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Abstract

We present new techniques for the application of a Bayesian network learning framework to the problem of
classifying gene expression data. The focus on classification permits us to develop techniques that address in
several ways the complexities of learning Bayesian nets. Our classification model reduces the Bayesian network
learning problem to the problem of learning multiple subnetworks, each consisting of a class label node and its set
of parent genes. We argue that this classification model is more appropriate for the gene expression domain than
are other structurally similar Bayesian network classification models, such as Naive Bayes and Tree Augmented
Naive Bayes (TAN), because our model is consistent with prior domain experience suggesting that a relatively
small number of genes,taken in different combinations, is required to predict most clinical classes of interest.
Within this framework, we consider two different approaches to identifying parent sets which are supported by
the gene expression observations and any other currently available evidence. One approach employs a simple
greedy algorithm to search the universe of all genes; the second approach develops and applies a gene selection
algorithm whose results are incorporated as a prior to enable an exhaustive search for parent sets over a restricted
universe of genes. Two other significant contributions are the construction of classifiers from multiple, competing
Bayesian network hypotheses and algorithmic methods for normalizing and binning gene expression data in the
absence of prior expert knowledge. Our classifiers are developed under a cross validation regimen and then
validated on corresponding out-of-sample test sets. The classifiers attain a classification rate in excess of 90% on
out-of-sample test sets for two publicly available data sets. We present an extensive compilation of results reported
in the literature for other classification methods run against these same two data sets. Our results are comparable
to, or better than, any we have found reported for these two sets, when a train-test protocol as stringent as ours is
followed.

1. Introduction

The advent of high-density microarray technology for gene expression profiling on the genomic scale (Schena
et al., 1995; Lockhartet al., 1996; DeResiet al., 1997; Brown and Botstein, 1999) has opened new avenues of
research in data analysis and knowledge discovery. With the huge quantities of data now being generated, the
opportunities, as well as the challenges, appear almost limitless.

Recent literature explores several types of analyses of gene expression data:

• gene clustering, in which subsets of genes exhibiting similar expression patterns acrosscases(e.g., patients,
experimental conditions, points of a time-series) are identified (Eisenet al., 1998; Tavazoieet al., 1999;
Getzet al., 2000; Rigoutsoset al., 2000; Ben-Doret al., 2001);

• case clustering, in which sets of cases that exhibit similar gene expression patterns are identified (Alizadeh
et al., 2000; Getzet al., 2000; Rigoutsoset al., 2000; Bhattacharjeeet al., 2001);
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• case classification, in which the value of one or more attributes external to expression data (e.g., disease
subtype, treatment response, prognosis) is predicted from gene expression levels (Alonet al., 1999; Golub
et al., 1999; Ben-Doret al., 2000; Ben-Doret al., 2001; Khanet al., 2001; Ibrahimet al., 2002; Pomeroy
et al., 2002; van’t Veeret al., 2002); and

• gene network reconstruction, in which models of the gene regulatory system are built (Friedmanet al.,
1999; Murphy and Mian, 1999; Tobinet al., 1999; Friedmanet al., 2000; D’haeseleer, 2000; Woolf and
Wang, 2000; Pe’eret al., 2001). This objective can be viewed as subsuming the others, provided that the
external classification variables are included as nodes in the network.

Two factors influence a researcher’s focus: the questions of interest in a given setting and the nature of the
data sets available. Each of the goals sketched above is of great import, and, in fact, advances in one area
often contribute to advances in the others. For example, the identification of strong gene clusters, in addition to
indicating potentially significant biological relationships (e.g., co-regulation), in some instances may allow a set
of genes to be collapsed into a single abstract unit, thereby reducing problem dimensionality and allowing other
objectives to be more successfully addressed.

The data sets available may or may not include information to support classification. Training data that
is labeled—associating with each training case the class to which it belongs—supports statistical methods for
constructing a classifier. After training on a collection of labeled data, a classifier is constructed which, when
presented with new query cases, predicts a class label from gene expression levels and other possibly relevant
information which may be associated with a case. Without class-labeled data, genes and cases can be clustered
but not classified. Often, however, an effort is made after the fact to construe biological significance for the
clusters formed; the success of such clustering methods depends critically on there being a relationship between
the measure of similarity used to perform clustering and actual biological similarity. Techniques that attempt to
classify after training on labeled data are referred to assupervised, while those that do not utilize labels in training
(e.g., many techniques for gene and case clustering) are known asunsupervised.

Additionally, various amounts of prior information (e.g., expert knowledge, such as previously known or
suspected functional relationships) can be associated with gene expression data in an attempt to guide the anal-
ysis methods toward better results. Again, the amount of information available—and the degree of belief in this
information—determines what information can be utilized and how it can be utilized. Little is understood re-
garding how such information can best be represented and applied within a rigorous and consistent framework.
Such a framework will become of ever increasing importance as our biological knowledge base grows and as our
objectives increase in their scope and complexity.

Our group at the University of New Mexico (UNM) is fortunate to have unusually large microarray data sets,
with a substantial amount of associated clinical information. This clinical information can be utilized both as
additional input and to establish classification criteria. For example, clinical history might be available that allows
us to search for correlations between environmental factors and gene expression levels and, ultimately, biological
manifestation (e.g., disease). In the realm of classification, we expect to have several interesting class labels to
associate with our gene expression data, thus allowing us to explore a variety of supervised classification prob-
lems. Information that will be available to us includes disease absence or presence, disease type (e.g., leukemia
subtypes), response to treatment, relapse / nonrelapse information, and karyotype.

Consequently, we are motivated to concentrate on the development of methodologies that can exploit the un-
usually rich amount of information to be associated with our gene expression data and to develop techniques
particularly well suited to classification in this context. At the same time, we anticipate soon extending our ob-
jectives to include the construction of gene regulatory networks and wish also to be able to integrate in a rigorous
way external information, such as prior identification of key controlling genes, causal relationships between genes,
and known or hypothesized gene clusters. As is argued in the sections to follow, we believe that the mathemati-
cally grounded framework ofBayesian networks(Bayesian nets)—for example, Pearl (1988) and Heckermanet
al. (1995)—is uniquely suited to meet these objectives. Furthermore, the ability of Bayesian nets to integrate
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prior knowledge with observational evidence potentially provides researchers with the ability to build incremen-
tally solutions to problems of increasing scope and complexity. The primary contribution of the current work
is the development of a Bayesian network classification model that is customized for the characteristics of gene
expression data. In particular, we propose a Bayesian network structure whose relative simplicity allows the com-
putational effort to be focused on the very high dimensionality inherent in gene expression data. This strategy is
designed specifically to exploit certain domain-specific beliefs regarding gene and class label interactions. The
initial experimental results reported here bear out the validity of this approach. Further, by operating within the
Bayesian framework, the aforementioned capabilities—such as the ability to capture the inter-gene relationships
of regulatory networks—remain available to the model in the form of future enhancements.

The remainder of this paper is organized as follows. Section 2 briefly reviews some of the most successful
Bayesian network classification methods reported in the literature, details the key elements of our approach, and
offers a motivation for our approach in the context of clinical classification from gene expression data. Section 3
presents alternative search methodologies which we have utilized in Bayesian net classifier construction. Section
4 describes our experimental design and Section 5 presents a suite of results. Since we began developing and
implementing our techniques prior to the production of microarray data at UNM, the experimental results reported
here are against two publicly available Affymetrix data sets:4

• MIT leukemia data (Golubet al., 1999), for samples of two types, ALL and AML, of leukemia. This data set
is available athttp://www-genome.wi.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?
mode=view&paper_id=43.

• Princeton colon cancer data (Alonet al., 1999), for normal and tumor tissue samples (available at
http://microarray.princeton.edu/oncology/affydata/index.html).

For purposes of comparison, an appendix presents an extensive compilation of results reported in the literature for
these two datasets, generated using a broad range of classification methodologies.

At the time of this writing, some of the UNM data has begun to become available. As is reported in a series
of papers (Mosquera-Caroet al., 2003a; Mosquera-Caroet al., 2003b) our classification methodology continues
to perform well on these data sets as compared with other classification methods such as support vector machines
(Vapnik, 1998) and discriminant analysis (Bishop, 1996; Dudaet al., 2000), though we have discovered that
some clinical classification tasks (e.g., prognosis prediction) are inherently more difficult than are such tasks as
classification by disease subtype.

2. Bayesian Nets for the Classification of Gene Expression Data

A Bayesian net (Pearl, 1988; Heckermanet al., 1995) is a graph-based model for representing probabilistic
relationships between random variables. The random variables, which may, for example, represent gene expres-
sion levels, are modeled as graph nodes; probabilistic relationships are captured by directed edges between the
nodes and conditional probability distributions associated with the nodes. A Bayesian net asserts that each node
is statistically independent of all its nondescendants, once the values of its parents (immediate ancestors) in the
graph are known, i.e., a noden’s parents rendern and its nondescendantsconditionally independent. It follows
from these conditional independence assertions and the laws of probability that once a conditional distribution
is associated with each node, specifying the probability that the node assumes a given value conditioned on the
values assumed by the node’s parents, a joint distribution for the entire set of random variables is uniquely de-
termined. Algorithms and software packages (Lauritzen and Spiegelhalter, 1988; Jensenet al., 1990; Shafer and
Shenoy, 1990; Dawid, 1992; Dechter, 1996; Madsen and Jensen, 1999; Cozman, 2001; Jensen, 2001) have been

4These sets were produced using the analysis algorithms of the Affymetrix Microarray Suite (MAS) Version 4.0. Future data sets will be
based on the newer statistical algorithms provided by MAS Version 5.0. Seehttp://www.netaffx.com/index.affx.
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developed to help the analyst visualize and query Bayesian nets, making this a very convenient representational
tool.

While Bayesian nets have found much use as a representational tool for modeling known probabilistic rela-
tionships, from the perspective of the gene expression analysis tasks of current interest, their primary utility lies in
the fact that they also are a powerful learning paradigm. A body of work has evolved—see, for example, Buntine
(1991, 1996), Dawid and Lauritzen (1993), Friedman and Goldszmidt (1996a, 1996b), Heckermanet al. (1995),
Lam and Bacchus (1994), Pearl and Verma (1991), and Spiegelhalteret al. (1993)—in which statistical machine
learning techniques utilize a combination of data (observations) and prior domain knowledge to direct a search for
Bayesian nets which best explain the current state of knowledge embodied by these inputs. This makes Bayesian
nets an attractive framework for gene expression analysis, since they can methodically hypothesize and test gene
regulatory models, and other such relationships, using the rigorous methods of classical probability theory and
statistics.

Not surprisingly then, others—for example, Friedmanet al. (1999), Friedmanet al. (2000), and Pe’eret
al. (2001)—have successfully applied Bayesian nets to the domain of gene expression analysis. Approaches
reported in those works differ from those reported here both with respect to goals (e.g., the identification of gene
relationships versus our classification objectives) and with respect to the heuristics employed in an attempt to tame
the complexities of the problem. The three cited papers, for example, focus on reconstructing regulatory networks
by identifying network relationships most strongly supported by the data and develop heuristics for construction
of Bayesian nets that reveal such structure.

The construction of regulatory networks is an eventual goal of our work as well. Hence, the natural appli-
cability of Bayesian networks to regulatory network construction provides one of our motivations for tackling
with Bayesian networks the specific problem of immediate interest, clinical classification from gene expression
data. The literature contains several different Bayesian network classification models. Friedmanet al. (1997)
describe an approach, Tree Augmented Naive Bayes (TAN), to using Bayesian nets in classification as a way of
improving upon the classification approach known asNaive Bayes(Duda and Hart, 1973; Langleyet al., 1992).
Madden (2002) describes a heuristic for building a Markov blanket classifier (see, for example, Cheng and Greiner
(1999)) that focuses search on only those network nodes which are relevant to determining the class label’s prob-
ability distribution, thus making the search over the space of full, unconstrained Bayesian net classifiers more
computationally effective. Buntine (1992) develops classification trees in a Bayesian framework. Friedman and
Goldszmidt (1996b) and Chickeringet al. (1997) develop extensions to the Bayesian network model in which
local structure between variables can be captured and exploited by importing the structure of decision trees and
graphs. To our knowledge, however, these approaches have not been applied in the context of classification
problems of such high dimensionality as the problem of clinical classification from gene expression data.

