Right generalized hoops, varieties of loops and partial algebras

Peter Jipsen

School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology (CECAT) Chapman University, Orange, California

ADAM 2016: Automated Deduction and its Applications to Mathematics

University of New Mexico, Albuquerque, August 5-7, 2016

Outline

- Quasigroups and groups
- Right-residuated binars
- Right-divisible residuated binars
- Right generalized hoops
- Finitely generated varieties of loops
- Partial algebras

Groups and quasigroups

Definition

A **quasigroup** $(A, \cdot, \backslash, /)$ is a set with 3 binary operations such that for all $x, y, z \in A$

$$xy = z \iff x = z/y \iff y = x \setminus z$$

i.e., one can solve all equations with no repeated variables

Quasigroups form a variety defined by the identities

$$(x/y)y = x = xy/y$$
 and $y(y \setminus x) = x = y \setminus yx$

An associative quasigroup is term-equivalent to a group:

$$1 = y/y$$
 and $x^{-1} = (y/y)/x$

Hint: xy/z = x((y/z)z)/z = (x(y/z))z/z = x(y/z)hence x = xy/y = x(y/y) and therefore $x \setminus x = y/y$

Residuated binars and semigroups

Definition

A *residuated binar* $(A, \leq, \cdot, \setminus, /)$ is a poset (A, \leq) with 3 binary operations such that for all $x, y, z \in A$

$$xy \le z \iff x \le z/y \iff y \le x \setminus z$$

i.e., one can solve simple inequalities

Residuated binars are defined (relative to posets) by the inequations

$$(x/y)y \le x \le xy/y$$
 and $y(y \setminus x) \le x \le y \setminus yx$

Farulewski 2005: The universal theory of residuated binars is **decidable** What about the universal theory of quasigroups or loops?

Definition

A residuated semigroup is an associative residuated binar

If the poset is an **antichain**, then any **residuated semigroup is a group**! \Rightarrow residuated semigroups are **generalizations of groups** (replace = by \leq)

Residuated lattices and GBL-algebras

Definition

A residuated lattice $(A, \land, \lor, \cdot, \backslash, /, 1)$ is a residuated ℓ -monoid

i.e., a lattice (A, $\wedge, \vee)$ and a residuated semigroup with unit

They are the algebraic semantics of **substructural logic**

The equational theory of residuated lattices is decidable

Definition

A residuated lattice is **divisible** if $x \le y \implies x = y(y \setminus x) = (x/y)y$

Also called a generalized Basic Logic algebra (GBL-algebra)

Open problem: Is the equational theory of GBL-algebras decidable?

GBL-algebras

- Have distributive lattice reducts [J. Tsinakis 2002]
- All finite GBL-algebras are commutative and integral [J. Montagna 2006]
- All finite GBL-algebras are poset products of Wajsberg chains
 - [J. Montagna 2009]

Some residuated meet-semilattices

Right-residuated binars

GBL-algebras fairly complicated, so consider simpler algebras

Definition

A *right-residuated binar* $(A, \leq, \cdot, /)$ is a poset (A, \leq) with 2 binary operations such that for all $x, y, z \in A$

$$xy \leq z \iff x \leq z/y$$

Therefore \cdot , / are order-preserving in the left argument:

Let $x \le y$. Then $yz \le yz \iff y \le yz/z \implies x \le yz/z \iff xz \le yz$ Similarly $x/z \le x/z \iff (x/z)z \le x \implies (x/z)z \le y \iff x/z \le y/z$

It would be nice if \leq is $\mbox{definable}$ from the algebraic operations

Right-divisible residuated binars

Theorem

The following are equivalent in any right-residuated binar.

(i) For all
$$x, y$$
 ($x \le y \iff \exists u(x = uy)$)

(ii) For all
$$x, y$$
 ($x \le y \iff x = (x/y)y$) (i.e. right divisibility).

(iii) The identities
$$(y/y)x = x$$
 and $(y/x)x = (x/y)y$ hold.

Proof: Easy using Prover9

Right-divisible unital residuated binar

The identities for divisibility are (y/y)x = x and (y/x)x = (x/y)y

So y/y is a left unit, and Prover9 shows $x \le y/y$

Hence y/y is the top element of the poset, denoted by 1

A right-divisible unital residuated binar is a residuated binar $(A, \leq, \cdot, 1, /)$ such that x/x = 1, 1x = x and (y/x)x = (x/y)y hold

The partial order is definable by $x \le y \iff x = (x/y)y$

Note that (x/y)y is a lower bound for any pair of elements x, y and we always have $1 \le 1/x$.

Theorem

In a right-divisible unital binar the partial order is down-directed and the identity 1/x = 1 holds. The order is also definable by $x \le y \iff y/x = 1$.

Right-divisible unital residuated binars

Theorem

 $(A, \cdot, 1, /)$ is a right-divisible unital residuated binar if and only if it satisfies the (quasi)identities x/x = 1 1x = x(y/x)x = (x/y)yx/y = 1 and $y/z = 1 \implies x/z = 1$ $z/xy = 1 \iff (z/y)/x = 1$

Note: $x \le y$ if and only if y/x = 1. This is a partial order:

- reflexive by x/x = 1
- antisymmetric since if x/y = 1 and y/x = 1 then x = 1x = (y/x)x = (x/y)y = 1y = y
- transitive by the implication above

Open problem: Can the quasiequations be replaced by identities?

