Generating all modular lattices of a given size ADAM 2013

Nathan Lawless

Chapman University

June 6-8, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Introduction to Lattice Theory: Modular Lattices
- ► The Objective: Generating and Counting Modular Lattices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- First Approach: From Finite Lattices
- Second Approach: From Distributive Lattices
- Results
- Conclusion

What are lattices?

First, let a **partially ordered set or poset** be a binary relation " \leq " over a set *P* such that $\forall a, b, c \in P$ satisfies:

- Reflexivity: $a \leq a$.
- Antisymmetry: if $a \leq b$ and $b \leq a$, then a = b.
- Transitivity: if $a \leq b$ and $b \leq c$, then $a \leq c$.

What are lattices?

First, let a **partially ordered set or poset** be a binary relation " \leq " over a set *P* such that $\forall a, b, c \in P$ satisfies:

- Reflexivity: $a \leq a$.
- Antisymmetry: if $a \leq b$ and $b \leq a$, then a = b.
- Transitivity: if $a \leq b$ and $b \leq c$, then $a \leq c$.

Then, we say a partially ordered set (L, \leq) is a **lattice** if it satisfies the following axioms:

For any two elements a and b of L, there exists a least upper bound, refered to as the *join a* ∨ b.

For any two elements a and b of L, there exists a greatest lower bound, refered to as the meet a ∧ b.

Example 1

For any set X, all the subsets of the power set P(X) form a lattice with the order relation A ≤ B meaning A is a subset of B (A ⊆ B). Then, A ∨ B = A ∪ B and A ∧ B = A ∩ B. Example: P({a, b, c}) = {{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, ∅}.

Figure 1: Power Set Lattice of {a,b,c}.

Example 2

However, the following poset is **not** a lattice since a and b do not have a least upper bound, as we do not know which is smaller among c and d.

Figure 2. Example of a poset which is not a lattice.

A distributive lattice D is a lattice that satisfies the distributive law x, y, z ∈ D:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A distributive lattice D is a lattice that satisfies the distributive law x, y, z ∈ D:
 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
- ► An alternative way to view distributive lattices is by Birkhoff's Theorem: L is a nondistributive lattice iff M₃ or N₅ can be embedded into L.

Figure 3: M_3 and N_5 .

- A distributive lattice D is a lattice that satisfies the distributive law x, y, z ∈ D:
 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
- ► An alternative way to view distributive lattices is by Birkhoff's Theorem: L is a nondistributive lattice iff M₃ or N₅ can be embedded into L.

Figure 3: M_3 and N_5 .

• Examples of distributive lattices are:

- A distributive lattice D is a lattice that satisfies the distributive law x, y, z ∈ D:
 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
- ► An alternative way to view distributive lattices is by Birkhoff's Theorem: L is a nondistributive lattice iff M₃ or N₅ can be embedded into L.

Figure 3: M_3 and N_5 .

- Examples of distributive lattices are:
 - Boolean algebras.

- A distributive lattice D is a lattice that satisfies the distributive law x, y, z ∈ D:
 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
- ► An alternative way to view distributive lattices is by Birkhoff's Theorem: L is a nondistributive lattice iff M₃ or N₅ can be embedded into L.

Figure 3: M_3 and N_5 .

- Examples of distributive lattices are:
 - Boolean algebras.
 - Natural numbers with the gratest common divisor as meet and the least common multiple as join.

A modular lattice M is a lattice that satisfies the modular law x, y, z ∈ M: (x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

- A modular lattice M is a lattice that satisfies the modular law $x, y, z \in M$: $(x \land y) \lor (y \land z) = y \land [(x \land y) \lor z)].$
- An alternative way to view modular lattices is by Dedekind's Theorem: L is a nonmodular lattice iff N₅ can be embedded into L.

- A modular lattice M is a lattice that satisfies the modular law $x, y, z \in M$: $(x \land y) \lor (y \land z) = y \land [(x \land y) \lor z)].$
- An alternative way to view modular lattices is by Dedekind's Theorem: L is a nonmodular lattice iff N₅ can be embedded into L.

Figure 4: N₅.

All distributive lattices are modular lattices.

