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Graph Theory

Definitions

A graph is an ordered pair G = (V ,E ) comprising a set V of
vertices with a set E of edges.

A complete graph (Kn) is a graph in which each pair of
vertices is connected by an edge.

An edge coloring is a labeling of the edges using colors. In
particular, our coloring scheme allows for adjacent edges to
have the same color.
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Graph Theory

Definitions

A Hamiltonian path is a path in a graph that visits each
vertex exactly once.

A Hamiltonian cycle is a Hamiltonian path that is also a cycle
(i.e. a path starting and ending with the same vertex).

Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete.

A Hamiltonian Decomposition is a partition of the edge set of
a graph into Hamiltonian cycles.
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Graph Theory
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Latin Squares

a b c d

b c d a

c d a b

d a b c

A 4× 4 Latin square

Definition

A Latin square is an n × n array in which each cell contains a
symbol from an alphabet of size n, such that each symbol in
the alphabet occurs once and exactly once in each row and
column.
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Quasigroups

(Q, ·) a b c d

a a b c d

b b c d a

c c d a b

d d a b c

A Quasigroup of order 4

Definition

A Quasigroup (Q, ·), is an algebraic structure that can be
represented by a Cayley table with the Latin square property.
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Latin Squares and Amalgamation

1 3 2

3 2 1

2 1 3

A 3× 3 Latin square

1 3 2 4

3 2 1 4

2 1 3 4

4 4 4 1

The original square
amalgamated by 1

Note

The second square is no longer a Latin square. Is it possible to
amalgamate the original Latin square to the point where the new
square has no repeated elements in rows or columns?
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Latin Squares and Amalgamation

1 3 2 4 5

3 2 1 5 4

2 1 3 4 5

4 5 4 3 2

5 4 5 2 3

The original square
amalgamated by 2

1 3 2 4 5 6

3 2 1 5 6 4

2 1 3 6 4 5

4 5 6 1 2 3

5 6 4 2 3 1

6 4 5 3 1 2

The original square
amalgamated by 3

Note

Amalgamating by 2 also doesn’t work, but when we amalgamate
by 3 we create a new Latin square of order 6.
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Latin Squares and Amalgamation

1 2

3

An incomplete Latin square
of order 3

1 4 2

3

An incomplete Latin square
of order 4

Note

We can also amalgamate to finish incomplete tables that are
otherwise impossible to complete. See if you can complete the
square!
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Latin Squares and Amalgamation

1 4 2 3

2 3 4 1

3 2 1 4

4 1 3 2

A complete Latin square of order 4

Note

In this case, amalgamating by 1 allows us to complete the square.
There are actually 8 ways to complete the square, and in total 576
unique Latin squares of order 4.
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P-Quasigroups

Definition

A P-Quasigroup (Q, ·) is a quasigroup with the three following
properties:

1 a · a = a ∀a ∈ Q (Idempotence)
2 a 6= b ⇒ a 6= a · b 6= b ∀a, b ∈ Q
3 a · b = c ⇐⇒ c · b = a ∀a, b, c ∈ Q.
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P-Quasigroups and Complete Graphs

Correspondence (Kotzig)

The correspondence between P-Quasigroups of n elements and
decompositions of complete undirected graphs of n vertices into
disjoint closed paths is established by labeling the vertices of the
graph with the elements of Q and prescribing that the edges (a, b)
and (b, c) shall belong to the same closed path if and only if
a · b = c , a 6= b.