The approach we have chosen to take, rather than starting with these most general and potentially complex
Bayesian models that have been developed as general-purpose classification methods, is to attempt to utilize a
modest amount of domain knowledge and develop a model that allows the computational effort to be focused
where that domain knowledge suggests the most benefit will result. Consequently, a primary contribution of the
current work is the development of a Bayesian network classification model that is customized for the character-
istics of gene expression data.

The most significant aspects of the customizations presented here involve approaches to cope with the very
high dimensionality (i.e, large number of genes, each of which assumes a wide range of values) inherent in gene
expression data by exploiting the belief that a relatively small number of genes,taken in different combinations,
is actually required to predict most clinical classes of interest. This prior belief regarding the nature of these gene
expression classification tasks has led us to a rather simple Bayesian network classification structure that, in its
initial tests, has performed quite well in comparison with other state-of-the-art learning schemes when applied to
several gene expression classification tasks. See the Appendix and (Mosquera-Caroet al., 2003; Kang and Atlas,
2003) for detailed comparisons.

In the following, we introduce our method as an alternative to the existing Bayesian net classifier models, and
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then briefly contrast the method with the structurally similar methods of Naive Bayes and TAN. We believe this
comparison will motivate our approach as a particularly effective, yet equally compact, alternative for problem
domains of extremely high dimensionality, such as gene expression data. The experimental results reported in
Section 5 bear out the merit of our approach in the gene expression domain. While it appears that the success of
our model structure stems from its focusing of the search on those dimensions of the model space from which the
greatest gain often is found, our classification model is nevertheless amenable to future extensions with techniques
that can utilize and/or discover additional local structure between the genes (Friedman and Goldzmidt, 1996b;
Chickeringet al., 1997) and to model averaging techniques (for example, Han and Carlin (2000) and Madigan
and York (1995)) for augmenting the distribution blending methods presented in Section 3.5.

The work presented here provides an alternative formulation and solution to the classification problem, a
formulation which appears to be particularly well suited to classification based on gene expression data. While
the focus of our current research is to extend our methods to other biologically important problems, such as the
construction of regulatory networks, in this article we do not consider problems beyond classification. In this
context, our work is most appropriately compared with other Bayesian network-based classification schemes,
such as Naive Bayes, TAN, and Markov blanket classifiers; with other related classification methods, such as
Bayesian classification trees; and, in general, with other classification methods, such as support vector machines
and boosting.

A Bayesian Net Classification Model for Gene Expression Data
We view each gene as a random variable, with the class label as an additional random variable. The genes

assume expression levels (which we shall bin into a small number of distinct values), and the label assumes values
such as “cancer” or “no-cancer,” type of cancer, or response to treatment.< e> denotes a vector of expression
levels assumed by the setgenesof all genes in a single case, andck denotes a value assumed by the class label.
The classification problem can be stated as learning the posterior conditional distribution of the class labelC,
conditioned on the gene expression levels, that is, the collection of conditional probabilities

Pr{C = ck | genes=< e>, current knowledge},

one for eachck and< e> combination.
Thecurrent knowledgeappearing in the conditioning event of the above probability generally includes both

a training set of cases and prior distributions over the random variables. These prior distributions may capture,
for example, prior beliefs regarding biological mechanisms. From this perspective, classification can be solved
as a problem of statistical density estimation. After viewing the training set—a sample of vectors of expression
values with an associated class label, drawn from the same distribution as the query cases we later will be asked
to classify—we apply laws of probability to update our priors and “learn” this common distribution. We then are
able to estimate the probability that queryq’s class labelq[C] is ck, given thatq’s expression vectorq[genes] is
< e>.

The main difficulty in this learning problem is that the huge dimensionality of< e > implies that any
realistically-sized sample will provide only extremely sparse coverage of the sample space. For example, even if
continuous expression levels are partitioned into 2 or 3 discrete bins, each of thenumbero f binsnumber o f genes

combinations of (binned) expression levels of the several thousand genes which appear in the training data typi-
cally appears only once, and combinations in the query cases typically have not appeared at all in the training data.
Consequently, estimation of the conditional distributions from simple joint frequencies observed in the sample is
impossible.

We consider Bayesian nets in which each gene is a node, and the class label is an additional node having no
children. Associated with each noden is a conditional distribution, a set ofθn=v,par=<p> ≡ Pr{n= v | Par(n) =<
p >}, specifying a conditional probability for each valuev of n, conditioned on each combination of values
< p > of the parents ofn. Note that a Bayesian net is a pair(G,Θ), whereG is a directed acyclic graph (DAG),
andΘ supplies a conditional probabilityθn=v,par=<p> for every node value, parent set-combination implied by
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G. Such a pair(G,Θ) compactly encodes a unique joint distribution over the nodes ofG; this joint distribution
Pr{genes=< e>,C = ck}, and any conditional distribution over the random variables represented by the nodes,
can be recovered via various known graph traversal algorithms (Lauritzen and Spiegelhalter, 1988; Jensenet al.,
1990; Shafer and Shenoy, 1990; Dawid, 1992; Dechter, 1996; Madsen and Jensen, 1999; Cozman, 2001; Jensen,
2001).

If we had a fixed Bayesian net that encoded the true distribution from which each case is drawn, we could
extract a classifier, namely the subgraph defined by the class label nodeC and its parent setPar(C), along with
the associated conditional distributionsθC=ck,par=<p> = Pr{C = ck | Par(C) =< p >}. Note that the conditional
independence assertion associated with (leaf) nodeC implies that the classification of caseq depends only on the
expression levels of the genes inPar(C), i.e., the distributionPr{q[C] | q[genes]} is identical to the distribution
Pr{q[C] | q[Par(C)]}. Note, in particular, that the classification does not depend on other aspects (other than the
parent set ofC) of the graph structure of the Bayesian net. Hence, once given a parent set, density estimation
becomes far more tractable. Rather than being concerned with combinations of all the genes, we are concerned
only with combinations of the parent set, and hence a training sample will generally provide much better coverage
of this reduced space.

Given a fixed Bayesian net of the form described, the classification rule it induces is simply a table associating
values< p > of the parent variables andC = ck of the class label with the network’s induced conditional proba-
bility θC=ck,par=<p>. However, we are not given the “true” Bayesian net, but, rather, a collection of training cases,
plus, possibly, some accumulation of prior knowledge, and our task is to build a classifier to fit these data. How
the classifier is constructed to fit the data is what primarily distinguishes methods, ultimately determining success
or failure. Two central aspects of the construction enabled by operating within the Bayesian framework are:

The use of a Bayesian metric in controlling the complexity of the classification rule. While it often is
observed that tables representing complex classification rules (complex conditions over many attributes)
overfit to the training data, our use of theBD metric (Heckermanet al. 1995) as described in Section 3.1
balances in a principled way the gain in adding new conditions with the complexity of the rule. MacKay
(1995) has formalized how a Bayesian metric inherently embodies Occam’s razor, favoring simple rules un-
less sufficient gain in information is realized by the addition of conditions. Hence, a stopping condition for
rule refinement is notad hoc, but part of the Bayesian metric evaluation.5 Further, when prior information
is available, it is incorporated naturally into the evaluation. It also is possible to incorporate into the model
local structure, as described in Friedman and Goldzmidt (1996b) and Chickeringet al. (1997). While this
has not been necessary for the classification tasks undertaken to date, future work will explore the utility of
this model extension in the gene expression domain.

The blending of distributions in a principled way. As is detailed in Section 4, we search a space of networks
for a collection of networks that score well under theBD metric. If we chose the single best scoring network
(the maximal posterior method) we would utilize as our posterior the single conditional distribution this
network induces. Our approximation of the posterior is more sophisticated in that it is capable of blending
the distributions of a possibly large number of networks. The blending is based directly on the mathematics
of the Bayesian analysis. In one of our two search methods, the blending is over the highesta posterior
probability networks of anexhaustivelysearched model space. In the second search method, a larger model
space is sampled by means of a greedy search. Future extensions to the sampling methods utilizing MCMC
averaging techniques (Han and Carlin, 2000; Madigan and York, 1995) would be quite natural.

Comparison With Existing Bayesian Net Classification Models

5Similarly, Buntine (1992) applies a Bayesian metric in connection with classification tree construction; alternatively, theMDL evaluation
criterion—which includes an explicit penalty term for model complexity—has been used quite successfully in Bayesian network learning
(Friedmanet al., 1997). In a separate work (Ding, 2003), we are comparing theMDL andBD metric in the gene expression domain.
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As was reviewed earlier in this section, several Bayesian network classification models have been proposed.
In terms of its simplicity of structure, our model most resembles Naive Bayes and its generalization known as
TAN. However, unlike these existing models, our model was conceived specifically to address key characteristics
of the gene expression application domain. In particular, our model is customized to application domains having
very high dimensionality (e.g., many genes), while at the same time exhibiting a dependency structure which
implies that a relatively small number of features,taken in different combinations of several features at a time,
is required to predict the class label of interest. These are characteristics consistent with prior experience with
gene expression data and which translate to dependency structures which Naive Bayes or TAN are incapable of
capturing. After contrasting our model with Naive Bayes and TAN, we briefly consider the potential for extending
our model with techniques that have proven successful in other application domains.

A Naive Bayesian classifier (Duda and Hart, 1973; Langleyet al., 1992) assumes independence of the features
(genes), given the value of the class label. Under this assumption, the conditional probabilityPr{q[C] | q[genes]}
can be computed from the product∏gi∈genesPr{q[gi ] | q[C]} of the marginal conditional probabilities. The Naive
Bayesian model is equivalent to a Bayesian net in which no edges exist between the genes, and in which an edge
exists from the class label into each gene. Friedmanet al. (1997) introduces Tree Augmented Naive Bayes (TAN),
which relaxes somewhat the independence assumption of a Naive Bayesian classifier by allowing each gene to
have an incoming edge from at most one other gene, while maintaining an edge from the class label into each
gene. This approach yields good improvements over Naive Bayesian classifiers in the experiments—which are
over application domains other than gene expression data—reported in Friedmanet al. (1997).

By contrast, our modeling assumes neither an edge between each gene and the class label, nor concerns itself
with gene interaction. Rather, we are able to ignore the issue of what edges may exist between the genes, and
computePr{q[C] | q[genes]} asPr{q[C] | q[Par(C)]}, an equivalence that is valid regardless of what edges exist
between the genes, provided only thatPar(C) is a set of genes sufficient to render the class label conditionally
independent of the remaining genes. This modeling is in response to a prior belief (supported by experimental
results reported here and in other gene expression analyses) that for the gene expression application domain, only
a small number of genes,taken in combination, is necessary to render the class label (practically) conditionally
independent of the remaining genes. This both makes learning parent setsPar(C) tractable, and generally allows
the quantityPr{q[C] | q[Par(C)]} to be well estimated from a training sample.

Each of these two simple models for Bayesian network classifiers—TAN and the model presented here—has
advantages over the other in certain situations. Specifically, because our parent sets, in principle, allow an arbi-
trary number of genes to interact in combination, any conditional distribution for the class label can be modeled
exactly. This is in contrast to TAN, where no term of the joint probability distribution may involve combinations
of more than two genes. (Terms of the joint distribution, expanded according the conditional independence as-
sertions implied by any TAN network, are of one of the following three forms:P{C}, P{g |C}, or P{g |C,g′}.)
Consequently, it is a simple matter to identify families of underlying distributions overn random variables (for any
n≥ 3) where every TAN network is necessarily asymptotically incorrect, while instances of our model are asymp-
totically correct. That is, for these families of distributions, as the sample grows to reflect the actual distribution,
any TAN network misclassifies some (possibly large) fraction of the query cases, whereas our model approaches
perfect classification when all the relevant variables are included in the parent set. In practice with gene expression
data, it has been our experience that, typically, combinations of between 2 and 5 binary-binned genes determine
the class label—that is, render the class label conditionally independent of the other genes—while combinations
of up to 5–7 binary-valued genes can reasonably be evaluated (for example, by theBD metric) and distributions
learned from data sets of the sizes with which we have been working.

TAN’s advantage may be seen when the sample is sparse relative to the number of genes necessary to render
the class label approximately conditionally independent of the other genes. In such a case, if the true distribution
obeys or approximates the conditional independence assertions of TAN, the TAN model is capable of learning the
correct distribution, and will converge to this distribution faster as a function of sample size than will our model.
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Our network blending (see Section 3.5) can somewhat mitigate the problem for some distributions, and, further,
in some instances it may be desirable to augment our model with local structure, allowing our density estimates
to converge to the true distribution even for sparse samples. (Note that the incorporation of local structure would
not address the inaccuracies of TAN when its conditional independence assertions are violated.)