- A modular lattice M is a lattice that satisfies the modular law $x, y, z \in M$: $(x \land y) \lor (y \land z) = y \land [(x \land y) \lor z)].$
- An alternative way to view modular lattices is by Dedekind's Theorem: L is a nonmodular lattice iff N₅ can be embedded into L.

- All distributive lattices are modular lattices.
- Examples of modular lattices are:

- A modular lattice M is a lattice that satisfies the modular law $x, y, z \in M$: $(x \land y) \lor (y \land z) = y \land [(x \land y) \lor z)].$
- An alternative way to view modular lattices is by Dedekind's Theorem: L is a nonmodular lattice iff N₅ can be embedded into L.

- All distributive lattices are modular lattices.
- Examples of modular lattices are:
 - Lattices of subspaces of vector spaces.

- A modular lattice M is a lattice that satisfies the modular law x, y, z ∈ M: (x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].
- An alternative way to view modular lattices is by Dedekind's Theorem: L is a nonmodular lattice iff N₅ can be embedded into L.

- All distributive lattices are modular lattices.
- Examples of modular lattices are:
 - Lattices of subspaces of vector spaces.
 - Lattices of ideals of a ring.

- A modular lattice M is a lattice that satisfies the modular law $x, y, z \in M$: $(x \land y) \lor (y \land z) = y \land [(x \land y) \lor z)].$
- An alternative way to view modular lattices is by Dedekind's Theorem: L is a nonmodular lattice iff N₅ can be embedded into L.

- All distributive lattices are modular lattices.
- Examples of modular lattices are:
 - Lattices of subspaces of vector spaces.
 - Lattices of ideals of a ring.
 - Lattices of normal subgroups of a group.

Our Objective

We wish to come up with an algorithm which can efficiently generate all possible finite modular lattices of a given size n up to isomorphism.

Why is this important?

- 1. The generated modular lattices can provide a tool for other scientists to verify conjectures and/or find counterexamples.
- 2. Better understanding of modular lattices.
- 3. Discovering new structural properties of modular lattices.

Heitzig and Reinhold [2000] developed an orderly algorithm to enumerate all finite lattices and used it to count the number of lattices up to size 18. To explain their algorithm, we give some definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.</p>

Heitzig and Reinhold [2000] developed an orderly algorithm to enumerate all finite lattices and used it to count the number of lattices up to size 18. To explain their algorithm, we give some definitions related to posets and lattices:

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.</p>
- We call ↑ A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.

Heitzig and Reinhold [2000] developed an orderly algorithm to enumerate all finite lattices and used it to count the number of lattices up to size 18. To explain their algorithm, we give some definitions related to posets and lattices:

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.</p>
- We call ↑ A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.
- ► The set of all maximal elements in L is called the first level of L (*lev*₁(L)). The (m+1)-th level of P can be recursively defined by *lev*_{m+1}(L) = *lev*₁(L ⋃_{i=1}^m *lev*_i(L)).

Heitzig and Reinhold [2000] developed an orderly algorithm to enumerate all finite lattices and used it to count the number of lattices up to size 18. To explain their algorithm, we give some definitions related to posets and lattices:

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.</p>
- We call ↑ A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.
- ▶ The set of all maximal elements in L is called the first level of L ($lev_1(L)$). The (m+1)-th level of P can be recursively defined by $lev_{m+1}(L) = lev_1(L \bigcup_{i=1}^m lev_i(L))$.
- An antichain is a subset of L in which any two elements in the subset are incomparable.

Heitzig and Reinhold [2000] developed an orderly algorithm to enumerate all finite lattices and used it to count the number of lattices up to size 18. To explain their algorithm, we give some definitions related to posets and lattices:

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.</p>
- We call ↑ A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.
- ► The set of all maximal elements in L is called the first level of L (*lev*₁(L)). The (m+1)-th level of P can be recursively defined by *lev*_{m+1}(L) = *lev*₁(L ⋃_{i=1}^m *lev*_i(L)).
- An antichain is a subset of L in which any two elements in the subset are incomparable.
- ► A lattice antichain A is an antichain in which for any $a, b \in \uparrow A, a \land b \in \uparrow A \cup \{0\}.$

Counting Finite Lattices (continued)

