Are Commutants in Moufang Loops Normal?

J.D. Phillips Northern Michigan University

Albuquerque, 7 June 2013

Albuquerque, 7 June 2013 1 / 7

(日) (四) (三) (三) (三)

Normal: A subloop is *normal* if it is invariant (as a set) under all inner mappings.

Normal: A subloop is *normal* if it is invariant (as a set) under all inner mappings. For commutants in Moufang loops this trivially reduces to "preserved under right (basic) inner mappings".

Normal: A subloop is *normal* if it is invariant (as a set) under all inner mappings. For commutants in Moufang loops this trivially reduces to "preserved under right (basic) inner mappings". And this can be—again, trivially—rendered equationally (in the argot of Prover9), thusly:

Normal: A subloop is *normal* if it is invariant (as a set) under all inner mappings. For commutants in Moufang loops this trivially reduces to "preserved under right (basic) inner mappings". And this can be—again, trivially—rendered equationally (in the argot of Prover9), thusly:

C * x = x * C

Normal: A subloop is *normal* if it is invariant (as a set) under all inner mappings. For commutants in Moufang loops this trivially reduces to "preserved under right (basic) inner mappings". And this can be—again, trivially—rendered equationally (in the argot of Prover9), thusly:

C * x = x * C

(((C * x) * y) * (y' * x')) * z = z * (((C * x) * y) * (y' * x'))

So, are commutants in Moufang loops normal?

2

< 口 > < 同

So, *are* commutants in Moufang loops normal? This is an obvious "first" question.

So, *are* commutants in Moufang loops normal? This is an obvious "first" question. And it is has a (somewhat) dignified history.

So, *are* commutants in Moufang loops normal? This is an obvious "first" question. And it is has a (somewhat) dignified history. In his famous 1976 paper, S. Doro conjectured that in Moufang loops with trivial nucleus, the answer is "yes".

So, *are* commutants in Moufang loops normal? This is an obvious "first" question. And it is has a (somewhat) dignified history. In his famous 1976 paper, S. Doro conjectured that in Moufang loops with trivial nucleus, the answer is "yes". But Doro—who was, let's face it, a pretty clever guy—was unable to prove it.

So, *are* commutants in Moufang loops normal? This is an obvious "first" question. And it is has a (somewhat) dignified history. In his famous 1976 paper, S. Doro conjectured that in Moufang loops with trivial nucleus, the answer is "yes". But Doro—who was, let's face it, a pretty clever guy—was unable to prove it. Doro's conjecture—recast more generally and as a question, viz, the title of this talk—has been part of the loop theory folklore since then.

Recently, Gagola has produced a "high level" proof that commutants in Moufang loops are normal.

Curious Fact: There is no known equational proof of this (relatively) uncomplicated theorem.

Curious Fact: There is no known equational proof of this (relatively) uncomplicated theorem. There should be one.

Curious Fact: There is no known equational proof of this (relatively) uncomplicated theorem. There should be one. And Prover9 should be able to find it.

Machinery/Notation/Terminology:

3

Machinery/Notation/Terminology: (Basic) Right Inner Mapping:

イロト 不得下 イヨト イヨト 二日

Machinery/Notation/Terminology: (Basic) Right Inner Mapping: $R(x, y) = R_x R_y R_{(xy)'}$

イロト 不得下 イヨト イヨト 二日

Machinery/Notation/Terminology: (Basic) Right Inner Mapping: $R(x, y) = R_x R_y R_{(xy)'}$ Let's work "elementwise":

Machinery/Notation/Terminology: (Basic) Right Inner Mapping: $R(x, y) = R_x R_y R_{(xy)'}$ Let's work "elementwise": *C* is an arbitrary commutant element; *A* and *B* are arbitrary constants.

Machinery/Notation/Terminology: (Basic) Right Inner Mapping: $R(x, y) = R_x R_y R_{(xy)'}$ Let's work "elementwise": *C* is an arbitrary commutant element; *A* and *B* are arbitrary constants. Set *D* as

CR(A, B) = D

Machinery/Notation/Terminology: (Basic) Right Inner Mapping: $R(x, y) = R_x R_y R_{(xy)'}$ Let's work "elementwise": *C* is an arbitrary

commutant element; A and B are arbitrary constants. Set D as

CR(A, B) = D

So, the question is: is D in the commutant? That is, does the following hold:

Machinery/Notation/Terminology: (Basic) Right Inner Mapping: $R(x, y) = R_x R_y R_{(xy)'}$ Let's work "elementwise": *C* is an arbitrary

commutant element; A and B are arbitrary constants. Set D as

CR(A, B) = D

So, the question is: is D in the commutant? That is, does the following hold:

D * x = x * D

One Approach:

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

One Approach:

If you can't show that D is in the commutant, instead, show that D has many (some?) commutant-like properties; e.g., D^3 is nuclear (and piles and Piles and PILES of others).

3

→ Ξ →

Theorem. If C is the cube of a commutant element, then D = C (i.e., D is in the commutant).

Theorem. If C is the cube of a commutant element, then D = C (i.e., D is in the commutant). Note: If C is "just" a cube, then. . . ?

Theorem. If C is the cube of a commutant element, then D = C (i.e., D is in the commutant). Note: If C is "just" a cube, then. . . ?

Theorem. If A or B (or A * B) is a cube, then D is in the commutant.

Theorem. If C is the cube of a commutant element, then D = C (i.e., D is in the commutant). Note: If C is "just" a cube, then. . . ?

Theorem. If A or B (or A * B) is a cube, then D is in the commutant.

Theorem. (No assumptions on *A*, *B*, or *C*). (i) *D* commutes with cubes.

Theorem. If C is the cube of a commutant element, then D = C (i.e., D is in the commutant). Note: If C is "just" a cube, then. . . ?

Theorem. If A or B (or A * B) is a cube, then D is in the commutant.

Theorem. (No assumptions on A, B, or C). (i) D commutes with cubes. (ii) If D commutes with E, and if D commutes with F, then D commutes with E * F

Theorem. If C is the cube of a commutant element, then D = C (i.e., D is in the commutant). Note: If C is "just" a cube, then. . . ?

Theorem. If A or B (or A * B) is a cube, then D is in the commutant.

Theorem. (No assumptions on A, B, or C). (i) D commutes with cubes. (ii) If D commutes with E, and if D commutes with F, then D commutes with E * F (so if L is generated by cubes, then D is in the commutant).