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We describe a linear-time algorithm for computing the likelihood
that a completion joining two contour fragments passes through any
given position and orientation in the image plane. Our algorithm is
a resolution-pyramid-based method for solving a partial differen-
tial equation (PDE) characterizing a distribution of short, smooth
completion shapes. The PDE consists of a set of independent advec-
tion equations in (x, y) coupled in the θ dimension by the diffusion
equation. A previously described algorithm used a first-order, ex-
plicit finite difference scheme implemented on a rectangular grid.
This algorithm required O(n3m) time for a grid of size n× n with m
discrete orientations. Unfortunately, systematic error in solving the
advection equations produced unwanted anisotropic smoothing in
the (x, y) dimension. This resulted in visible artifacts in the com-
pletion fields. The amount of error and its dependence on θ have
been previously characterized. We observe that by careful addition
of extra spatial smoothing, the error can be made totally isotropic.
The combined effect of this error and of intrinsic smoothness due to
diffusion in the θ dimension is that the solution becomes smoother
with increasing time, i.e., the high spatial frequencies drop out. By
increasing ∆x and ∆t on a regular schedule, and using a second-
order, implicit scheme for the diffusion term, it is possible to solve
the modified PDE in O(n2m) time, i.e., time linear in the problem
size. Using current hardware and for problems of typical size, this
means that a solution which previously took 1 h to compute can
now be computed in about 2 min. c© 1999 Academic Press

1. INTRODUCTION
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Mingolla [2], Guy and Medioni [3], Heitger and von der Heydt [4] and Geiger
et al. [1].
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The problem of computing the shape of the contour join
a pair of boundary fragments was first examined by Ullm
in 1976. It has since become conventional wisdom that

2

ng

E= ∫
0
(ακ2(s)+β) ds(see Horn [5]). The curve of least energ

can be regarded as a maximum likelihood estimate of the sh
of the completion. However, humans do not experience a sha
defined, well localized illusory contour when presented with
stimulus such as the Ehrenstein figure or Kanizsa Triangle (
Fig. 1). In a recent paper, Williams and Jacobs [11] argue t
our perception more closely resembles the distribution of p
sible shapes and not simply the most likely shape. According
this view, the degree of sharpness is related to the varianc
this distribution. In an earlier paper, Mumford [6] proposed th
the distribution of completion shapes could be modeled as
set of paths followed by particles traveling with constant spe
in directions described by Brownian motions. He showed t
the maximum likelihood paths followed by such particles a
curves of least energy and gave a partial differential equa
(PDE) which describes the evolution in time of the probabil
density function describing a particle’s position and directio
i.e., aFokker–Planck equation. Williams and Jacobs [12] sub
sequently proposed a neural model1 of illusory contour shape,
salience, and sharpness based on a finite difference schem
integrating this PDE. Although the dynamics of this model a
consistent with known human visual psychophysics, the al
rithm is fairly slow, requiring over an hour for a problem o
typical size on a modern workstation. Being able to solve t
PDE efficiently will allow it to be applied profitably to problem

1 Other models of illusory contour formation are described by Grossberg
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FIG. 1. (a) Ehrenstein figure. (b) Kanizsa triangle.

in computer vision, e.g., to the problem of identifying smoo
closed shapes amid background clutter.

2. STOCHASTIC COMPLETION FIELDS

Given (1) a set of position and orientation constraints (a
known askeypoints)2 representing the beginning and endi
points of a set of contour fragments and (2) a probability d
tribution of completion shapes, the magnitude of thestochastic
completion fieldat (x, y, θ ) is the probability that a completion
from this distribution will pass through (x, y, θ ) on a path join-
ing two of the contour fragments. The probability distributi
of completion shapes is modeled as the set of paths followe
particles traveling with constant speed in directions descri
by Brownian motions. Williams and Jacobs [11] showed t
the stochastic completion field could be factored into asource
fieldand asink field. The source field,p′(x, y, θ ), represents the
probability that a contour beginning at a keypoint (xp, yp, θp)
will pass through (x, y, θ ) and the sink field,q′(x, y, θ ), repre-
sents the probability that a contour beginning at (x, y, θ ) will
reach a keypoint (xq, yq, θq).

