/t

≤ e9c2nenec2ne−.026c2n
2/t

≤ e11c2n−(.026c2n
2/t)

≤ e−Ω(n) Setting n/t ≥ 500

Another union bound over all good processors p and the
polynomial number of epochs e establishes the result.

Lemma 14. With high probability, for all processors p, the
number of good processors removed from Vp is no more than
t.

Proof. Suppose a processor p detects a set Bp,e as de-
fined in Algorithm 3 in some epoch e, for iterations Ie. From

Lemma 13, w.h.p., cumdevp(Good∩Bp,e, e) < (β/5)cn/(38∗
82). Since the total deviation assigned in the epoch is at
least β/2 for each of the cn/(38 ∗ 82) iterations, this implies
that cumdevp(Bad∩Bp,e) > (3β/10)(cn/(38∗82)). Hence,
the amount of deviation accrued by bad processors in Vp is
greater than 3/2 the amount accrued by good processors in
Vp in each epoch in which deviation is accrued.

Let Gp be the set of good processors that have been re-
moved from Vp. For a processor p and a set of processors,
S, let cumdevp(S) =

∑
v∈S cumdevp(v). If |Gp| > t then

cumdevp(Gp) ≥ 2(c3n
.5 lnn)t(cn/(38 ∗ 82)). This implies:

equation (1): cumdevp(Bad) > 3(c3n
.5 lnn)t(cn/(38 ∗

82)).
Each processor v is removed from Vp when cumdevp(v) ≥

2(c3n
.5 lnn)(cn/(38 ∗ 82)). Each iteration can add no more

than c3n
.5 lnn deviation to a processor (see Lemma 7). Thus,

each epoch, including a processor’s last before its removal,
adds no more than (c3n

.5 lnn)(cn/(38∗82)) to cumdevp(v).
Hence, the maximum cumdevp accrued by a processor be-
fore its removal is less than 3(c3n

.5 lnn)(cn/(38 ∗ 82)). This
together with the fact that there are at most t bad processors
contradicts equation (1).

Lemma 15. With high probability, Algorithm 3 will termi-
nate in Õ(n.5) epochs (Õ(n2.5) time). When the algorithm
terminates, all processors will achieve Byzantine agreement.
The algorithm is Las Vegas with expected runtime that is
Õ(n2.5).

Proof. Let X be the sum over all processors p and q
of the value cumdevp(q). By the argument in the proof
of Lemma 14, for any processors p and q, cumdevp(q) ≤
3(c3n

.5 ln)(cn/(38 ∗ 82)). Summing over all n2 pairs of pro-
cessors, we see that X ≤ n2(3c3n

.5 lnn)(cn/(38 ∗ 82)) =

Õ(n3.5). By Lemma 12, w.h.p., in every epoch in which
the algorithm does not terminate, the value of X must in-
crease by at least (n/82)(β/2)(cn/(38∗82)) = Θ(n3). Thus,
w.h.p., the total number of epochs in which X can increase
is Õ(n.5).

By the contrapositive of Lemma 12, w.h.p., if there is an
epoch in which X does not increase, Byzantine agreement
must be achieved in that epoch. Hence, w.h.p., the algo-
rithm achieves Byzantine agreement in O(n.5) epochs.

With very small probabilty, the entire algorithm will re-
peat until Byzantine agreement is decided, making the al-
gorithm Las Vegas with O(n2.5) run time.

This concludes the proof of Theorem 1.

7. CONCLUSION AND FUTURE WORK
We have described an algorithm to solve Byzantine agree-

ment in polynomial expected time. Our algorithm works in
the asynchronous message-passing model, when an adaptive
and full-information adversary controls a constant fraction
of the processors. Our algorithm is designed so that in order
to thwart it, corrupted nodes must engage in statistically
deviant behavior which is detectable by individual nodes.
Essentially, this reduces the network communication prob-
lem to an individual computation problem. This suggests
a new paradigm for secure distributed computing: the de-
sign of algorithms that force attackers into behavior that is
statistically deviant and detectable.

Our result leaves much room for improvement, in terms
of the resilience and expected time. First, we did not work

hard at reducing the resilience which now stands at n/500.
Can we increase this value? Second, it is not clear whether
the expected time can be brought down to the known lower
bound of Ω̃(n) or whether Byzantine agreement is intrinsi-
cally harder than consensus, in terms of time or step com-
plexity. Finally, we believe that we can reduce the compu-
tational cost of our algorithm to polynomial time, and are
actively working on this problem.

Acknowledgements: This authors would like to thank
the Banff International Research Station (BIRS). This work
was initiated at the BIRS Workshop 12w122, “Probabilistic
Versus Deterministic Techniques for Shared Memory Com-
putation”.

8. REFERENCES
[1] J. Aspnes. Lower bounds for distributed coin-flipping

and randomized consensus. Journal of the ACM,
45(3):415–450, 1998.

[2] J. Aspnes. Randomized protocols for asynchronous
consensus. Journal of Distributed Computing,
16:165–175, 2003.

[3] J. Aspnes and M. Herlihy. Fast randomized consensus
using shared memory. Journal of Algorithms,
11(3):441–461, 1990.

[4] H. Attiya and K. Censor. Lower bounds for
randomized consensus under a weak adversary. In
Principles of Distributed Computing (PODC), pages
315–324, 2008.

[5] H. Attiya and K. Censor. Tight bounds for
asynchronous randomized consensus. Journal of the
ACM, 55(5), 2008.

[6] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics (2nd
edition), page 14. John Wiley Interscience, March
2004.

[7] M. Bellare and P. Rogaway. Random oracles are
practical: a paradigm for designing efficient protocols.
In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[8] M. Ben-Or. Another advantage of free choice
(Extended Abstract): Completely asynchronous
agreement protocols. In Principles of Distributed
Computing (PODC), pages 27–30, 1983.

[9] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan.
Byzantine agreement in the full-information model in
o (log n) rounds. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 2006.

[10] G. Bracha. Asynchronous byzantine agreement
protocols. Journal of Information and Computation,
75(2):130–143, 1987.

[11] R. Canetti and T. Rabin. Fast asynchronous
Byzantine agreement with optimal resilience. In ACM
Symposium on Theory of Computing (STOC), 1993.

[12] B. Chor and C. Dwork. Randomization in Byzantine
agreement. Advances in Computing Research,
5:443–498, 1989.

[13] P. Feldman and S. Micali. Byzantine agreement in
constant expected time (and trusting no one). In
Foundations of Computer Science (FOCS), pages
267–276, 1985.

[14] M. Fischer, N. Lynch, and M. Paterson. Impossibility

of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, 1985.

[15] B. Kapron, D. Kempe, V. King, J. Saia, and
V. Sanwalani. Scalable algorithms for byzantine
agreement and leader election with full information.
ACM Transactions on Algorithms(TALG), 2009.

[16] A. Karlin and A. Yao. Probabilistic lower bounds for
byzantine agreement and clock synchronization.
Unpublished manuscript.

[17] V. King and J. Saia. Breaking the O(n2) bit barrier:
Scalable byzantine agreement with an adaptive
adversary. In Principles of Distributed Computing
(PODC), 2010.

[18] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):401, 1982.

[19] A. Lewko. The contest between simplicity and
efficiency in asynchronous byzantine agreement.
Distributed Computing, pages 348–362, 2011.

[20] M. Rabin. Randomized Byzantine generals. In
Foundations of Computer Science (FOCS), pages
403–409, 1983.