One can envision a hybrid search, where theBD metric evaluates the fit of networks from both classification
models, choosing the best fitting model, or possibly even blending their distributions. In the limiting case, of
course, one could consider unconstrained and full Bayesian nets, using the Markov blankets they define as the
classifier (Cheng and Greiner, 1999; Madden, 2002). While this is the most general of the modeling approaches,
it is very much an open question (especially for applications with the characteristics described here) whether
or not the gain in modeling generality is actually an advantage, given the fact that the search over the more
constrained network space implied by our model structure (possibly combined with TAN structures) may focus
on that task—construction of good parent sets, expected to be of small cardinality—most likely to determine
classifier quality. Similarly, it is not clear whether, in the gene expression domain, the diversion of search time to
include consideration of local structure would generally be beneficial or not. As indicated, current gene expression
data sets do yield sufficient coverage of the small number (e.g., often less than 5) of binary-binned genes that our
experience indicates are required for the class label’s parent sets, and focusing search on the selection of such
subsets of genes often may be the most fruitful utilization of search time. Future experiments will explore these
issues further.

3. Additional Model Details

Our approach requires that we address the following issues, which are considered in this and the sections to
follow.

• What does it mean for a Bayesian net to be plausible?

• What do we do with multiple plausible Bayesian nets?

• How do we find (the parent setsPar(C) in) plausible Bayesian nets?

• How do we specify prior distributions?

• How do bin the continuous gene expression data?

• How do we preprocess (e.g., normalize) the gene expression data?

3.1. Scoring the Nets

The derivations in this and the following sections summarize and adapt to our context the work appearing in
Heckermanet. al. (1995), and we implicitly accept the set of assumptions made there.

Bayesian net structures are hypotheses. Each network structureG hypothesizes a collection of conditional
independence assertions. Were hypothesisG true with probability 1, the assertions it encodes, plus the priors and
observationsD, would induce via the laws of probability a posterior distributionf (Θ | G,D, prior) over the space
of conditional distributions forG, where eachΘ in the space contains conditional distributionsθn=v,par=<p> for
each noden in G. Of particular interest are expectations under this distribution of the form

E(θn=v,par=<p> | G,D, prior) =
∫

f (Θ | G,D, prior)×θn=v,par=<p>dΘ,

as this isPr{n = v | Par(n) =< p >,G,D, prior}. For classification, of course, the desired quantity is
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E(θC=ck,par=<p> | G,D, prior)
= Pr{C = ck | Par(C) =< p >,G,D, prior}
= Pr{C = ck | < e>,G,D, prior},

for any full expression vector< e> whose projection onto the parent setPar(C) is < p>. (Recall that class label
C is constrained to have no children in the network.)

In a learning context, we generally never obtain a single net structureG with certainty, but rather obtain a
collection of plausibleGi . Therefore, it is desirable to employ a probabilistically-based scoring function, both to
guide our exploration of nets, and to specify how to blend the distributions they induce. In a Bayesian framework,
one scores how well a hypothesisGi fits {D, prior} by computing

Pr{D | Gi , prior}=
∫

Pr{D | Θ}× f (Θ | Gi , prior)dΘ.

Then, from priorsP(Gi) over network structures, we can obtainPr{Gi | D, prior}. Such a scoring function is
known as aBayesian metric.

If we evaluated all possible structuresGi in this manner, the posterior distribution over joint distributionsΘ j

of the nodes in the networks is computed by

f (ΘJ | D, prior) = ∑
Gi

f (ΘJ | Gi ,D, prior)×Pr{Gi | D, prior}.

The classification probabilities

Pr{q[C] = ck | q[genes] =< e>,D, prior}

of interest then are the expectations

E(θq[C]=ck,q[genes]=<e> | D, prior) (1)

under this distribution and are obtained as a weighted sum of expectations, namely

∑
Gi

E(θq[C]=ck,par=<p> | Gi ,D, prior)×Pr{Gi | D, prior}, (2)

where each parent vector< p > is the projection of< e > onto the parent setpar of C in eachGi . That is,
the probability eachGi assigns toq[C] given q[genes] is weighted by the posteriorPr{Gi | D, prior}. In prin-
ciple, if we could evaluate this sum over allGi , we would have an exact posterior—and hence classifier—given
the current state of knowledge represented by our priors and the observed cases. The more peaked is the distri-
bution Pr{q[C] = ck | q[genes] =< e>,D, prior} about its mode classc∗, the higher is the probability that the
classification provided for queryq is correct.

3.2. Computational Considerations

Our task can be viewed as approximating expression (2) by finding a set of nets whose respective contributions
dominate (e.g., because they have relatively high posterior weightsPr{Gi | D, prior}) the evaluation of this
sum. Some empirical studies (Cooper and Herskovita, 1992; Heckermanet al., 1995) indicate that, in a variety
of contexts, only a relatively small number of the nets considered (e.g., often 1) have weights large enough
to materially influence the evaluation, since the weights drop off quickly as edges which represent necessary
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dependencies are omitted or edges which represent unnecessary dependencies are added. The experimental results
reported in Section 5 explore the effect of varying the number of nets used in this approximation. One important
conclusion we draw is that, in the context of high-dimensional gene expression data, the inclusion of more nets
than is typical appears to yield better results. Our experiments indicate this to be the case both because the
“polling” provided by a large number of nets is more accurate than that provided by a small number, and because
a large number of nets often provides better coverage of the expression value combinations observed in the query
cases (that is, the inclusion of more nets increases the chances that queryq’s binned expression levels projected
onto some included parent sets have been observed in the training sample).

On the surface, the evaluation of even a singleG seems a formidable task; both the expectations (1) and the
Bayesian metric require an integration over potentially arbitrary distributions forΘ. However, following the work
of Heckermanet al. (1995), we assume that a prior distribution is specified in terms of a complete net and is
Dirichlet. Intuitively, such a prior can be equated with an imaginary sample of joint observations of the random
variables that represents the analyst’s beliefs—both in terms of relative frequency counts (corresponding to prior
probabilities) and absolute size (corresponding to degree of belief)—prior to observing the sample cases. This
prior distribution on the nodes of a complete net induces on the nodes of any net a unique prior distribution
consistent with a modest set of assumptions. Then, for anyG and this induced prior distribution, plus a set of
observed cases, the calculations reduce to a closed form.

In particular, the closed form for the expectation is

E(θn=v,par=<p> | G,D, prior)

=
∫

f (Θ | G,D, prior)×θn=v,par=<p>dΘ

= (αpv+Npv)/(αp +Np), (3)

whereNp is the number of cases observed inD in which Par(n) =< p >; Npv is the number of cases observed in
D in whichPar(n) =< p> andn= v; andαp andαpv are derived from prior probabilities for these combinations
of values and, under our prior assignments, are extremely small (see Section 3.3 and Heckermanet al. (1995)).
The closed form for the Bayesian metric is

Pr{D | G, prior}

=
∫

Pr{D | Θ}× f (Θ | G, prior)dΘ

= ∏
n

∏
p

Γ(αp)
Γ(αp +Np)

∏
v

Γ(αpv+Npv)
Γ(αpv)

,

where

Γ is the Gamma function;

n ranges over the nodes inG;

p ranges over values< p > of Par(n) for the noden fixed by the outermost∏;

v ranges over the values of the noden fixed by the outermost∏; and

αp,αpv,Np,Npv are as defined above, with respect to the noden fixed by the outermost∏.
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The above expression forPr{D | G, prior}, which assumes a Dirichlet prior, is known as theBD (Bayesian-
Dirichlet) metric. (Technically, theBD metric is more commonly defined in terms of the joint posterior probability
Pr{D, G | prior}, which is simply the above expression multiplied by the network priorP(G).)

Further simplifying the computational task is the observation that the scoring function is decomposable; it can
be expressed as the product of scores over the nodes, where a node’s score depends only on its parent set. In our
restricted context of classification, this means we can ignore the score of every node except the label, effectively
using theBD metric as an evaluator of potential parent sets. More precisely, theBD evaluation of a parent set
Par(C) is nodeC’s contribution to theBD score ofanyBayesian net containing this subgraph. In particular (in
contrast to a Naive Bayesian classifier, in which there must be no edges between genes), the decomposability of
theBD score allows the hypothesis represented by parent setPar(C) to be evaluated in isolation of the question of
what other edges may exist in the network. Similarly, since the expectation of interest depends only on frequencies
of nodeC and of its parent set, the remainder of the network can be ignored in our context.

3.3. Specification of Priors

In each of the experiments reported, we choose an uninformed prior over the distributions that can be as-
sociated with any given network structure. In particular, we employ an extremely small equivalent sample size
(Heckermanet al., 1995) of 0.001, and assign each joint combination of variable values equal probability. There
then is a simple translation of this prior to priors over the possible conditional distributions in any given network
structure, yielding theαpv andαp values appearing in expression (3). Our choice of prior minimizes its impact on
posterior calculations, allowing the data to dominate.

The network structuresG are assigned a uniform prior also, but after various prunings (see Section 4) have
been imposed. In the context of our minimal-knowledge greedy algorithm, a prior which assigns equal probability
to each DAG in which the class label hasM or fewer parents (and zero probability to all other DAGs) is used, for
some specified maximum cardinality choiceM . In the context of the external gene selection algorithms, a prior
which assigns equal probability to each DAG in which the class label hasM or fewer parents, each of which is a
member of the selected set of genes (and zero probability to all other DAGs), is used.

Current research is considering how various types of expert biological information can be incorporated into
priors and utilized by our methods. This is an area we believe to be critically important to future advances.

3.4. Binning Issues

Though Bayesian nets can be utilized to represent continuous distributions, most Bayesian net procedures
assume that the random variables take on only a small number (e.g., 2 or 3) of discrete values. This requires
procedures to discretize (i.e., collapse) typically continuous gene expression values. We describe in Section 4
the two relatively simple approaches we have used with our current search procedures. The first method bins
expression values into “low,” “medium,” and “high” based on the distance of a particular expression value from
the gene’s mean expression value. The second method is more closely coupled with our external gene selection
method and produces a binary binning based on a maximal “point of separation” in the training data between the
classes.

While these simple methods have produced good classification results, we point out here that there are many
interesting avenues of research in which the binning procedure is more integrated with the search for good
Bayesian nets, and candidate binnings are evaluated in the same framework as are other aspects of the nets (see,
for example, Fayyad (1993) and Friedman and Goldszmidt (1996a)). We consider this to be an important avenue
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for future research.

3.5. A Multi-Parent-Set Classifier

We have indicated how a parent set of the class label corresponds to the relevant (for classification) subgraph of
a Bayesian net and, with expression (2), how the class distributions associated with each parent set in a collection
of parent sets are combined by means of theBD scoring metric. Our method then is to build a classifier from some
numberP S of parent sets that score high under theBD metric. That is, we perform some form of search (see the
next section), selecting theP S top scoring parent sets, and these are the sets whose distributions contribute the
terms for our approximation of the expression (2). We see from expression (3) that the individual probabilities
contributed are simply of the form(αpv+Npv)/(αp +Np).

An important phenomenon results from the sparseness of the data, especially in the high dimensional space
of microarray data. It is possible that the combinations of values appearing inq[pari ] for some of the parent sets
pari are not seen in training or seen only minimally (for example, one or two occurrences). The distributions
yielded by such nets will then reflect only the prior, which (as we shall generally assume) is uninformed, yielding
equal class probabilities, or will be determined by the handful of training cases with thispari combination. It is
important to note that this is the correct posterior distribution under the hypothesis of this parent set and given
current knowledge and should not be interpreted as a “weak” or “missing” distribution simply because it is based
on a small or empty sample. The strength of this distribution as it contributes to (2) is determined solely by theBD
fit. A dispersed distribution (e.g., uniform) learned from a small sample and a peaked distribution learned from
a large sample contribute their expectation in the same way, their relative contributions to the posterior affected
only by theirBD fit.6

Is it appropriate to treat the sparse-sample based distributions on equal footing with large-sample based distri-
butions? We consider the variance of the distribution. Variance reflects, among other characteristics, how much
the distribution may be expected to change if more data is observed. In the case of high variance, it is not unlikely
that new data will shift the distribution dramatically.

The variance of the posteriorPr{C = ck|Par(C) =< p >,G,D, prior} of a binary-valued class label, being a
Dirichlet distribution, is

(Pr{C = ck|Par(C) =< p >}× (1−Pr{C = ck|Par(C) =< p >}))/(αp +Np +1).