Using these definitions, a recursive algorithm can be formulated that generates for a given natural number $n \ge 2$ exactly all canonical lattices up to n elements starting with the two element lattice, where L^A is the lattice obtained from L by adding a new element with the subset $A \in L$ as a cover:

```
next_lattice(integer m, canonical m-lattice L) begin
```

```
if m < n then
for each lattice-antichain A of L do
if L^A is a canonical lattice then
next_lattice (m+1, L^A)
if m = n then output L
end
```

Most of the time in this algorithm is spent in testing if L^A is canonical, as all permutations of L^A have to be checked to see if L^A is canonical. However, some properties allow to reduce the number of checkings needed.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの

Counting Finite Lattices: Modular Lattices

This algorithm can be modified such that when a lattice of size n is generated, the algorithm checks if it is modular. Some properties can be used to reduce the number of checkings:

- ▶ Lemma: If the lattice L' with the elements in the third to last level of L as atoms is non-modular, then all descendant lattices of L are non-modular.
- ▶ Lemma: If there are any two elements a, b ∈ A contained in different levels of L, then all descendants are non-modular.
- Lemma: When constructing all modular lattices, it suffices to use lattice antichains that are subsets of the bottom level or subsets of the second lowest level. Subsets of the bottom level need only be used if there are no atoms in the second lowest level.

Dealing with Isomorphisms

- The canonical checking in the first algorithm is of order O(n!),
- The time spent in this check can be drastically reduced by using the method of generation by canonical construction path introduced by McKay.
- This method consists on generating the lattices in a way such that it is not necessary to test if the lattice has the lowest weight among all possible permutations.

 Instead, it uses a defined path construction incorporating Nauty canonical labeling.

```
procedure scan(X : labelled object, n : integer)
output X
for each orbit A of the action of Aut(X) on U(X) do
select any \hat{X} \in A
if f'(\hat{X}) \neq \emptyset then
select any \check{Y} \in f'(\hat{X})
if o(Y) \leq n and \check{Y} \in m(Y) then scan(Y,n)
endprocedure
```

Counting Distributive Lattices

A second and cheaper approach comes from an orderly algorithm used by Erné, Heitzig and Reinhold [2002] to generate and count the distributive lattices up to n=49; a subclass of modular lattices.

- Consider a distributive lattice D = (k, ≤) of size k and choose an element z ∈ D.
- Find the principal filter $I = \uparrow z$.
- ▶ The principal filter I is "doubled" to generate the set $I^{\uparrow} = \{k, \dots, k + |I| 1\}$ with an isomorphism mapping $\psi : I^{\uparrow} \to I$.
- ▶ Define a new relation \leq^{\uparrow} on the set k + |I| by: $x \leq^{\uparrow} y \Leftrightarrow (x, y < k \text{ and } x \leq y)$ or $(x, y \geq k \text{ and}$ $\psi(x) \leq \psi(y))$ or $(x < k \leq y \text{ and } x \leq \psi(y))$.
- ► The generated lattice D ↑ z := (k + |I|, ≤[↑]) is again a distributive lattice.
- ▶ **Theorem:** Every distributive lattice of finite cardinality is isomorphic to a lattice of the form $D_0 \uparrow z_1 \uparrow ... \uparrow z_n$ with $|D_0| = 1$ and a sequence with $0 = z_1 \leq z_2 \leq ... \leq z_n$.

First, we chose an element, say z = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For the selected z, we calculate $I = \uparrow z = \{1, 3\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Then, we connect the points in I^{\uparrow} to their corresponding images under ψ and update the values of \leq^{\uparrow} .

THE ELECTRONIC JOURNAL OF COMBINATORICS 9 (2002), #R24

 $\overline{4}$

Modular Lattices: Example

<ロト <回ト < 注ト < 注ト æ

Counting Distributive Lattices: Extension

The following figure shows a distributive (and modular) lattice (left) and a non-distributive modular lattice (right).

Figure 5

- Idea: Must find a way to insert vertices such that the extended poset is still a lattice and is modular.
- ► Theorem: Let a, b ∈ M for a modular lattice M such that a < b and the longest chain from a to b is of length 3 and Covers(a) = Co-covers(b), then the lattice produced by inserting a new point between a and b is a modular lattice.

