Outline A new style of reasoning: DPLL($\Gamma + T$) Speculative inferences for decision procedures

DPLL(Γ +T): a new style of reasoning

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy

June, 2013

イロト イポト イヨト イヨト

Outline A new style of reasoning: DPLL($\Gamma + T$) Speculative inferences for decision procedures

A new style of reasoning: $DPLL(\Gamma + T)$

Speculative inferences for decision procedures

(4回) (4回) (4回)

Problem statement

- Determine validity (unsatisfiability) or invalidity (satisfiability) of first-order formulæ
- Modulo background theories (some arithmetic is a must)
- With quantifiers for expressivity: QFF do not suffice
- Emphasis on *automation*: prover called by other tools

マロト イヨト イヨト

Some key state-of-the-art reasoning methods

- Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
- ► *T_i*-solvers: *Satisfiability procedures* for the *T_i*'s
- ▶ DPLL(T)-based SMT-solver: Decision procedure for T with combination by equality sharing of the T_i-sat procedures
- First-order engine Γ to handle R (additional theory): Resolution+Rewriting+Superposition: Superposition-based

(本間) (本語) (本語)

How to combine their strengths?

- DPLL: SAT-problems; large non-Horn clauses
- ► Theory solvers: e.g., ground equality, linear arithmetic
- ► DPLL(*T*)-based SMT-solver: efficient, scalable, integrated theory reasoning
- Superposition-based inference system Γ:
 - FOL+= clauses with universally quantified variables (automated instantiation)
 - Sat-procedure for several theories of data structures (e.g., lists, arrays, records)

(本間) (本語) (本語)

Shape of problem

- Background theory ${\mathcal T}$
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_{i}$, e.g., linear arithmetic
- Set of formulæ: $\mathcal{R} \cup P$
 - ► *R*: set of *non-ground* clauses without *T*-symbols
 - ► P: large ground formula (set of ground clauses) typically with *T*-symbols

・同・ ・ヨ・ ・ヨ・

Combination of theories

- If Γ terminates on R_i-sat problems, it terminates on R-sat problems for R = Uⁿ_{i=1} R_i, if R_i's disjoint and variable-inactive
- Variable-inactivity: no maximal literal t ≃ x where x ∉ Var(t) (no superposition from variables)
- Only inferences across theories: superpositions from shared constants
- Variable inactivity implies stable infiniteness:
 Γ reveals lack of stable infiniteness by generating *cardinality constraint* (e.g., y ≃ x ∨ y ≃ z) not variable-inactive

ヘロン 人間 とくほど くほとう

DPLL and DPLL(\mathcal{T})

- Propositional logic, ground problems in built-in theories
- Build candidate model M
- Decision procedure: model found: return sat; failure: return unsat
- Backtracking

・回 と く ヨ と く ヨ と

$\mathsf{DPLL}(\mathcal{T})$

State of derivation: $M \parallel F$

- \mathcal{T} -Propagate: add to M an L that is \mathcal{T} -consequence of M
- \mathcal{T} -Conflict: detect that L_1, \ldots, L_n in M are \mathcal{T} -inconsistent

If \mathcal{T}_i -solver builds \mathcal{T}_i -model (model-based theory combination):

• *PropagateEq*: add to *M* a ground $s \simeq t$ true in \mathcal{T}_i -model

イロト イポト イヨト イヨト

DPLL(Γ +T): integrate Γ in DPLL(T)

- Idea: literals in M can be premises of Γ -inferences
- Stored as hypotheses in inferred clause
- ► Hypothetical clause: $(L_1 \land \ldots \land L_n) \triangleright (L'_1 \lor \ldots \sqcup L'_m)$ interpreted as $\neg L_1 \lor \ldots \lor \neg L_n \lor L'_1 \lor \ldots \lor L'_m$
- Inferred clauses inherit hypotheses from premises

A (10) A (10)

$\mathsf{DPLL}(\Gamma \!\!+\!\! \mathcal{T})$ inferences

State of derivation: $M \parallel F$

- ► *Expansion*: take as pemises *non-ground* clauses from *F* and *R*-literals (unit clauses) from *M* and add result to *F*
- Backjump: remove hypothetical clauses depending on undone assignments
- Contraction: as above + scope level to prevent situation where clause is deleted, but clauses that make it redundant are gone because of backjumping