So, an interpretation is, when the “sample size”Np is small, or when the probability is spread evenly across
the classes, variance is relatively high, and the distribution is possibly “unstable” in the presence of additional
observations. While the posterior distribution it yields is undeniable given the current state of knowledge, it is not
unlikely to change dramatically given new data. In this sense, it is less “reliable”.

We have experimented with two heuristics for adjusting a parent set’s contribution to the evaluation of a query
case in order to address the issue of the variance of the distribution. Note that unlike a set’sBD score, which
is used in parent set selection as well as for a weight in the posterior computation (2), this adjustment isquery
specific, reflecting the amount of variancevar(q) in the distribution of a particular queryq’s (unknown) label. The
two adjustments considered are:

• When evaluating a queryq, set to zero the weight in (2) of any parent setpari such thatq[pari ] has no
occurrences in the training sample. Then renormalize the remainingBD weights to sum to 1.

• Generalize the above so that 1/var(q) is the adjustment factor of each setpari , and then renormalize
BD/var(q).

6Though peaked distributions which fit a large sample well tend to have better scores than dispersed distributions that fit small samples
well.
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A variant of the second adjustment strategy, in which an adjustment factor of zero is used whenNp is zero,
improved performance in cross validation experiments on the gene data training sets by preventing a large number
of parent sets, each yielding few observations on a query case, from unduly influencing the classification. This
method is what is used in the experiments reported in this paper. More sophisticated adjustments tied to Bayes
risk are the subject of current research.

4. Search

The research presented in the following sections explores two alternative methods of building the type of
Bayesian classifier described in the previous sections.

The first method utilizes minimal prior knowledge regarding good parent sets for the class label and, within
the Bayesian net framework, performs a simple greedy search over the entire set of genes to constructP S good
parent sets. The second method utilizes gene selection external to the Bayesian net framework to produce a small
setSof “good genes” (like theinformative genesof Ben-Doret al. (2000) and Ben-Doret al. (2001)), and then,
within the Bayesian net framework, performs an exhaustive search of this set to find the bestP S subsets ofS
(each subset up to a specified maximum cardinalityM ).

4.1. Minimal-Knowledge Greedy Building Methods

This family of methods ignores essentially all prior knowledge, including, in the experiments reported here,
prior knowledge of which genes are “control” or “housekeeping” genes, which expression values are deemed
reliable (in particular, as indicated by theP, M, andA values in Affymetrix data), and biologically known rela-
tionships between genes. We do utilize a biological “prior” that deems it likely that only a small number of genes
is necessary to classify the cases, that is, that only a small number of genes is required to render the class label
conditionally independent of the remaining genes. This biological prior is necessary for any frequency-based
classification method to go forward, due to sample size issues, and makes both the greedy and exhaustive searches
computationally feasible. This prior is in fact supported by experiments with the current data sets in which
performance—bothBD and our actual classification rates—begins to diminish after a cardinality of roughly> 6.
This is not quite conclusive proof, as improvement might follow disimprovement (e.g., as is exploited by simu-
lated annealing), but this seems unlikely, especially in light of sample size issues (e.g., statistically meaningful
numbers of observations of any combination of more than six gene’s expression levels is unlikely).

The version of greedy employed here proceeds in the following manner. On a designated training set (see
details of the methodology in Section 5.1):

1. Use some algorithm to bin the gene expression data.

2. Determine a numberK of seeds, a numberP S of parent sets, and a maximum cardinalityM for the parent
sets.

3. SelectK seed genes, based on some “goodness” criterion.

4. For each seed genegseed,

a. Initialize the parent set to the singleton set{gseed}. Consider the parent set{gseed} for inclusion in the
list of the bestP S parent sets evaluated so far.

b. Iteratively build the set to cardinalityM by adding one geneg at a time, chosen from the universe of
all genes to maximize theBD score of{current set} ∪ {g}. Consider each such parent set{current
set} ∪ {g} for inclusion in the list of the bestP S parent sets evaluated so far, resulting in the inclusion
of zero or more of these parent sets{current set} ∪ {g}. The single best of these extensions to the
previous{current set} then becomes the new current parent set and is similarly extended at the next
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iteration. Continue iterating until parent sets of cardinalityM genes are evaluated and considered for
inclusion in the list of the bestP S parent sets evaluated so far.

5. Construct aP S -parent-set Bayesian net classifier from the list of selected parent sets (each of cardinality
between 1 andM ) as described in Section 3.5.

In Section 5.1, we specify the binning and seed selection methods used in the experiments reported in this paper.
Note that every set the greedy method evaluates, starting from each of its seeds, is a candidate for ultimate

selection as one of theP S parent sets—even those sets of smaller than the maximum cardinalityM . In particular,
at every iteration, in going from cardinalityc to c+1, every extension of the best parent set of cardinalityc gets
a chance to be on the list of top parent sets. Consequently, some seeds may contribute more than one parent set;
others may not contribute any parent sets at all.

This simple greedy method was implemented initially as a proof of concept; we suspected it would have
many flaws and that we would soon replace it with more sophisticated search methods. However, it performed
surprisingly well, as is attested to by both theBD scores of the best sets it finds and by the performance on our
cross validation tests of the classifiers it produced (see the results in Section 5). This is not to say that avenues of
potential improvements are not apparent. For example, there often is a great deal of overlap in the membership of
the parent sets produced. Two or three genes tend to be present in a large fraction of theP S parent sets selected.
This is not necessarily a problem, but it might indicate that a nonrepresentative subspace of the set of all possible
parent sets is being searched. As is discussed in Sections 5.2 and 5.4, this effect could explain why a relatively
small number of high quality parent sets are found by the algorithm.

An alternative heuristic search would mimic classical integral approximation techniques (Gander and Gautschi,
2000). In a similar learning context (Helman and Bhangoo, 1997; Helman and Gore, 1998), we employ with some
success a Monte Carlo sampling method to approximate an integral representing Bayes risk. Such methods are
designed to approximate an integral by sampling from regions in proportion to the amount of density contained in
the region and may be adaptable to the current approximation problem. Additionally, we will consider utilizing
the more sophisticated MCMC averaging techniques (Han and Carlin, 2000; Madigan and York, 1995) in this
context.

4.2. External Gene Selection Methods

A second family of methods utilizes gene selection algorithms that have been developed in other contexts. This
is both a promising approach to the classification problem and is indicative of how the Bayesian framework can
be used to incorporate expert prior knowledge of a variety of types. As is the case with the minimal-knowledge
greedy methods, we currently do not utilize prior domain knowledge about the genes; such information may,
however, be discovered by our external gene selection and normalization methods and then incorporated into the
framework in the form of gene selections, normalization, and binning.

The objective of external gene selection is to identify a small set of genes from which good parent sets can be
constructed within a Bayesian net search procedure. By severely limitinga priori the size of the universe of genes
to be searched for good parent sets and the maximum cardinality of the resulting parent sets, an exhaustive search
for theP S bestparent sets (under theBD metric) can feasibly be performed. Thus, whereas the greedy method
described in the previous section heuristically buildsP S goodsubsets of the universe of all genes, the external
method finds theP S bestsubsets of an intelligently restricted universe of genes.

We are studying a number of different methods for selecting genes whose expression values are strong indica-
tors of a case’s classification. The results reported in this paper are based on a strategy that computes aseparation
quality value for each gene and orders the genes accordingly. We then, for example, can select the genes that are
the best separators.

Our separation measure is similar to Ben-Dor’sTNoMscore, described in Ben-Doret al. (2000) and Ben-Dor
et al. (2001). Both methods consider partitionings of the cases into two sets; the difference between the two
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methods is in how the partitions are evaluated. WhereTNoM compares thenumberof cases from each class in
each of the two partitions, we account for the sizes of the two classes by comparing thefraction of cases from
each class. The two methods can result in different gene selections, and we claim that the relative score is well
justified when, for example, the underlying classes differ significantly in size. We have experimented with both
measures and don’t find either to be uniformly better than the other. Consequently, for a given application, we
currently allow experimental cross validation results against a training set to guide our choice of measure.

Let E1,E2, ...,En be the expression values for a given gene across then cases of a training set, and letL1,L2...Ln

be the corresponding class labels. Without loss of generality, we assume that the expression values are ordered
E1 ≤ E2 ≤ ... ≤ En so thatLi is the class label of theith smallest expression value. The separation quality value
of a gene is intended to indicate to what extent identical class labels are grouped together inL1,L2, ...,Ln as a
consequence of the ordering of theEi values. Separation is considered to be perfect, for example, if theLi labels
are completely “sorted”.

Under the assumption that there are exactly two class labels,A and B, we compute separation quality as
follows. Let Acount(i) be the number ofA labels inL1,L2...,Li , and letBcount(i) be the number ofB labels in
L1,L2...,Li . For each position 0≤ i ≤ n, we can quantify the relative separation of the class labels if we were to
split into the two setsL1,L2, ...,Li andLi+1,Li+2, ...,Ln:

Separation(i) =
∣∣∣∣ Acount(i)
Acount(n)

− Bcount(i)
Bcount(n)

∣∣∣∣
We then define separation quality to be the best of these values:

SeparationQuality= max
1≤i≤n

Separation(i)

Genes can be ordered by theirSeparationQualityvalues, so we can talk about thek best or thek worst separators.
The computed values have the following properties.

• Acount(0) = Bcount(0) = 0

• Bcount(i) = i − Acount(i), for 0≤ i ≤ n

• Separation(0) = Separation(n) = 0

• SeparationQuality= 1 indicates perfect separation.

• SeparationQualitynecessarily is> 0, sinceSeparation(1) is 1/Acount(n) or 1/Bcount(n), depending on
whetherL1 is A or B, and we take the maximum of theSeparationvalues.

• We get the sameSeparationQualityvalue if we defineAcount andBcount in terms ofLi+1,Li+2, ...,Ln

instead ofL1,L2...,Li .

We note that if the gene expression values are not distinct, then the ordering ofEi values is not unique, and the
computed separation quality value will depend on the procedure used to break ties. We are considering a number
of ways to pin down the ordering in the case of ties—specifically, to determine an appropriate separation quality
value. We currently break these ties arbitrarily.

In addition to computing a separation quality value, we can use the same computation to propose a binning of
each gene’s expression values into two bins. Letmaxbe thei value that maximizesSeparation(i), and compute

BinValue=
Emax+Emax+1

2
,
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which is a gene expression value that lies between the separatedEi values in the best separation. The computed
BinValuecan be used as a boundary between bins.

We note that the maximizingi value is not necessarily unique, even if theEi values are distinct; we cur-
rently break these ties arbitrarily. We also note thatLmax andLmax+1 necessarily are different labels; otherwise,
SeparationQualitycould be increased by increasing or decreasingmaxby 1.

This binning strategy is motivated by a prior belief, shared by many domain experts, that a gene is well-
modeled as a binary switch. This belief appears to be supported by preliminary analyses against the data sets
considered here, as well as against additional data sets (Mosquera-Caroet al., 2003a; Mosquera-Caroet al.,
2003b) reported elsewhere. The method whose analyses are for setting bin boundaries described above is quite
natural, as it selects a point yielding bins that maximally distinguish the classes (with respect to SeparationQual-
ity), and thus is highly analogous to the boundaries suggested by Ben-Dor’sTNOM-based method. The binning
procedure also is similar to the initial binning policy of the procedures described in Fayyad (1993) and Friedman
and Goldszmidt (1996a)—though they consider a variety of policy evaluation metrics—in which an initial bi-
nary binning is heuristically refined into a finer-grained discretization. We have conducted extensive experiments
(Ding, 2003) using each of theMDL andBD evaluation criteria to determine stopping conditions for refinement,
and, for a large fraction of genes (i.e.,> 90% of the genes on the Princeton data set), refinement of the initial
binary binning is not supported by these measures. Section 5.1 describes an alternative tertiary binning strategy
we considered in the context of the uninformed greedy method.

4.3 Preprocessing the Data (Normalization)

One of the advantages of the Bayesian approach is that it provides a natural mechanism to account for special
domain knowledge in the construction of a classifier. Nevertheless, in our first round of experiments, we are
focusing on the gene expression data, making use of minimal prior knowledge. One of the issues we are addressing
in this simplified context is the preprocessing (normalization) of gene expression data before the application of
our classification procedures. Because of variabilities in gene expression measurements and uncertainties about
the processing done by the tools used to generate the data,7 we decided to include the effect of normalization
as part of our studies. Specifically, for each data set we study, we attempt to learn via cross validation the most
effective of a family of normalization parameters.