Counting Distributive Lattices: Extension

However, with the doubling and adding point operations, there are still some modular lattices which are not generated. For example, the **subspace lattices of projective geometries**, a special type of geometric lattice. We add these as building blocks.

Figure : Geometric lattices of subspaces of A) \mathbb{Z}_2^3 (n = 16) and B) \mathbb{Z}_3^3 (n = 28).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results

n	Lattices	Mod. Lattices	Alg.1(min)	Alg.1 Mod.(min)	Alg.2(min)
1	1	1	0	0	0
2	1	1	0	0	0
3	1	1	0	0	0
4	2	2	0	0	0
5	5	4	0	0	0
6	15	8	0	0	0
7	53	16	0	0	0
8	222	34	0	0	0
9	1,078	72	0	0	0
10	5,994	157	0	0	0
11	37,622	343	0	0	0
12	262,776	766	0.8	0	0.08
13	2,018,305	1,718	17	0.2	0.3
14	16,873,364	3,899	308	1	1.9
15	152,233,518	8,898	5320	5	10
16	1,471,613,387	20,475	-	30	59
17	15,150,569,446	47,321	-	130	-
18	165,269,824,761	110,024	-	510	-
19	-	256,791	_	2,000	-

Table : Number of lattices and modular lattices up to isomorphism from n=1 to n=19 with corresponding times of the different algorithms. New numbers are in bold.

1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).
- 2. The algorithm used by Heitzig and Reinhold to generate all finite lattices has been improved with McKay's isomorph-free exhaustive generation.

- 1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).
- 2. The algorithm used by Heitzig and Reinhold to generate all finite lattices has been improved with McKay's isomorph-free exhaustive generation.
- 3. A second algorithm which generates only modular lattices has been developed. However, it does not necessarily generate all modular lattices, so is only used for verification.

- 1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).
- 2. The algorithm used by Heitzig and Reinhold to generate all finite lattices has been improved with McKay's isomorph-free exhaustive generation.
- 3. A second algorithm which generates only modular lattices has been developed. However, it does not necessarily generate all modular lattices, so is only used for verification.

4. This algorithm can be modified to work for other types of lattice structures, such as:

- 1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).
- 2. The algorithm used by Heitzig and Reinhold to generate all finite lattices has been improved with McKay's isomorph-free exhaustive generation.
- 3. A second algorithm which generates only modular lattices has been developed. However, it does not necessarily generate all modular lattices, so is only used for verification.

- 4. This algorithm can be modified to work for other types of lattice structures, such as:
 - Semimodular lattices.

- 1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).
- 2. The algorithm used by Heitzig and Reinhold to generate all finite lattices has been improved with McKay's isomorph-free exhaustive generation.
- 3. A second algorithm which generates only modular lattices has been developed. However, it does not necessarily generate all modular lattices, so is only used for verification.

- 4. This algorithm can be modified to work for other types of lattice structures, such as:
 - Semimodular lattices.
 - Semidistributive lattices.

- 1. The number of unique modular lattices up to isomorphism has been counted up to size n = 19 (they had previously been counted up to n = 12).
- 2. The algorithm used by Heitzig and Reinhold to generate all finite lattices has been improved with McKay's isomorph-free exhaustive generation.
- 3. A second algorithm which generates only modular lattices has been developed. However, it does not necessarily generate all modular lattices, so is only used for verification.

- 4. This algorithm can be modified to work for other types of lattice structures, such as:
 - Semimodular lattices.
 - Semidistributive lattices.
 - Almost distributive lattices.

References

- 1. R. Belohlavek and V. Vychodil, *Residuated Lattices of Size* ≤ *12*, Order 27 (2010), 147–161.
- 2. G. Birkhoff, *On the structure of abstract algebras*, Proc. Camb. Phil. Soc. 31 (1935), 433–454.
- 3. R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe, Math. Ann. 53 (1900), 371–403.
- M. Erné, J. Heitzig and J. Reinhold, On the number of distributive lattices, Electron. J. Combin. 9 (2002), 23 pp.
- 5. J. Heitzig and J. Reinhold, *Counting Finite Lattices*, Algebra Univers. 48 (2002) 43–53.
- 6. B. D. McKay, *Isomorph-free exhaustive generation*, J. Algorithms 26 (1998) 306–324.