・ 同 ト ・ ヨ ト ・ ヨ ト

DPLL(Γ +T): expansion inferences

► Deduce: Γ -rule γ , e.g., superposition, using *non-ground* clauses $\{H_1 \triangleright C_1, \ldots, H_m \triangleright C_m\}$ in F and ground \mathcal{R} -literals $\{L_{m+1}, \ldots, L_n\}$ in M

$$M \parallel F \implies M \parallel F, H \triangleright C$$

where $H = H_1 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\}$ and γ infers C from $\{C_1, \ldots, C_m, L_{m+1}, \ldots, L_n\}$

- Only \mathcal{R} -literals: Γ -inferences ignore \mathcal{T} -literals
- ► Take ground unit *R*-clauses from *M* as *PropagateEq* puts them there

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

DPLL(Γ +T): contraction inferences

- Single premise $H \triangleright C$: apply to C (e.g., *tautology deletion*)
- Multiple premises (e.g., subsumption, simplification): prevent situation where clause is deleted, but clauses that make it redundant are gone because of backjumping
- Scope level:
 - level(L) in M L M': number of decided literals in M L
 - $level(H) = max\{level(L) \mid L \in H\}$ and 0 for \emptyset

(4月) (4日) (4日)

DPLL(Γ +T): contraction inferences

- ▶ Say we have $H \triangleright C$, $H_2 \triangleright C_2, ..., H_m \triangleright C_m$, and $L_{m+1}, ..., L_n$
- ► $C_2, ..., C_m, L_{m+1}, ..., L_n$ simplify C to C' or subsume it
- Let $H' = H_2 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\}$
- ▶ Simplification: replace $H \triangleright C$ by $(H \cup H') \triangleright C'$
- Both simplification and subsumption:
 - if $level(H) \ge level(H')$: delete
 - ▶ if level(H) < level(H'): disable (re-enable when backjumping level(H'))</p>

▲□→ ▲ 国 → ▲ 国 →

Outline A new style of reasoning: $DPLL(\Gamma + T)$ Speculative inferences for decision procedures

$\mathsf{DPLL}(\Gamma\!\!+\!\!\mathcal{T})$ as a transition system

- Search mode: State of derivation $M \parallel F$
 - ► *M* sequence of *assigned ground literals*: partial model
 - F set of hypothetical clauses
- ► Conflict resolution mode: State of derivation *M* || *F* || *C*
 - C ground conflict clause

Initial state: *M* empty, *F* is $\{\emptyset \triangleright C \mid C \in \mathcal{R} \uplus P\}$

・同・ ・ヨ・ ・ヨ・

Completeness of DPLL($\Gamma + T$)

► *Refutational completeness* of the inference system:

- from that of Γ , DPLL(\mathcal{T}) and equality sharing
- made combinable by variable-inactivity
- Fairness of the search plan:
 - depth-first search fair only for ground SMT problems;
 - add iterative deepening on inference depth

- 4 回 ト - 4 回 ト

DPLL(Γ +T): Summary

Use each engine for what is best at:

- DPLL(\mathcal{T}) works on ground clauses
- **Γ** not involved with ground inferences and built-in theory
- Γ works on non-ground clauses and ground unit clauses taken from M: inferences guided by current partial model
- Γ works on \mathcal{R} -sat problem

(人間) とうり くうり

Speculative inferences for decision procedures

Maria Paola Bonacina DPLL($\Gamma + T$): a new style of reasoning

向下 イヨト イヨト

How to get decision procedures?

- SW development: false conjectures due to mistakes in implementation or specification
- Need theorem prover that terminates on satisfiable inputs
- Not possible in general:
 - FOL is only semi-decidable
 - ► First-order formulæ of linear arithmetic with uninterpreted functions: not even semi-decidable

However we need less than a general solution.

伺下 イヨト イヨト

Problematic axioms do occur in relevant inputs

Example:

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$
 (Monotonicity)

2.
$$a \sqsubseteq b$$
 generates by resolution

3.
$$\{f^i(a) \sqsubseteq f^i(b)\}_{i \ge 0}$$

E.g. $f(a) \sqsubseteq f(b)$ or $f^2(a) \sqsubseteq f^2(b)$ often suffice to show satisfiability

・ 回 と ・ ヨ と ・ ヨ と

A new style of reasoning: DPLL($\Gamma + T$) Speculative inferences for decision procedures

Idea: Allow speculative inferences

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$

- 4 回 2 - 4 三 2 - 4 三 2 - 4

3

 $\begin{array}{c} \text{Outline}\\ \text{A new style of reasoning: } \text{DPLL}(\Gamma+\mathcal{T})\\ \text{Speculative inferences for decision procedures} \end{array}$