Our approach to normalization is to consider, for each case, the average expression value over some designated
set of genes, and to scale each case so that this average value is the same for all cases. This approach allows our
analysis to concentrate on relative gene expression values within a case by standardizing a reference point between
cases. For example, if the expression value within a case of certain genesgi relative to the expression value of
some reference point geneg is an effective class discriminator, then it suffices simply to consider thesegi values,
provided cases have first been normalized to a commong value. The key difference between the normalization
strategies we considered is the choice of the reference point geneg, or, more generally, the choice of a setR of
reference point genes. While selecting an appropriate setRcould provide a good opportunity to take advantage of
special knowledge of the underlying domain, consistent with our desire to focus first on raw data in the absence of
prior knowledge, we use here a simple selection method based on theSeparationQualityvalue already discussed.
In particular, we setR to be thek worstseparators—that is, genes with the lowestSeparationQualityvalues—for
some numberk. The motivation for this choice ofR is that, as our experiments indicate, a suitable reference point
can be found as the average of the expression values of genes that are independent of the class label for which
we are trying to develop a classifier. Further, normalizing with respect to such genes will not discard information
that might be valuable in class discrimination. Choosing thek worst separators for normalization is a heuristic for
identifying genes likely to be independent of the class label. While many factors (e.g., noise) could mislead this
measure into selecting inappropriate reference point genes, it seems reasonable that, in the absence of additional
information, genes that appear in the data to be bad separators are good candidates to serve as reference point

7Affymetrix Microarray Suite (MAS) Version 4.0.
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genes. Indeed, our experimental results support this as a reasonable normalization strategy.
In summary, the normalization algorithm we used is as follows.

1. LetRconsist of thek worst separator genes, as described above.

2. LetA represent the target average value for the genes inR; A may be chosen arbitrarily, since its value does
not affect any aspects of the computation.

3. For each caseC,

a. Compute the average value,AveR,C, of the expression values in caseC for the genes inR.

b. Multiply everyexpression value of caseC by the scaling factorA/AveR,C.

We tookk to be a parameter to be learned in the course of training and experimented with several different values
accordingly. The results of these experiments against training data are reported in Section 5.3; Section 5.4 reports
how well a choice ofk made against training data generalizes to an out-of-sample test set.

5. Results

The MIT leukemia data (Golubet al., 1999) and the Princeton colon cancer data (Alonet al., 1999) are
considered. The MIT data consists of 7,129 gene expression values per case. The Princeton data is provided in a
heavily pruned form, consisting of only 2,000 genes per case.

5.1. Experimental Methodology

In order to avoid any possibility of overfitting our results to specific data sets, we set aside from each data set
a fraction of cases, forming atest set. For the MIT data set, a partition into 38 training cases and 34 test cases
(our set aside, out-of-sample cases) is provided on the MIT Web site. The Princeton Web site provides a single
data set of 62 cases. We randomly partitioned this data set into 38 training cases and 24 set aside test cases. The
test sets were not examinedat all in the course of algorithm development, nor to establish parameter settings, and
were considered only after our best methods, along with their parameter settings, were identified through a cross
validation methodology (detailed below) on the training sets. Results of our best method—as identified against
the training sets only—run against the set aside test sets are reported in Section 5.4.

We now describe the cross validation methodology that was applied to the 38-case training sets in order to
develop our methods and to indicate which techniques would be the most promising to pursue. In particular,
our initial evaluation of a classifier building method under development employed “leave one out” (LOO) cross
validation. On each experiment, a method would train on 37 cases, building a classifier to be used to classify the
single left out query case; the build/evaluate cycle is repeated 38 times, once for each “fold” created by leaving
out of the training a different query case.

Care must be taken during development that the methods used in the classifier construction process not exploit
anyknowledge of the left out query case it is to be evaluated on. That is, any method applied to build the classifier
must be applicable when we turn attention to the set aside test set (or to an actual set of query cases for which a
classification is desired), at which time knowledge of the query’s class label, of course, is unavailable.

This requirement implies, for example:

• Gene selection by external means must be repeated on each of the 38 folds, without being exposed to the
left out case to be used as a query in the evaluation.

• Similarly, if normalization or binning is to use label knowledge, it must not be exposed to the left out case,
and hence must be repeated for each fold. If, however, a binning algorithm does not use knowledge of labels

17



(as is the case of the algorithm used in connection with the greedy construction), it may inspect the entire
training set, since in an actual classification application, the binning algorithm could inspect the non-label
fields (genes) of the cases to be classified at the time these cases are presented for analysis.

Greedy Parent Set Construction

The LOO cross validation setup for the greedy method takes the following form:

1. LetT represent the full training set (e.g., of 38 cases).

2. Bin T, without using label knowledge.

3. For eachqi ∈ T, define foldFi = (T−{qi}),

a. SelectK seeds againstFi .

b. Use the greedy method to constructP S good sets (underBD) up to cardinalityM againstFi , starting
from each seed.

c. Compute the variance in each set’s induced distribution ofqi ’s unknown label, and adjust theBD score
of each set to form aP S -set classifier.

d. Classifyqi [C] as the most likely value, givenqi [genes] under the classifier’s distribution.

e. Compute the error and uncertainty in the classification for foldFi .

4. Report the average error and uncertainty rates across the folds.

The information reported in Step 4 is derived from the constructed classifiers’ induced distributions. In particular,
the classifier constructed for each foldFi specifies a conditional posterior distributionPr{q[C] = ck | q[genes] =<
e >} for a query case’s class label. In the current experiments, the class label is binary, andq is classified as
belonging to the class with higher posterior; if value = 0.5, no classification is possible. An error occurs ifq[C] is
the lower probability class. The TER (total error rate) values reported in Tables 3–6 are based on the combined
number of misclassifications and no classifications.

Uncertainty is a measure of the strength of a classification. IfPr{q[C] = ck | q[genes] =< e>} is near 1.0, the
classification is strong, whereas if it is near 0.5, it is weak. On each fold, we compute the “probability of error”
as well as the 0/1 misclassification indicator. In particular, probability of error is given by (1.0− (the probability
the classifier assigns to the true classq[C]) ). The APE (average probability of error) values reported in Tables
3–6 are averages over this quantity.

For the experiments reported in Section 5.2 and 5.4, we utilized the following relatively simple binning (Step
2) and seed selection (Step 3.a) techniques.

Binning: As is indicated in Section 3.1, practical Bayesian net methods require a discretization of the ex-
pression values. Following many gene expression researchers, we partition values into three ranges: “under-”,
“average-”, and “over-” expressed. Our partitioning method for greedy creates a tertiary binning for each geneg
as

(−∞,(mean(g)−nlow×σ(g)),
[mean(g)−nlow×σ(g),mean(g)+nhigh×σ(g)],

(mean(g)+nhigh×σ(g),∞),

where the meanmean(g) and standard deviationσ(g) of each gene’sg expression values are computed over all
cases. The choices ofnlow andnhigh are made through experimentation on the training data. Once selected, these
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are fixed and used without modification on the set aside test data; otherwise, we would run the risk of overfitting
to the data. For the MIT data, settingnlow = nhigh = 1.0 worked well, and there was little sensitivity in the cross
validation results. In the Princeton data, there was far more sensitivity in the cross validation, and a limited
search arrived at the settingsnlow = 1.25 andnhigh = 0.4. Subsequent analysis indicates that a more extensive
search for these parameter settings often results in overfitting to the data. In fact, it appears that the tertiary
binning considered here is generally inferior to the binary binning described in Section 4.2 in conjunction with
the external gene selection methods.

Seed selection: Singleton parent sets{g} are formed for each geneg and theBD score obtained. The genes
corresponding to theK highest scoring parent sets are used as seeds.

External Gene Selection Plus Exhaustive Parent Set Construction

The LOO cross validation setup for external gene selection takes the following form:

1. LetT represent the full training set (e.g., of 38 cases).

2. For each fold defined byFi = (T−{qi}),

a. Use an external method againstFi to normalize expression values and select a setSof N genes.

b. Bin Fi , possibly using information returned by gene selection.

c. Exhaustively search the setS for the bestP S subsets (of cardinality up toM ) under theBD scoring
metric.

d. Compute the variance in each set’s induced distribution ofqi ’s unknown label, and adjust theBD score
of each set to form aP S -set classifier.

e. Classifyqi [C] as the most likely value, givenqi [genes] under the classifier’s distribution.

f. Compute the error and uncertainty in the classification for foldFi .

3. Report the average error and uncertainty rates across the folds.

In our experiments, we employed the external gene selection, normalization, and binning methods described
in Section 4.2. In particular, the external gene selection algorithm is invoked on each fold with the following
effect:

• The algorithm normalizes the cases inFi using thek genes with the lowestSeparationQualityas controls.

• The algorithm returns theN genes with the highestSeparationQuality.

• The algorithm returns a binary bin boundary for each selected gene, corresponding to where the maximum
separation value is obtained.

Once results of the external gene selection algorithm are returned for a fold, an exhaustive search is performed
(on a normalized and binnedFi) for the bestP S parent sets, from which the Bayesian net classifier is formed.

Note that the instantiation of the steps of either methodology with specific algorithms defines a classifier
building method. When run on a specific training set (or fold of a training set), it yields aP S -set classifier,
which in turn yields a posterior class distribution. This distribution can then be used to classify query cases with
unknown labels, assuming that the query cases are drawn from the same distribution which underlies the training
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set. We emphasize that it is the building method, not the particular classifiers built on a run against a training set
(or fold of a training set), that is being assessed.

5.2. Cross Validation Results with Greedy

In tests of the greedy method, we studied the effects of varying the numberP S of sets used in the classifier.
We held fixed atM = 5 the maximum cardinality and, due to computational considerations, the number of seeds
at K = 60.

The following two tables summarize, respectively, results with the Princeton and MIT training sets. Each row
of the tables summarizes, for a fixedP S , the LOO cross validation test results for the 38 cases of the respective
training set. The table entriesMIS, ERR, andTERtally the number of misclassifications and nonclassifications
as described in the legand below.APE–average probability of error per fold—captures the uncertainty in the
classifications. Since the classification is based on the posterior probability of a class, a posterior near 1.0 or 0.0
is a confident prediction (which may be either correct or incorrect), while a posterior near 0.5 is a prediction with
low confidence (when the posterior is approximately 0.5, no classification is made). The error in a prediction is
1.0 minus the posterior probability assigned by the classifier to the true class, and APE is the average over these
errors. TheqMaxresult appearing at the end of each table is discussed below.
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Legend:

P S : Number of parent sets used.
APE : Average probability error per fold.
MIS : Number of misclassifications.
ERR : Total error count (misclassifications + nonclassifications).
TER : Total error rate (including both misclassifications and nonclassifications).

P S APE MIS ERR TER

1 0.184212 4 10 0.263158
5 0.169929 7 7 0.184211

10 0.259123 12 12 0.315789
20 0.312331 14 14 0.368421
60 0.329858 13 13 0.342105

300 0.340612 13 13 0.342105
500 0.346113 14 14 0.368421

qMax 0.289474 11 11 0.289474

Table 1. Princeton training data (nlow = 1.25, nhigh = 0.4).

P S APE MIS ERR TER

1 0.315791 0 24 0.631579
5 0.193975 1 14 0.368421

10 0.140994 1 9 0.236842
20 0.067464 2 3 0.078947
60 0.070245 3 3 0.078947

300 0.089030 3 3 0.078947
500 0.118584 5 5 0.131579

qMax 0.157897 6 6 0.157897

Table 2. MIT training data ( nlow = 1.0, nhigh = 1.0).
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The tables indicate an initial increase in quality asP S increases, then a leveling off and ultimate decrease
in quality. The most interesting result is the significant increase in quality over just a single set (P S = 1, the
maximum a posteriori solution), which is a prevalent Bayesian net methodology for learning distributions. As
predicted from the discussion in Section 3.3, a single parent set does not provide adequate coverage of gene
expression combinations in the query case, leading to a large number of non classifications.

To establish that the polling effect noted in Section 3.3 is real and significant, we also conducted experiments
labeled “qMax”. Here, 500 sets are built as withP S = 500, but for each query caseq, the single parent set with the
highest variance adjusted score is used to classifyq. Note that this query-specific set selection from the 500 always
selects (if available, which is the case in all our cross validation runs) a set in whichq’s combination of expression
values appears in the training set, eliminating the no-classification errors. That this method underperforms the
bestP S > 1 methods indicates that the blending of distributions contributes to the quality of the classification.
Examination of the details of the computations performed by the classifier also indicates that, in many cases,
the distributions induced by the parent sets exert competing effects on the classification, and that the weighting
resolution generally leads to a correct classification.