Open problem: Is the (quasi)equational theory decidable?

The right hoop identity

Adding one more identity produces an interesting subvariety

In the arithmetic of real numbers (or in any field) the following equation is fundamental to the **simplification of nested fractions**:

$$\frac{\frac{x}{y}}{z} = \frac{1}{z} \cdot \frac{x}{y} = \frac{x}{zy}$$

In a right-residuated binar this is the *right hoop identity*:

$$(x/y)/z = x/zy$$

Consequences of the right hoop identity

Theorem

In a right divisible unital residuated binar the right hoop identity x/yz = (x/z)/y implies x(yz) = (xy)z, x1 = x and x/1 = x.

Proof.

$$\begin{aligned} x(yz) &= 1(x(yz)) \quad (\text{left unital}) \\ &= [(xy)z/(xy)z](x(yz)) \quad \text{since } 1 = x/x \\ &= [((xy)z/z)/xy](x(yz)) \quad (\text{right hoop id.}) \\ &= [(((xy)z/yz)/x](x(yz)) \quad (\text{right hoop id.}) \\ &= [((xy)z/x(yz)](x(yz)) \quad (\text{right hoop id.}) \\ &= [(xy)z/x(yz)](x(yz)) \quad (\text{right hoop id.}) \\ &= [x(yz)/(xy)z]((xy)z) \quad \text{since } (y/x)x = (x/y)y \\ &= \text{reverse steps to get } = (xy)z. \\ &\text{Now } x \leq 1 \text{ implies } x = (x/1)1, \text{ hence} \\ &x1 = ((x/1)1)1 = (x/1)(11) = (x/1)1 = x. \\ &\text{Finally } x/1 = (x/1)1 = (1/x)x = 1x = x. \end{aligned}$$

Right generalized hoops

Definitions

A right generalized hoop $(A, \cdot, 1, /)$ is defined by the identities

$$x/x = 1$$
, $1x = x$, $(x/y)y = (y/x)x$ and $x/(yz) = (x/z)/y$

Define the **term-operation** $x \wedge y = (x/y)y$ and

a binary relation
$$\leq$$
 by $x \leq y \iff x = x \land y$

The next theorem shows that \wedge is a **semilattice** operation

hence \leq is a **partial order** on *A*

Moreover, A is right-residuated with respect to this order

and the left-unit 1 is the top element

Properties of right generalized hoops

Theorem

Let A be a right generalized hoop. Then (i) the term $x \land y = (x/y)y$ is idempotent, commutative and associative, (ii) \leq is a partial order and \land is a meet operation with respect to \leq , (iii) $x \leq y \iff y/x = 1$ for all $x, y \in A$, (iv) $xy \leq z \iff x \leq z/y$ for all $x, y, z \in A$, and (v) $x \leq 1$ for all $x \in A$, *i.e.*, A is integral.

Proof.

Prover9

Right generalized hoops and polrims

There is a 4-element right generalized hoop s.t. \cdot is **not order-preserving** in the right argument

•	0	а	b	1	/	0	а	b	1
0	0	0	0	0	0	1	0	0	0
а	0	а	b	а	а	1	1	0	а
b	0	а	b	b	b	1	0	1	b
1	0	а	b	1	1	1	1	1	1

Partially ordered left-residuated integral monoids (or polrims for short) are left-residuated monoids such that the monoid operation is order-preserving in both arguments

They have been studied by van Alten [1998] and Blok, Raftery [1997]

Results on **polrims** do not automatically apply to right generalized hoops

Polrims are congruence distributive, but this is open for right generalized hoops Peter Jipsen — Chapman University — August 6, 2016

Generalized hoops

Definition

A generalized hoop is an algebra $(A,\cdot,1,\backslash,/)$ such that

- (A, ·, 1, /) is a right generalized hoop, (A, ·, 1, \) is a left generalized hoop (defined by the mirror-image identities)
- and both these algebras have the same meet operation, i. e., the identity (x/y)y = y(y\x) holds

Generalized hoops were first studied by Bosbach [1969]

The name *hoop* was introduced by Büchi and Owen [1975]

Generalized hoops are also called *pseudo hoops*

By the preceding theorem, they are left- and right-residuated

They are polrims, hence congruence distributive (van Alten [1998])

Multiplication distributes over \wedge

In a residuated binar, the residuation property implies that \cdot distributes over any existing joins in each argument. However, this is not true for meets. The following result was proved by **N. Galatos** for **GBL-algebras** but already holds for **generalized hoops**.

Theorem

In any generalized hoop $(x \wedge y)z = xz \wedge yz$ and $x(y \wedge z) = xy \wedge xz$.

Proof.