Lemma (Kotzig)

The number of elements in a P-Quasigroup is odd.
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P-Quasigroups and Hamiltonian Decompositions

1

2

34

5 ∼
(Q,·) 1 2 3 4 5

1 1 3 5 2 4

2 5 2 4 1 3

3 4 1 3 5 2

4 3 5 2 4 1

5 2 4 1 3 5

Note

The same decomposition of the complete graph used in the
beginning actually corresponds to a P-Quasigroup of order 5.
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P-Quasigroups and Hamiltonian Decompositions

1

23
∼

(Q,◦) 1 2 3

1 1 3 2

2 3 2 1

3 2 1 3

Question

Recall that in the beginning we amalgamated K5 down to a version
of K3 with extra loops and edges. What happens if we try to
amalgamate this P-Quasigroup of order 3 up to a P-Quasigroup of
order 5?
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P-Quasigroups and Hamiltonian Decompositions

1

2,34,5 ∼?
(Q,◦) 1 2 3 4 5

1 1 3 2 5 4

2 3 2 1 5 4

3 2 1 3 5 4

4 5 5 5 4 2

5 4 4 4 2 5

Note

We run into the same issue we saw earlier when we amalgamated
Latin squares! We know we can amalgamate to size 6 in order to
solve the issue, but P-Quasigroups have odd order. What about
amalgamating to size 7?
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P-Quasigroups and Hamiltonian Decompositions

1

2,3,45,6,7
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(Q,◦) 1 2 3 4 5 6 7

1 1 3 2 5 7 4 6

2 3 2 1 6 4 7 5

3 2 1 3 7 6 5 4

4 5 6 7 4 2 1 3

5 4 7 6 1 5 3 2

6 7 4 5 2 3 6 1

7 6 5 4 3 1 2 7

Note

We now have a P-Quasigroup of order 7, but does the graph still
contain Hamiltonian cycles?
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P-Quasigroups and Hamiltonian Decompositions
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(Q,◦) 1 2 3 4 5 6 7

1 1 3 2 5 7 4 6

2 3 2 1 6 4 7 5

3 2 1 3 7 6 5 4

4 5 6 7 4 2 1 3

5 4 7 6 1 5 3 2

6 7 4 5 2 3 6 1

7 6 5 4 3 1 2 7

Note

After disentangling the previous graph, we see this graph doesn’t
contain any Hamiltonian cycles. What causes this?
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P-Quasigroups and Hamiltonian Decompositions

Theorem

If a P-Quasigroup (Q, ·) of order n corresponds to a Hamiltonian
Decomposition (HD) of a complete graph (G ) of order n, then Q
doesn’t contain a subquasigroup.

Proof.

For the sake of contradiction, assume Q corresponds to a HD in
graph G and that Q contains a proper subquasigroup F . Since F
is closed under the same operation of Q, we know ∃x ∈ Q such
that x 6∈ F . Then ∀ a, b ∈ F we have that ab 6= x and we have a
closed path that doesn’t touch every vertex. Therefore Q doesn’t
correspond to a HD, a contradiction.
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P-Quasigroups and Hamiltonian Decompositions

1
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(Q,◦) 1 2 3 4 5 6 7

1 1 3 2 5 7 4 6

2 3 2 1 6 4 7 5

3 2 1 3 7 6 5 4

4 5 6 7 4 2 1 3

5 4 7 6 1 5 3 2

6 7 4 5 2 3 6 1

7 6 5 4 3 1 2 7

Note

Q has a subquasigroup F = {1, 2, 3}.
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P-Quasigroups and Hamiltonian Decompositions
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6
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(Q,◦) 1 2 3 4 5 6 7

1 1 3 5 6 4 7 2

2 5 2 4 7 6 3 1

3 6 1 3 5 7 2 4

4 7 6 2 4 1 5 3

5 2 7 1 3 5 4 6

6 3 4 7 1 2 6 5

7 4 5 6 2 3 1 7

Note

This P-Quasigroup doesn’t contain a subquasigroup but the graph
is not partitioned into Hamiltonian Cycles.
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Amalgamations, Latin Squares, and Hamiltonian
Decompositions

Current Work

What are all of the necessary and sufficient conditions such
that a P-Quasigroup corresponds to a Hamiltonian
decomposition?

Using P-Quasigroups, what is a general way of disentangling
an amalgamated graph that preserves the structure of the
original graph?
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Amalgamations, Latin Squares, and Hamiltonian
Decompositions

Thanks!

Kotzig,“Groupoids and Partitions of Complete Graphs.”
Combinatorial Structures and their Applications, University of
Calgary, Alta., Canada (1969)
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