Frames vs. Bases

- A set of vectors form a basis for \mathbb{R}^{M} if they span \mathbb{R}^{M} and are linearly independent.
- A set of $N \geq M$ vectors form a frame for \mathbb{R}^{M} if they span \mathbb{R}^{M}.

Basis Matrix
Let \mathcal{B} consist of the M basis vectors, $\mathbf{b}_{1} \ldots \mathbf{b}_{N} \in \mathbb{R}^{M}$. Let $\mathbf{x} \in \mathbb{R}^{M}$ be a representation of $\mathbf{y} \in \mathbb{R}^{M}$ in \mathcal{B}. It follows that

$$
\mathbf{y}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{M} \mathbf{b}_{M}
$$

This is just the matrix vector product

$$
\mathbf{y}=\mathbf{B x}
$$

where the basis matrix, \mathbf{B}, is the $M \times M$ matrix,

$$
\mathbf{B}=\left[\mathbf{b}_{1}\left|\mathbf{b}_{2}\right| \ldots \mid \mathbf{b}_{M}\right] .
$$

Inverse Basis Matrix

To find the representation of the vector \mathbf{y} in the basis \mathcal{B} we multiply \mathbf{y} by \mathbf{B}^{-1} :

$$
\mathbf{x}=\mathbf{B}^{-1} \mathbf{y}
$$

The components of the representation of \mathbf{y} in \mathcal{B} are inner products of \mathbf{y} with the rows of \mathbf{B}^{-1}. The transposes of these row vectors form a dual basis $\tilde{\mathcal{B}}$.

Figure 1: Primal \mathcal{B} (right) and dual $\tilde{\mathcal{B}}$ (left) bases and standard basis (center). The vectors which comprise $\tilde{\mathcal{B}}$ are the transposes of the rows of \mathbf{B}^{-1}.

Frame Matrix
Let \mathcal{F} consist of the N frame vectors, $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$, where $N \geq M$. Let $\mathbf{x} \in$ \mathbb{R}^{N} be a representation of $\mathbf{y} \in \mathbb{R}^{M}$ in \mathcal{F}. It follows that

$$
\mathbf{y}=x_{1} \mathbf{f}_{1}+x_{2} \mathbf{f}_{2}+\cdots+x_{N} \mathbf{f}_{N}
$$

This is just the matrix vector product

$$
\mathbf{y}=\mathbf{F} \mathbf{x}
$$

where the frame matrix, \mathbf{F}, is the $M \times N$ matrix,

$$
\mathbf{F}=\left[\mathbf{f}_{1}\left|\mathbf{f}_{2}\right| \ldots \mid \mathbf{f}_{N}\right] .
$$

Inverse Frame Matrix (contd.)

We might guess that

$$
\mathbf{x}=\mathbf{F}^{-1} \mathbf{y}
$$

where $\mathbf{F F}^{-1}=\mathbf{I}$. Unfortunately, because \mathbf{F} is not square, it has no simple inverse. However, it has an infinite number of right-inverses. Each of the \mathbf{x} produced when \mathbf{y} is multiplied by a distinct rightinverse is a distinct representation of the vector \mathbf{y} in the frame, \mathcal{F}.

Pseudoinverse

We observe that the pseudoinverse

$$
\mathbf{F}^{+}=\mathbf{F}^{\mathrm{T}}\left(\mathbf{F} \mathbf{F}^{\mathrm{T}}\right)^{-1}
$$

is a right-inverse of \mathbf{F}. We call the $N \times$ M matrix, \mathbf{F}^{+}, an inverse frame matrix because it maps vectors, $\mathbf{y} \in \mathbb{R}^{M}$, into representations, $\mathbf{x} \in \mathbb{R}^{N}$.

Frame Bounds
Let \mathcal{F} consist of the N frame vectors, $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$, where $N \geq M$, and let \mathbf{F}^{+}be the inverse frame matrix. \mathcal{F} is a frame iff for all $\mathbf{y} \in \mathbb{R}^{M}$ there exist A and B where $0<A \leq B<\infty$ and where

$$
\frac{1}{B}\|\mathbf{y}\|^{2} \leq\left\|\mathbf{F}^{+} \mathbf{y}\right\|^{2} \leq \frac{1}{A}\|\mathbf{y}\|^{2} .
$$

A and B are called the frame bounds.

Dual Frame

If \mathcal{F} consists of the N frame vectors, $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$, with inverse frame matrix \mathbf{F}^{+}, then the dual frame, $\widetilde{\mathcal{F}}$, consists of the N frame vectors, $\widetilde{\mathbf{f}}_{1} \ldots \widetilde{\mathbf{f}}_{N} \in$ \mathbb{R}^{M} :

$$
\left(\mathbf{F}^{+}\right)^{\mathrm{T}}=\left[\widetilde{\mathbf{f}}_{1}\left|\widetilde{\mathbf{f}}_{2}\right| \ldots \mid \widetilde{\mathbf{f}}_{N}\right] .
$$

Let $\widetilde{\mathbf{x}} \in \mathbb{R}^{N}$ be a representation of $\mathbf{y} \in$ \mathbb{R}^{M} in $\widetilde{\mathcal{F}}$. It follows that

$$
\mathbf{y}=\left(\mathbf{F}^{+}\right)^{\mathrm{T}} \widetilde{\mathbf{x}}
$$

Consequently, $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}$ is the frame matrix for the dual frame, $\widetilde{\mathcal{F}}$.