From $xz \le xz$ it follows that $x \le xz/z$, hence $xz \le (xz/z)z$.Likewise, from $xz/z \le xz/z$ we deduce $(xz/z)z \le xz$, therefore xz = (xz/z)z.Note that $(x \land y)z \le xz \land yz$ always holds since \cdot is order-preserving. Now $xz \land yz = (xz/yz)yz = ((xz/z)/y)yz$ (right hoop id.) = (y/((xz)/z))(xz/z)z by assoc. and divisibility = (y/((xz)/z))xz by the derived identity $\le (y/x)xz = (y \land x)z$ since $x \le (xz)/z$. The second identity is similar.

Not true for right generalized hoops

In the last step we made use of the implication $x \le y \Rightarrow z/y \le z/x$ which holds in all residuated binars.

The preceding result requires that \cdot is order-preserving in the right argument

Recall the 4-element right generalized hoop from earlier

•	0	а	b	1	/	0	а	b	1
0	0	0	0	0	0	1	0	0	0
а	0	а	b	а	а	1	1	0	а
b	0	а	b	b	b	1	0	1	b
1	0	а	b	1	1	1	1	1	1

 $(a \wedge b)a = (a/b)ba = 0ba = 0$ while $aa \wedge ba = a \wedge a = (a/a)a = 1a = a$.

1 = ((x/y)/(z/y))/(x/z) is equivalent to order-preserving on right

A variety $\mathscr V$ is a class of algebras determined by identities

Birkhoff 1935 (Tarski 1942): \mathscr{V} is a variety iff $\mathscr{V} = HSP(\mathscr{K})$ for some class \mathscr{K}

 ${\mathscr V}$ is a **finitely generated** variety if ${\mathscr K}$ is a finite class of finite algebras

Varieties of groups have been studied in detail in a monograph by Hanna Neumann [1967]

The varieties generated by the finite cyclic groups \mathbb{Z}_n are all distinct and, ordered by inclusion, they form a lattice isomorphic to the divisibility lattice of the natural numbers

However the dihedral group of size 8 and the quaternion group are nonisomorphic subdirectly irreducible groups with 8 elements that generate the same variety

All loops of size 4 or less are associative, hence are groups: $\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2$

For size 5 there are 5 nonassociative loops, denoted $5_1, 5_2, 5_3, 5_4, 5_5$

There are 107 nonassociative loops of size 6, denoted $6_1, 6_2, \ldots, 6_{107}$, with numbering taken from the library of small loops in the GAP loops package

Fact 1: A is subdirectly irreducible iff Con(A) has a unique atom

Fact 2: A variety is generated by its subdirectly irreducible members

 $6_1,6_2,\ldots,6_{107}$ are subdirectly irreducible, since the only subdirectly reducible loops of size ≤ 6 are $\mathbb{Z}_2\times\mathbb{Z}_2$ and \mathbb{Z}_6

The subdirectly irreducible groups of size ≤ 6 are $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5$ and S_3 Hence there are a total of 1+1+1+6+108=117 subdirectly irreducible loops of size up to 6 Peter Jipsen — Chapman University — August 6, 2016 Use the Universal Algebra Calculator (uacalc.org) and a Sage package to check $A \in HSP(B)$ for all distinct pairs of loops in this list

UACalc finds a minimal size generating set X for the loop A, then uses a subpower algorithm to calculate the free algebra in HSP(B) on n = |X| generators

Simultaneously attempts to extend a bijection between the n generators and the set X to a homomorphism from the free algebra to A.

If such a homomorphism is found, the relation holds, and if not, then the Universal Algebra Calculator reports the first equation that it found which holds in B but fails in A.

 $A \in HSP(B)$ is equivalent to $HSP(A) \subseteq HSP(B)$

 \Rightarrow HSP-poset of varieties generated by a subdirectly irreducible algebra

A minimal variety is a cover of the variety of one-element algebras

The nonassociative 5-element loops (omitting the identity 1):

5_1	2345	5 ₂	234	5 5 ₃	2345	54	234	5 5 ₅	2	34	5
2	1453	2	145	3 2	1453	2	145	3 2	3	15	4
3	4512	3	452	1 3	5124	3	521	4 3	4	51	2
4	5231	4	513	2 4	3512	4	352	1 4	5	23	1
5	3124	5	321	4 5	4231	5	413	2 5	1	42	3

 $\Rightarrow \mathbb{Z}_2$ is a subgroup of the first 4 loops, but not of the last one

Problem (open?): Axiomatize the 5 varieties generated by these loops

Find all subvarieties of these varieties (are there any generated by a larger loop?)

Two loops that generate comparable varieties (highlighting the differences)

61	2	3	4	5	6		62	2	3	4	5	6
2	1	4	3	6	5		2	1	4	3	6	5
3	4	5	6	1	2	/	3	4	5	6	1	2
4	3	6	5	2	1	\geq	4	3	6	5	2	1
5	6	1	2	4	3		5	6	2	1	3	4
6	5	2	1	3	4		6	5	1	2	4	3

Problem: Does $HSP(6_2)$ cover $HSP(6_1)$?

Are there nonisomorphic loops of size 7 that generate the same variety?

Partial algebras

math.chapman.edu/~jipsen/uajs