We speculate that the degradation in classification quality forP S above a threshold is caused by the potentially
unrepresentative search performed by our simple greedy algorithm, as alluded to in Section 4.1—greedy, being
unable to construct enough high scoring sets, must “fill” the classifier with many low scoring (and, hence, worse
fitting to the observational data) sets which contribute inaccurate distributions. This explanation is supported
by the near monotonic increase in quality reported in Section 5.3 for the exhaustive search following external
gene selection. This suggests that refinements to greedy as proposed in Section 4.1 could well obtain overall
improvements, especially as is noted in Section 5.4 when we discuss the results of the greedy-built classifiers
against the out-of-sample test set.

5.3. Cross Validation Results with External Gene Selection

In tests of the external gene selection methods, we studied the effects of varying bothP S and the fractionW
of genes used as controls in normalization. As with greedy, we held fixed the maximum cardinalityM at 5. For
computational reasons, the number of genes selected was fixed at 30.

The following two tables summarize, respectively, results with the Princeton and MIT training sets. Each row
of the tables summarizes, for a fixedW andP S , the LOO cross validation test results for the 38 cases of the
respective training set. As is the case for Tables 1 and 2, theqMaxresult at the end of each of Tables 3 and 4 is for
500 available parent sets and withW set at a value which produced generally good results across theP S values
for the multi-set classifiers.
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Legend:

P S : Number of parent sets used.
W : Fraction of genes used as controls for normalization.
APE : Average probability error per fold.
MIS : Number of misclassifications.
ERR : Total error count (misclassifications + nonclassifications).
TER : Total error rate (including both misclassifications and nonclassifications).

P S W APE MIS ERR TER

1 0.000000 0.394735 15 15 0.394737
1 0.100000 0.480700 17 20 0.526316
1 0.250000 0.328950 8 17 0.447368
1 0.400000 0.302636 8 15 0.394737
1 0.550000 0.328950 7 18 0.473684
1 0.700000 0.263162 7 13 0.342105
1 0.850000 0.499997 18 20 0.526316
1 1.000000 0.499994 16 22 0.578947
5 0.000000 0.393831 14 14 0.368421
5 0.100000 0.376276 14 14 0.368421
5 0.250000 0.287669 9 11 0.289474
5 0.400000 0.267520 9 11 0.289474
5 0.550000 0.241729 9 10 0.263158
5 0.700000 0.261501 9 10 0.263158
5 0.850000 0.455024 17 17 0.447368
5 1.000000 0.333537 10 13 0.342105

10 0.000000 0.377660 15 15 0.394737
10 0.100000 0.398858 15 15 0.394737
10 0.250000 0.334334 12 12 0.315789
10 0.400000 0.261875 9 11 0.289474
10 0.550000 0.221307 8 9 0.236842
10 0.700000 0.270484 9 9 0.236842
10 0.850000 0.410469 14 14 0.368421
10 1.000000 0.303383 10 11 0.289474

Table 3. Princeton training data.

23



P S W APE MIS ERR TER

20 0.000000 0.377660 15 15 0.394737
20 0.100000 0.402184 16 16 0.421053
20 0.250000 0.302113 11 11 0.289474
20 0.400000 0.251675 9 9 0.236842
20 0.550000 0.215504 7 8 0.210526
20 0.700000 0.265321 9 9 0.236842
20 0.850000 0.361076 12 12 0.315789
20 1.000000 0.325153 11 12 0.315789
60 0.000000 0.350131 12 12 0.315789
60 0.100000 0.375262 14 14 0.368421
60 0.250000 0.290695 10 10 0.263158
60 0.400000 0.233612 9 9 0.236842
60 0.550000 0.204675 7 7 0.184211
60 0.700000 0.249359 8 8 0.210526
60 0.850000 0.358279 12 12 0.315789
60 1.000000 0.286617 10 11 0.289474

300 0.000000 0.344514 13 13 0.342105
300 0.100000 0.358541 14 14 0.368421
300 0.250000 0.297478 11 11 0.289474
300 0.400000 0.223621 7 7 0.184211
300 0.550000 0.204802 7 7 0.184211
300 0.700000 0.237995 8 8 0.210526
300 0.850000 0.317356 12 12 0.315789
300 1.000000 0.249347 9 9 0.236842
500 0.000000 0.341484 13 13 0.342105
500 0.100000 0.351571 14 14 0.368421
500 0.250000 0.293802 12 12 0.315789
500 0.400000 0.218802 7 7 0.184211
500 0.550000 0.206535 6 6 0.157895
500 0.700000 0.231278 8 8 0.210526
500 0.850000 0.301052 11 11 0.289474
500 1.000000 0.251559 9 9 0.236842

qMax 0.550000 0.210529 8 8 0.210526

Table 3. Princeton training data (continued).
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P S W APE MIS ERR TER

1 0.000000 0.065801 1 4 0.105263
1 0.100000 0.052644 1 3 0.078947
1 0.250000 0.065801 1 4 0.105263
1 0.400000 0.078959 1 5 0.131579
1 0.550000 0.078959 1 5 0.131579
1 0.700000 0.078959 1 5 0.131579
1 0.850000 0.065802 1 4 0.105263
1 1.000000 0.078959 1 5 0.131579
5 0.000000 0.072555 3 3 0.078947
5 0.100000 0.053353 2 2 0.052632
5 0.250000 0.072555 3 3 0.078947
5 0.400000 0.080379 3 3 0.078947
5 0.550000 0.080379 3 3 0.078947
5 0.700000 0.080379 3 3 0.078947
5 0.850000 0.061176 2 2 0.052632
5 1.000000 0.080378 3 3 0.078947

10 0.000000 0.072554 3 3 0.078947
10 0.100000 0.053351 2 2 0.052632
10 0.250000 0.072554 3 3 0.078947
10 0.400000 0.080378 3 3 0.078947
10 0.550000 0.080378 3 3 0.078947
10 0.700000 0.080378 3 3 0.078947
10 0.850000 0.061175 2 2 0.052632
10 1.000000 0.083038 3 3 0.078947

Table 4. MIT training data.
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P S W APE MIS ERR TER

20 0.000000 0.072553 3 3 0.078947
20 0.100000 0.053351 2 2 0.052632
20 0.250000 0.072553 3 3 0.078947
20 0.400000 0.080377 3 3 0.078947
20 0.550000 0.080377 3 3 0.078947
20 0.700000 0.080377 3 3 0.078947
20 0.850000 0.061174 2 2 0.052632
20 1.000000 0.084275 3 3 0.078947
60 0.000000 0.070544 3 3 0.078947
60 0.100000 0.051839 2 2 0.052632
60 0.250000 0.071990 3 3 0.078947
60 0.400000 0.069324 3 3 0.078947
60 0.550000 0.070813 3 3 0.078947
60 0.700000 0.070774 3 3 0.078947
60 0.850000 0.050437 2 2 0.052632
60 1.000000 0.069833 3 3 0.078947

300 0.000000 0.057444 2 2 0.052632
300 0.100000 0.059049 2 2 0.052632
300 0.250000 0.072465 3 3 0.078947
300 0.400000 0.074483 3 3 0.078947
300 0.550000 0.074229 3 3 0.078947
300 0.700000 0.075196 3 3 0.078947
300 0.850000 0.056310 2 2 0.052632
300 1.000000 0.050879 2 2 0.052632
500 0.000000 0.065868 2 2 0.052632
500 0.100000 0.068942 2 2 0.052632
500 0.250000 0.080150 3 3 0.078947
500 0.400000 0.079164 3 3 0.078947
500 0.550000 0.078501 3 3 0.078947
500 0.700000 0.078683 3 3 0.078947
500 0.850000 0.074403 2 2 0.052632
500 1.000000 0.068241 2 2 0.052632

qMax 0.100000 0.052644 2 2 0.052632

Table 4. MIT training data (continued).
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Unlike the case for greedy selection, the results of Tables 3 and 4 demonstrate that there is a steady improve-
ment for the Princeton data asP S increases, and near flat behavior for the MIT data forP S ≥ 60. Again, the
qMaxexperiments (for the Princeton data) and inspection of the detailed results provide further evidence that the
blending provided by a large number of parent sets has a positive impact on classifier quality.

The tables indicate different best values across the two training sets for the fractionW of control genes used in
expression-level normalization, and a greater sensitivity to this value in the Princeton training data. This may be
indicative of differences in experimental conditions, analysis preprocessing, and so forth. That we can, without the
benefit of descriptive procedural information as input, discover through methodical application of cross validation
good normalization parameters for each data set is a significant finding. The results against the test set presented
in the following section indicate that these findings are not simply an overfitting to the training data, but truly a
learning of the underlying processes that generalizes well.

5.4. Out-of-Sample Test Set Results

Only after running the above experiments on the training sets did we turn attention to the test sets. Our primary
interest is to select thesingle methodwhich performed best (lowest total error rate,TER) in the cross validation
experiments and assess its classification rate on the out-of-sample test sets. In this way, we avoid a “selection
effect” in which one of several methods run against the test set performs well.

Inspection of the tables of Sections 5.2 and 5.3 identifies the external gene selection method as being preferable
to the minimal knowledge greedy method in building parent sets for the Bayesian net classifier. Since we have
data from two different experimental contexts, it is proper to select the parameters for the selected method (i.e.,
P S andW ) based on performance in the cross validation trials on each training set; such parameter setting would
of course be performed in an actual classification application in which we had access to training, but not query,
cases in advance.

External Gene-Selection Method Against Test Data

Inspection of the tables in Section 5.3 indicates that, against the Princeton training set, the best setting is
P S = 500 (number of parent sets to be used in the Bayesian net classifier) andW =0.55 (control list fraction for
normalization). Against the MIT training set, several parameter settings resulted in the minimalTERof 0.052632.
Somewhat arbitrarily, we selectedP S=300 andW = 0.85.8 Usingonly these settings, we built the classifiers by
training against the 38 cases of each of the two training sets and used the resulting classifiers to classify the cases
of the respective test sets.

The results are exhibited in Table 5 and are extremely good. The classifier had nearly identical error rates
against the MIT training and test sets (0.05 for training versus 0.06 for test) and a significantly lower error rate
against the Princeton test set (0.16 for training versus 0.08 for test). The results strongly suggest that our multi-
parent-set Bayesian net classifiers employing external gene selection and normalization algorithms are able to
learn from training data underlying distributions which generalize extremely well to out-of-sample query cases
whose classifications are of biological and clinical significance.

Comparison with Other Published Results

The Appendix contains an extensive compilation of results reported in the literature for the MIT and Princeton
datasets, generated using a broad range of classification methodologies. The high accuracies achieved in our
results are particularly noteworthy given the stringent nature of our ‘one-shot’ testing approach: we have used

8While we chose our single run to be made against the test set withP S = 300 andW = 0.85, in order to assess the sensitivity of the results
to this somewhat arbitrary choice of settings from among settings achieving equally good TER, we later ran against the test set with several
other settings which achieved the sameTERagainst the training data. The majority of those settings tried also incurred the same number 2 of
misclassification errors as those reported here, while a few others incurred 3 misclassifications errors.
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parameter settings determined from cross-validation results for the training dataset only, followed by a single
pass at classifying the held-out test set. Our results compare favorably even with those obtained using rather less
stringent training/testing protocols.

Test Set Cases APE MIS ERR TER

Princeton 24 0.142092 2 2 0.083333
MIT 34 0.085831 2 2 0.058824

Table 5. Out-of-sample results with external gene selection.

Minimal-Knowledge Greedy Methods Against Test Data

After obtaining the results reported in the previous subsection for the external methods, we decided also to
run our greedy methods against the test sets. Since the greedy method’s results in the cross validation experiments
were almost as good as the external gene selection methods, we consider this to be an interesting avenue of
research as well. We report the results here in order to indicate potential directions for future work.

Table 6 reports the results against the two test sets of Bayesian net classification using the greedy construction
method. The only parameter considered in the cross validation against the training set wasP S , with the best
settings found to beP S = 20 for the MIT training set andP S = 5 for the Princeton training set.

Test Set Cases APE MIS ERR TER

Princeton 24 0.145834 1 6 0.250000
MIT 34 0.279412 7 12 0.352941

Table 6. Out-of-sample results with greedy selection.