Figure 2: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) frames and standard basis (center). The vectors which comprise $\tilde{\mathcal{F}}$ are the transposes of the rows of \mathbf{F}^{+}.

Dual Frame (contd.)

Because \mathbf{F}^{T} is a right inverse of $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}$:

$$
\left(\mathbf{F}^{+}\right)^{\mathrm{T}} \mathbf{F}^{\mathrm{T}}=\mathbf{I} .
$$

It follows that \mathbf{F}^{T} is the inverse frame matrix for the dual frame, $\widetilde{\mathcal{F}}$, and

$$
A\|\mathbf{y}\|^{2} \leq\left\|\mathbf{F}^{\mathrm{T}} \mathbf{y}\right\|^{2} \leq B\|\mathbf{y}\|^{2}
$$

for all $\mathbf{y} \in \mathbb{R}^{M}$.

Example
What is the representation of $\mathbf{y}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ in the frame formed by the vectors $\mathbf{f}_{1}=$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{1}=\left[-\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right]^{\mathrm{T}} \text { and } \mathbf{f}_{3}=} \\
& {[0-1]^{\mathrm{T}} ?}
\end{aligned}
$$

$$
\mathbf{F}=\left[\begin{array}{rrr}
0.70711 & -0.70711 & 0 \\
0.70711 & 0.70711 & -1
\end{array}\right]
$$

$$
\mathbf{F}^{+}=\left[\begin{array}{rr}
0.70711 & 0.35355 \\
-0.70711 & 0.35355 \\
0 & -0.5
\end{array}\right]
$$

$$
\mathbf{F}^{+} \mathbf{y}=\left[\begin{array}{r}
1.06066 \\
-0.35355 \\
-0.5
\end{array}\right]
$$

Tight-Frames

If $A=B$ then

$$
\left\|\mathbf{F}^{\mathrm{T}} \mathbf{y}\right\|^{2}=A\|\mathbf{y}\|^{2}
$$

and \mathcal{F} is said to be a tight-frame. When \mathcal{F} is a tight-frame,

$$
\mathbf{F}^{+}=\frac{1}{A} \mathbf{F}^{\mathrm{T}} .
$$

If $\left\|\mathbf{f}_{i}\right\|=1$ for all frame vectors, \mathbf{f}_{i}, then A equals the overcompleteness of the representation. When $A=B=1$, then \mathcal{F} is an orthonormal basis and $\mathcal{F}=\widetilde{\mathcal{F}}$.

Figure 3: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness two and standard basis (center).

Example

What is the representation of $\mathbf{y}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ in the frame formed by the vectors $\mathbf{f}_{1}=$ $\left[\begin{array}{ll}0 & 1\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{2}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{3}=\left[\begin{array}{ll}0 & -1\end{array}\right]^{\mathrm{T}}$ and $\mathbf{f}_{4}=\left[\begin{array}{ll}-1 & 0\end{array}\right]^{\mathrm{T}}$?

$$
\begin{gathered}
\mathbf{F}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & -1 \\
1 & 0
\end{array}\right] \\
\mathbf{F}^{+}=\frac{1}{2} \mathbf{F}^{\mathrm{T}}=\left[\begin{array}{rr}
0 & 0.5 \\
0.5 & 0 \\
0 & -0.5 \\
-0.5 & 0
\end{array}\right] \\
\frac{1}{2} \mathbf{F}^{\mathrm{T}} \mathbf{y}=\left[\begin{array}{r}
0.5 \\
0.5 \\
-0.5 \\
-0.5
\end{array}\right]
\end{gathered}
$$

Figure 4: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness one (orthonormal bases) and standard basis (center).

Summary of Notation

- $\mathbf{y} \in \mathbb{R}^{M}$ - a vector.
- $\mathbf{x} \in \mathbb{R}^{N}$ - a representation of \mathbf{y} in \mathcal{F}.
- $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$ where $N \geq M$ - frame vectors for \mathcal{F}.
$\bullet \mathbf{F}=\left[\mathbf{f}_{1}\left|\mathbf{f}_{2}\right| \ldots \mid \mathbf{f}_{N}\right]$ - frame matrix for \mathcal{F}.
- $\mathbf{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$.
- $\mathbf{F}^{+}=\mathbf{F}^{\mathrm{T}}\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)^{-1}$ - inverse frame matrix for \mathcal{F}.
- $\mathbf{F}^{+}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$.
- $0<A \leq B<\infty-$ bounds for \mathcal{F}.

Summary of Notation (contd.)

- $\widetilde{\mathbf{x}} \in \mathbb{R}^{M}$ - a representation of \mathbf{y} in $\widetilde{\mathcal{F}}$.
- $\widetilde{\mathbf{f}}_{1} \ldots \widetilde{\mathbf{f}}_{N} \in \mathbb{R}^{M}$ - frame vectors for $\widetilde{\mathcal{F}}$.
- $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}=\left[\widetilde{\mathbf{f}}_{1}\left|\widetilde{\mathbf{f}}_{2}\right| \ldots \mid \widetilde{\mathbf{f}}_{N}\right]$ - frame matrix for $\widetilde{\mathcal{F}}$.
- $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$.
- \mathbf{F}^{T} - inverse frame matrix for $\widetilde{\mathcal{F}}$.
- $\mathbf{F}^{\mathrm{T}}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$.
- $0<\frac{1}{B} \leq \frac{1}{A}<\infty-$ bounds for $\widetilde{\mathcal{F}}$.