Idea: Allow speculative inferences

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

- **2**. *a* ⊑ *b*
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 $\begin{array}{c} \text{Outline}\\ \text{A new style of reasoning: } \text{DPLL}(\Gamma+\mathcal{T})\\ \text{Speculative inferences for decision procedures} \end{array}$

Idea: Allow speculative inferences

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

- **2**. *a* ⊑ *b*
- 3. $a \sqsubseteq f(c)$
- **4**. ¬(*a* ⊑ *c*)
- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!
- 3. Add $f(f(x)) \simeq x$
- 4. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 5. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq c$
- 6. Terminate and detect satisfiability

A > < 3 > < 3 > -

Speculative inferences in DPLL(Γ +T)

- Speculative inference: add arbitrary clause C
- To induce termination on sat input
- What if it makes problem unsat?!
- Detect conflict and backjump:
 - Keep track by adding $\lceil C \rceil \triangleright C$
 - $\lceil C \rceil$: new propositional variable (a "name" for C)
 - Speculative inferences are *reversible*

- 4 同 ト 4 ヨ ト 4 ヨ ト

Speculative inferences in DPLL(Γ +T)

State of derivation: $M \parallel F$

Inference rule:

- SpeculativeIntro: add $\lceil C \rceil \triangleright C$ to F and $\lceil C \rceil$ to M
- Rule SpeculativeIntro also bounded by iterative deepening

▲帰▶ ▲臣▶ ▲臣▶

 $\begin{array}{c} \text{Outline}\\ \text{A new style of reasoning: } \text{DPLL}(\Gamma+\mathcal{T})\\ \text{Speculative inferences for decision procedures} \end{array}$

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

・ロン ・回と ・ヨン・

3

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$

イロト イヨト イヨト イヨト

3

Example as done by system

1.
$$\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$

- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

- 2. a <u>∟</u> b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$
- 4. Add $\lceil f(f(x)) \simeq x \rceil \triangleright f(f(x)) \simeq x$
- 5. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 6. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq f(f(c))$ rewritten to $\lceil f(f(x)) = x \rceil \triangleright f(a) \sqsubseteq c$
- 7. Terminate and detect satisfiability

くほう くほう くほう

Decision procedures with speculative inferences

To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- ► Find sequence of "speculative axioms" U
- Show that there exists k s.t. k-bounded DPLL(Γ+T) is guaranteed to terminate
 - with *Unsat* if $\mathcal{R} \cup P$ is \mathcal{T} -unsat
 - in a state which is not stuck at k if $\mathcal{R} \cup P$ is \mathcal{T} -sat

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- SpeculativeIntro adds "pseudo-axioms" $f^j(x) \simeq f^k(x), j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth

・ 何 ト ・ ヨ ト ・ ヨ ト

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- ► SpeculativeIntro adds "pseudo-axioms" f^j(x) ≃ f^k(x), j > k
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
- \blacktriangleright Clause length limited by properties of Γ and ${\cal R}$
- Only finitely many clauses generated: termination without getting stuck

ヘロン 人間 とくほど くほとう

Situations where clause length is limited

 Γ : Superposition, Resolution + negative selection, Simplification Negative selection: only positive literals in positive clauses are active

- ▶ *R* is Horn
- *R* is *ground-preserving*: variables in positive literals appear also in negative literals; the only positive clauses are ground

伺下 イヨト イヨト

Axiomatizations of type systems

Reflexivity	$x \sqsubseteq x$	(1)
Transitivity	$ eg(x \sqsubseteq y) \lor eg(y \sqsubseteq z) \lor x \sqsubseteq z$	(2)
Anti-Symmetry	$ eg(x \sqsubseteq y) \lor eg(y \sqsubseteq x) \lor x \simeq y$	(3)
Monotonicity	$ eg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$	(4)
Tree-Property	$\neg(z \sqsubseteq x) \lor \neg(z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x$	(5)

Multiple inheritance: $MI = \{(1), (2), (3), (4)\}$ Single inheritance: $SI = MI \cup \{(5)\}$

(1) マン・ (1) マン・ (1)

Concrete examples of decision procedures

DPLL(Γ + \mathcal{T}) with *SpeculativeIntro* adding $f^{j}(x) \simeq f^{k}(x)$ for j > k decides the satisfiability modulo \mathcal{T} of problems

- ► MI ∪ P
- ► SI ∪ P
- $\mathsf{MI} \cup \mathsf{TR} \cup P$ and $\mathsf{SI} \cup \mathsf{TR} \cup P$

where $TR = \{\neg(g(x) \simeq null), h(g(x)) \simeq x\}$

A (1) A (