Against the Princeton test set, the error rate was similar to the rate against the training set (0.18 for training
versus 0.25 for test), but it was significantly higher against the MIT test set (0.08 for training versus 0.35 for
test). We speculate that two sources of this lack of generalization, especially in the MIT data, are our failure to
normalize the data for the greedy experiments and the use of an overly rigid binning method. This conjecture
is consistent with the high number of “nonclassifications” against the test sets. Note also that the MIT data was
provided as two distinct data sets. Procedural differences in experimental preparation and processing of the output
between the sets as is described in (Golubet al., 1999) may have hampered the greedy method because it fails to
normalize across the sets. In the case of the Princeton data, where a single data set is randomly split, performance
against the test set was much more comparable to that of the training set.

Consequently, one avenue of future research is to include in the greedy method a normalization procedure
similar to that employed by the external gene selection method. Also, as noted in Section 4.1, there is a concern
that the greedy search may not provide a good representation of the space of possible parent sets. We speculated
that this might be the cause of the degradation observed in the cross validation experiments for large values of
P S . Note that the exhaustive (and, hence, completely representative) search of the universe of externally selected
genes resulted in largeP Ss performing best. The greedy method’s use of small values ofP S , in combination with
the failure to normalize, certainly contributes to the large number of non-classifications in the test set. Hence,
modifying the search to be more representative, as discussed in Section 4.1, potentially could give minimal-
knowledge searches such as greedy access to more good parent sets, thereby addressing the large number of
failure-to-classify errors that were observed.

6. Summary and Future Work

We have presented a methodology for applying Bayesian nets to the problem of classifying clinical cases
from their gene expression profiles. While Bayesian nets have been applied previously to identify relationships
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among genes and have been proposed as classifiers for other problem domains, we have outlined new methods
for classification particularly well suited to gene expression data. Through a systematic experimental design, we
demonstrated that these classifiers, trained by means of a cross-validation methodology, generalize extremely well
to out-of-sample test data. In particular, we achieved error rates of 92% and 94% on out-of-sample partitions of
the MIT leukemia and Princeton colon cancer data sets, respectively. These results are comparable to or better
than those reported previously using other classification approaches, even in those instances when less stringent
train/test procedures were utilized.

Our Bayesian net classifiers are built by constructing alternative parent sets for the class label node and use a
posterior probability and variance-weighted blending of the resulting distributions. This blending of the distribu-
tions induced by the competing hypotheses embodied by the alternative parent sets was seen in our experimental
results to yield improvements over the so calledmaximum a posteriori solution, in which only the single most
likely hypothesis is used. We experimented with two methods for searching for good parent sets: a simple greedy
search of the universe of all genes and an exhaustive search of a universe of genes selected by a separation heuris-
tic. The latter method produced better performing parent sets in the experiments reported here. This method
also employs a novel expression-level normalization scheme based on algorithmically discovered control genes.
Current work is considering improvements to both methods for parent set construction and to normalization. We
are exploring also how other aspects of the problem—value binning and gene clustering, for example—can be
studied within the framework.

It also is possible to incorporate into the model local structure, as described in Friedman and Goldzmidt
(1996b) and Chickeringet al. (1997). While this has not been necessary for the classification tasks undertaken to
date, future work will explore the utility of this model extension in the gene expression domain.

We believe that Bayesian approaches to gene expression analysis, such as those described here and in Fried-
manet al. (1999), Friedmanet al. (2000) and Pe’eret al. (2001), have enormous potential, not simply because
of the quality of the results achieved so far, but also because the mathematically-grounded formalism provides
the opportunity to expand systematically the range of problems treated, integrating newly developed algorithmic
techniques with an ever-increasing base of domain knowledge. Thus, results such as those reported here, while
significant in their own right, are only the first steps toward the ultimate construction of rigorous and comprehen-
sive models that promise to be of great scientific and clinical import.
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A.  COMPILATION OF PUBLISHED CLASSIFICATION RESULTS  

In this Appendix, we list the feature selection and classification methodologies, testing procedures, and 
accuracies that have been reported in the literature to date for the two datasets considered in this work.  
Results for the MIT dataset are given in Table 7, and for the Princeton dataset, in Table 8. Within each 
table, results are listed in order of decreasing testing protocol stringency (most stringent appear first), and 
within stringency sub-category, in order of decreasing classification success rate. The stringency hierarchy 
used to order the results is Separate Train/Test followed by One-Shot Test? followed by # Features. Due to 
the varied nature of the classification testing protocols utilized in the literature, the detailed ordering of 
results in cases where multiple attempts were made is necessarily somewhat arbitrary. 

Table 7.  MIT dataset.  

CLASSIFIER 
SEPARATE 

TRAIN/TEST? 
ONE-SHOT 

TEST? 
FEATURE SELECTION 

METHOD # FEATURES 
TESTING 
ERRORS REF. 

NN with [N(µ,ν)]1/2 metric 
and Euclidean distance 

kernel 
Y Y 

maximized between-class 
distance, with [N(µ,ν)]1/2 

metric and Euclidean 
distance kernel1 

10 2 [1] 

Bayesian network Y Y Separation measure of 
Section 4.2, present work 30 2 

Present 
work 

neighborhood analysis 
(weighted voting scheme) Y Y MIT “F(x)” score2 50 10 [2] 

linear SVM Y Y MIT “F(x)” score2 7129 1 [3] 

linear SVM Y Y none 7129 1 [4] 

PCI Y Y none 7129 2 [5] 

linear SVM Y Y none 7129 5 [6] 

MIT linear discriminant 
(“baseline”) classifier Y Y none 7129 5 [6] 

Bayesian (max-likelihood) Y3 N ARD (I) 
ARD (II) 

6.98 
7.09 

2.04 
2.90 [7] 

SVM Y3 N RFE 
Fisher score 14.41 2.84 

2.68 
[7] 

linear SVM Y N (f) R2W2 minimization 5; 20 1;0 [4] 

linear SVM Y N (f) Fisher score 5; 20 5;3 [4] 

discriminant analysis4 Y5 N (a) BSS/WSS ratio 40 

3 (a) 
0 (b) 
1 (c) 
1 (d) 

[8]; [9] 

classification trees6 Y5 N (a) BSS/WSS ratio 40 

3 (a) 
2 (b) 
1 (c) 
1 (d) 

[8]; [9] 

linear SVM Y N (f)7 
K=2 superv. NBGR (a) 

                      MVR  (b) 
                     MAR  (c) 

50 
2 (a) 
1 (b) 
1 (c) 

[10] 

                                                 
1 10-fold cross-validated search; search repeated 50 times with 10,000 iterations each. 
2 See [1] for definition, also referred to as Mean Aggregate Relevance (MAR) [10]. 
3 100 trials of random 36/36 splits; # of features and testing errors reported for each feature selection algorithm are averages computed 
over 100 trials.  
4 Discriminant analysis methods: (a) FLDA;  (b) DLDA;  (c) method of [GST99];  (d) DQDA. 
5 200 trials of different 48/24 (2:1) train/test splits; testing errors for methods (a)−(d) are for median quartile over 200 trials. 
6 Classification tree methods:  (a) single CART tree with pruning by 10-fold cross-validation;  (b) 50 bagged exploratory trees;          
(c) 50 boosted (using Arc-fs) exploratory trees;  (d) 50 bagged exploratory trees with convex pseudodata. 
7 Three distinct sets of “top 50” genes were generated using the NBGR, MVR, and MAR feature selection methods.  Testing errors are 
correspondingly labeled (a), (b), (c). 
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Table 7.  MIT dataset, continued. 

CLASSIFIER 
SEPARATE 

TRAIN/TEST? 
ONE-SHOT 

TEST? 
FEATURE SELECTION 

METHOD # FEATURES 
TESTING 
ERRORS REF. 

nonlinear (radial basis function) 
SVM, data-dependent range 

Y N (f)7 K=2 superv. NGBR (a) 
                      MVR  (b) 
                      MAR  (c) 

50 
2 (a) 
1 (b) 
1 (c) 

[10] 

KNN/Euclidean metric Y N (p) GA/KNN with z-score 50 1−2 [11] 

nonlinear (radial basis function) 
SVM, data-dependent range 

Y N (f)7 K=2 superv. NGBR (a) 
                      MVR  (b) 
                      MAR  (c) 

50 
4 (a) 
1 (b) 
2 (c) 

[10] 

multiclass8 nonlinear (Gaussian) 
SVM, GACV tuning Y N (f,p,a) BSS/WSS ratio 40; 50; 100 1; 1; 4 [12] 

multiclass8 linear SVM, 
LOOCV tuning  Y N (f,p,a) BSS/WSS ratio 40; 50; 100 1; 2.25; 4 [12] 

multiclass8 linear SVM,  
GACV tuning  Y N (f,p,a) BSS/WSS ratio 40; 50; 100 1; 2; 4 [12] 

multiclass8 nonlinear (Gaussian) 
SVM, LOOCV tuning Y N (f,p,a) BSS/WSS ratio 40; 50; 100 0.8; 1; 6 [12] 

linear SVM Y N (f) MIT “F(x)” score2 49; 99; 999 2;0;0 [3] 

linear SVM Y N (f) MIT “F(x)” score2 25; 250; 500; 1000 2−4 [13] 

LD Y N (f) t-score + PLS 
50; 100; 500      
1000; 1500 1;2;3;3;3 [14] 

LD Y N (f) t-score + PC 
50; 100; 500      
1000; 1500 1;2;3;3;4 [14] 

LD Y N (f) 
nested expressed genes 

(100%; 75%; 50%; 25%; 
at least 1 array) + PLS 

246; 662; 864 
1076; 1554 

7;3;3;3;3 [14] 

LD Y N (f) 
nested expressed genes 

(100%; 75%; 50%; 25%; 
at least 1 array) + PC 

246; 662; 864 
1076; 1554 

12;9;9;9;9 [14] 

QDA Y N (f) t-score + PLS 
50; 100; 500      
1000; 1500 6;5;2;3;4 [14] 

QDA Y N (f) t-score + PC 
50; 100; 500      
1000; 1500 4;4;6;6;6 [14] 

QDA Y N (f) 
nested expressed genes 

(100%; 75%; 50%; 25%; 
at least 1 array) + PLS 

246; 662; 864 
1076; 1554 10?;3;3;2;3 [14] 

QDA Y N (f) 
nested expressed genes 

(100%; 75%; 50%; 25%; 
at least 1 array) + PC 

246; 662; 864 
1076; 1554 17;4;6;6;6 [14] 

linear SVM Y N (f) SVM RFE 
1; 2; 4; 8; 16; 32 

 64 128; 256; 512 
1024 2048; 4096 

7;4;3;0;0;1;2 
    1;2;4;2  
       5;10 

[6] 

linear SVM Y  N (f) MIT “F(x)” score2 
1; 2; 4; 8; 16; 32 

64; 128; 256; 512 
1024 2048; 4096 

7;7;4;3;2;3;1 
2;3;2;2  

5;9 
[6] 

MIT linear discriminant 
(“baseline”) classifier  Y N (f) SVM RFE 

1; 2; 4; 8; 16; 32 
64; 128; 256; 512 
1024 2048; 4096 

7;4;4;1;2;2;0 
2;2;3;2  

4;4 
[6] 

                                                 
8 The three classes are: B-ALL (38), T -ALL (9), AML (25).  
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Table 7.  MIT dataset, continued. 

CLASSIFIER 
SEPARATE 

TRAIN/TEST? 
ONE-SHOT 

TEST? 
FEATURE SELECTION 

METHOD # FEATURES 
TESTING 
ERRORS REF. 

MIT linear discriminant 
(“baseline”) classifier Y N (f) MIT “F(x)” score2 

1; 2; 4; 8; 16; 32 
64; 128; 256; 512 
1024 2048; 4096 

7;6;4;3;2;2;1 
2;3;2;2  

5;5 
[6] 

linear SVM N9 Y none 7129 0 [13] 

modified perceptron N9  Y10
 none 7129 3.4 [13] 

quadratic SVM N11 Y none 7129 4 [15] 

linear SVM N11 Y none 7129 5 [15] 

NN/Pearson correlation 
metric N11 Y none 7129 6 [15] 

Emerging patterns N11 N (f) entropy-based discretization 1 3 [16] 

multiclass8 PD N11 N (f,a)12 PAMD/CS + MPLS 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

4; 3 
4; 4 

4 
4 

[17] 

multiclass8 PD N11 N (f,a)12 PAMD/CS + PC 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

4; 4 
8; 11 

8 
12 

[17] 

 multiclass8 QDA N11 N (f,a)12 PAMD/CS + MPLS 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

1; 0 
2; 2 

4 
3 

[17] 

 multiclass8 QDA N11 N (f,a)12 PAMD/CS + PC 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

3; 2 
16; 30 

17 
31 

[17] 

 multiclass8 DQDA N11 N (f,a)12 PAMD/CS + MPLS 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

2; 1 
2; 2 

4 
3 

[17] 

 multiclass8 DQDA N11 N (f,a)12 PAMD/CS + PC 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

3; 3 
13; 23 

19 
22 

[17] 

 multiclass8 DLDA N11 N (f,a)12 PAMD/CS + MPLS 

94; 813  (A0) 
94; 813   (A1) 

69; 90; 100  (A2) 
710-804-850  

(A2) 

2; 1 
3; 3 

4 
4 

[17] 

                                                 
9 Leave-one-out classification results are total # errors for training set only (MIT) and full train+test set (Princeton). 
10 Result is average over 5 runs, each with a new classifier constructed for a new sample-shuffled dataset, since the perceptron method 
is sensitive to sample order. 
11 Leave-one-out classification results are total errors for train+test set (N=72, MIT; N=62, Princeton). 
12 Feature lists are labeled according to the algorithm variant with which they were used (A0, A1, A2).  Note that for A2, the values     
x-y-z correspond to the min-mean-max of the N-fold gene re-selections.  
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Table 7.  MIT dataset, continued. 

CLASSIFIER 
SEPARATE 

TRAIN/TEST? 
ONE-SHOT 

TEST? 
FEATURE SELECTION 

METHOD # FEATURES 
TESTING 
ERRORS REF. 

 multiclass8 DLDA N11 N (f,a)12 PAMD/CS + PC 

94; 813  (A0) 
94; 813   (A1) 

69-90-100  (A2) 
710-804-850  

(A2) 

3; 3 
3; 6 

8 
8 

[17] 

linear SVM N11 N (f)13 
K=2 supervised NBGR 

4;5;11;25;50 
100; 7070 

5;12;2;1;2 
1;2 [10] 

linear SVM N11 N (f)13 
MVR 

4;5;11;25;50 
100; 7070 

23;3;2;2;2  
1;2 [10] 

nonlinear (radial basis 
function) SVM, data-

dependent range 
N11 N (f)13 K=2 supervised NBGR 4;5;11;25;50 

100; 7070 
8;9;3;2;4 

2;2 [10] 

nonlinear (radial basis 
function) SVM, data-

dependent range 
N11 N (f)13 MVR 4;5;11;25;50 

100; 7070 
33;8;3;1;1 

2;2 [10] 

nonlinear (radial basis 
function) SVM, fixed range N11 N (f)13 K=2 supervised NBGR 

4;5;11;25;50 
100; 7070 

19;19;2;4;2 
4;27 [10] 

nonlinear (radial basis 
function) SVM, fixed range N11 N (f)13 MVR 

4;5;11;25;50 
100; 7070 

31;11;8;7;6  
4;27 [10] 

boosting with decision     
stump learner N11 N (p)14 none 7129 

3 (a) 
3 (b) 
3 (c) 

[15] 

                                                 
13 Prior to feature selection and classification, the initial genelists were filtered from 7129→7070 (MIT) and 2000→1998 (Princeton).   
For #genes = 7070 (MIT) and 1998 (Princeton), no feature selection was performed; however, for convenience, the results are reported 
together with the feature-selected results for each classification methodology. 
14 Testing errors are labeled (a), (b), (c) corresponding to the number of boosting iterations (100, 1000, 10,000 respectively). 
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Table 8.  Princeton dataset.  

CLASSIFIER SEPARATE 
TRAIN/TEST? 

ONE-SHOT 
TEST? 

FEATURE SELECTION 
METHOD # FEATURES TESTING 

ERRORS REF. 

Bayesian network Y15 Y Separation measure of 
Section 4.2, present work 30 2 

Present 
work 

linear SVM Y16 Y none 2000 5 [6] 

MIT linear discriminant 
classifier  Y16 Y none 2000 7 [6] 

KNN/Euclidean metric Y17 Y none 2000 10 [11] 

linear SVM Y16 N (f) SVM RFE 8 3 [6] 

linear SVM Y16 N (f) MIT “F(x)” score2 8 5 [6] 

linear SVM Y18 N (a) 
              R2W2  min. (a) 
Pearson corr. coeff. (b) 
           Fisher score (c) 
                         KS (d) 

15 

1.5  (a) 
2.0  (b) 
2.3  (c) 
2.3  (d) 

[4] 

MIT linear discriminant 
classifier  Y16 N (f) MIT “F(x)” score2 16 6 [6] 

MIT linear discriminant 
classifier  Y16 N (f) SVM RFE 32 4 [6] 

KNN/Euclidean metric  Y19 N(p) GA/KNN with                       
z-score  50 

0  (a) 
0  (b) 
1  (c) 

[18] 

KNN/Euclidean metric  Y17 N(f) GA/KNN with                      
z-score 

1; 5; 25 
 50; 100; 500 

9;7;5 
5;5;7 [11] 

MIT linear discriminant 
classifier  N9 Y MIT “F(x)” score2 16 6 [6] 

Emerging patterns N11 Y entropy-based discretization 35 5 [16] 

modified perceptron  N9 Y9 none 2000 7.5 [13] 

clustering-based classifier 
(CAST + maximized 
compatibility score) 

N11 Y none 2000 7 [15] 

NN/Pearson correlation 
metric N11 Y none 2000 12 [15] 

linear SVM N11 Y none 2000 14 [15] 

quadratic SVM N11 Y none 2000 16 [15] 

recursive partitioning N20 N (a,p) entropy measure  
of node purity21 

3 4−5 [19] 

                                                 
15 Random partitioning, 38/24 (see Section 5.1, present work). 
16 Random split, 31/31. 
17 42/20 split, first 42 + remaining 20 samples.  
18 50 trials of different 50/12 splits; testing errors for feature selection algorithm (a)−(d) are averages computed over 50 trials.  
19 Five samples (N34, N36, T30, T33, and T36), deemed “likely to have been contaminated” were removed, leaving 57 samples. Three 
different train/test sets (40/17 split) were defined: (a) original: the first 40 samples were placed in the training set, the remainder in the 
test set; (b) random: 40 samples were randomly assigned to the training set, the remainder to the test set;  (c) discrepant: the last 40 
samples were placed in the training set, the rest in the test set.  Testing errors are correspondingly labeled (a), (b), (c). 
20 Five-fold cross-validation on full (N=62) dataset. 
21 [19] also tried a variant gene selection approach, “competitive node splits,” but since this method is not explained or referenced in 
the paper, and gave inferior results, we note only that it was tried (“a” notation under “One-Shot Test”) but do not report cross-
validation results.  
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Table 8.  Princeton dataset, continued. 

 

CLASSIFIER SEPARATE 
TRAIN/TEST? 

ONE-SHOT 
TEST? 

FEATURE SELECTION 
METHOD # FEATURES TESTING 

ERRORS REF. 

supervised naïve Bayes 
model 

N9 N (f) 
fold-independent subsets of 

K-class unsupervised   
NBGR ranking 

2; 5; 10 
 25; 50; 100 

27;13;14 
17;20;20 

[20] 

nonlinear (radial basis 
function) SVM N9 N (f) 

fold-independent subsets of 
K=2 supervised             
NBGR ranking 

2; 5; 10 
25; 50; 100 

42;24;15 
14;16;20  [20] 

supervised naïve Bayes 
model N9 N (f) 

fold-independent subsets of 
K=2 supervised NBGR 

ranking 

2; 5; 10 
25; 50; 100 

29;33;29 
28;26;28 [20] 

linear SVM N9 N (f) SVM RFE 16−256 0 [6] 

LD N9 N (f) t-score + PC 50; 100 
500; 1000 8;9;9;10 [14] 

LD N9 N (f) t-score+ PLS 50; 100 
500; 1000 

4;4;6;5 [14] 

QDA N9 N (f) t-score + PC 50; 100; 
500; 1000 8;10;9;8 [14] 

QDA N9 N (f) t-score+ PLS 50; 100 
500; 1000 

5;6;5;6 [14] 

nonlinear (radial basis 
function) SVM N9 N (f) 

fold-independent subsets of 
K-class unsupervised    

NBGR ranking 

2; 5; 10 
25; 50; 75; 100 

150; 200; 300; 400 
500; 1000; 1250 

1500; 1750 

10; 10; 9 
10; 7; 8; 7 
7; 6; 7; 7 
10; 8; 8 

7;7 

[20] 

nonlinear (radial basis 
function) SVM N9 N none 1988 7 [20] 

linear SVM N9 N (f) MIT “F(x)” score2 1000; 2000 6;6 [13] 

supervised naïve Bayes 
model N9 N (f) 

fold-independent subsets of 
K-class unsupervised NBGR 

ranking 

2; 5; 10 
 25; 50; 100 

27;13;14 
17;20;20 [20] 

boosting with decision    
stump learner 

N11  N (p)14 none 2000 
17 (a) 
17 (b) 
18 (c) 

[15] 

linear SVM N11 N (f)13 
K=2 supervised NBGR 4;5;11;25;50 

100; 1988 
24;17;12;15;13 

16;9 
[10] 

linear SVM N11 N (f)13 
MVR 4;5;11;25;50 

100; 1988 
10;9;13;16;14 

11;9 [10] 

nonlinear (radial basis 
function) SVM, data-

dependent range 
N11 N (f)13 K=2 supervised NBGR 4;5;11;25;50 

100; 1988 
20;11;10;9;9  

8;8 
[10] 

nonlinear (radial basis 
function) SVM, data-

dependent range 
N11 N (f)13 MVR 4;5;11;25;50 

100; 1988 
12;13;12;12;10 

10;8 
[10] 

nonlinear (radial basis 
function) SVM, fixed 

range 
N11 N (f)13 K=2 supervised NBGR 4;5;11;25;50 

100; 1988 
22;20;8;9;7 

9;7 [10] 

nonlinear (radial basis 
function) SVM, fixed 

range 
N11 N (f)13 MVR 4;5;11;25;50 

100; 1988 
8;10;9;10;7 

7;7 [10] 
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Key/Notes 
 
1. Separate train/test = N ⇒ classification is via LOO training on full train+test dataset, followed by 
classification of the left-out sample.     

2.  One-shot test = Y ⇒ a single ‘best shot’ classifier is evaluated against the test set, after having been 
selected from various possible combinations of classifiers/feature sets developed using the training set only.   
If at any point in the algorithm (feature selection, f; classifier parameter tuning, p; classifier algorithm 
details, a) the test set is included in the procedure, this is considered to be “One-shot test = N.”  Test set 
results for multiple feature sets without an a priori (test-set-blind) method to select among feature sets are 
reported as N(f). 

3. “Testing errors” should be interpreted as applying to the dataset implied by the “Separate train/test?”  
column.  The errors include actual errors  + samples characterized as ‘unclassifiable.’ 

4. Train/test set is Golub et al. 38/34 (MIT) and 62 train+test (Princeton), unless otherwise indicated. 

5. Boldface #genes/error #s correspond to best results in cases where one-shot test = N, and multiple results 
are reported. 

 
Abbreviations 
 
ARD automatic relevance determination 
BSS between classes sum of squares 
CART classification and regression trees 
DQDA diagonal quadratic discriminant analysis  
DLDA diagonal linear discriminant analysis  
DQDA diagnonal quadratic discriminant analysis  
FLDA Fisher’s linear discriminant analysis  
GACV generalized approximate cross validation 
KS Kolmogorov-Smirnov 
LD logistic discrimination 
LDA linear discriminant analysis  
LOOCV leave-one-out cross validation 
MAR mean aggregate relevance 
MPLS  multivariate partial least squares 
MVR median vote relevance 
NBR naïve Bayes relevance 
NBGR naïve Bayes global relevance 
NN nearest neighbor 
PAMD/CS pairwise absolute mean differences/critical score (multiclass generalization of t-score) 
PC principal components 
PCI  parallel cascade information  
PD polychotomous discrimination (multiclass generalization of logistic discrimination) 
PLS partial least squares  
QDA quadratic discriminant analysis  
SVD singular value decomposition 
SVM support vector machine 
WSS within class sum of squares 
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