Given a probability density function describing a set of p
ticles’ positions and directions at time zero,p(x, y, θ ; 0), the
probability density function describing their positions and
rections at timet is computed by integrating the Fokker–Plan
equation described by Mumford [6],

p(x, y, θ ; t ′) = p(x, y, θ ; 0)+
∫ t ′

0
dt
∂p(x, y, θ ; t)

∂t

∂P

∂t
= −cosθ

∂P

∂x
− sinθ

∂P

∂y
+ σ

2

2

∂2P

∂θ2
− 1

τ
P,

where P= p(x, y, θ ; t). This PDE can be viewed as a set
independentadvectionequations in (x, y) (the first and second
terms) coupled in theθ dimension by thediffusionequation (the
third term). The effect of the advection equations is to trans
probability mass in theθ direction with unit speed. The diffusio
term models the Brownian motion in direction. Finally, the effe
of the fourth term is that a constant fraction of particles de

2 We adopt this term used in [4]. A keypoint can represent either of the

orientations at a corner or the normal orientation at a line termination. Thes
points where it is likely that one surface occludes the boundary of another.
ET AL.
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per unit time. This represents our prior expectation on the len
of gaps—most are quite short.

The algorithm for computing the source field described
Williams and Jacobs is based on a first order, explicit sche
for integrating the Fokker–Planck equation,

STEP 1:

pt+1/4
x,y,θ = pt

x,y,θ − cosθ ·
{

pt
x,y,θ − pt

x−1x,y,θ if cosθ > 0

pt
x+1x,y,θ − pt

x,y,θ if cosθ < 0

STEP 2:

pt+2/4
x,y,θ = pt+1/4

x,y,θ − sinθ ·
 pt+1/4

x,y,θ − pt+1/4
x,y−1y,θ if sin θ > 0

pt+1/4
x,y+1y,θ − pt+1/4

x,y,θ if sin θ < 0

STEP 3:

pt+3/4
x,y,θ = λpt+2/4

x,y,θ−1θ + (1− 2λ)pt+2/4
x,y,θ + λpt+2/4

x,y,θ+1θ

STEP 4:

pt+4/4
x,y,θ = e−1/τ · pt+3/4

x,y,θ ,

whereλ= σ 2/2(1θ )2< 1/2 and1t =1x=1y= 1. The four
steps correspond to the four terms of the PDE. The first two s
employ upwind differencingto ensure stability (see [7]). The
third step is stable whenλ<0.5 and the fourth step is uncond
tionally stable. By repetition of the above four steps,p(x, y, θ ; t)
can be computed for increasing values oft . The source field,
p′(x, y, θ )= ∫∞0 dt p(x, y, θ ; t), is computed using the recur
rence equation

p′(x, y, θ )← p′(x, y, θ )+ p(x, y, θ ; t).

Since the amount of remaining probability mas∫ ∫ ∫
dx dy dθ p(x, y, θ ; t)= e−t/τ , is typically sufficiently

small fort > n, the time complexity of this method isO(n3m).
Due to the way in which the advection equations are fini

differenced on a rectangular grid, the above method introdu
additional non-isotropic, spatial smoothing (see Fig. 2). It
straightforward to show that after one time-step, the expec
values and variances of a particle’s position (with respect to
previous position) are given by

〈x(θ )〉 = cosθ, 〈y(θ )〉 = sinθ

σ 2
xerr(θ ) = |cosθ |(1− |cosθ |),
σ 2

yerr(θ ) = |sinθ |(1− |sinθ |).

Note that this error is highly non-isotropic—σ 2
xerr has a minimum

value of 0 whenθ = 0◦ and a maximum value of 0.25 whe
θ = 60◦. This means that the PDE which Williams and Jaco
actually solve more closely resembles

∂P

∂t
= −cosθ

∂P

∂x
− sinθ

∂P

∂y
+ σ

2

2

∂2P

∂θ2
− 1

τ
P

e are + σxerr(θ )

2

∂ P

∂x2
+ σyerr(θ )

2

∂ P

∂y2
.
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FIG. 2. Demonstration of the anisotropic nature of the advection error and its correction. Left: The initial condition consists of eight impulses uniformlyspaced
around the circumference of a circle and in directions tangent to the circle. For illustration purposes, there is no diffusion inθ and no decay. After 12 time-steps, the

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
mass traveling in the 45, 135 , 225 , and 315 directions is noticeably dispersed. The mass traveling in the 0, 90 , 180 , and 270 directions remains concentrated.
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Right: Advection error after correction.

This non-isotropic advection error in the source and sink fi
leads to visible artifacts in the completion fields (see Figs. 4
5 below).

3. A LINEAR-TIME METHOD

The basic idea underlying our new algorithm is to selectiv
increase spatial smoothing to make the advection error isot
and then to increase1t and1x on a regular schedule as the hi
spatial frequencies drop out of the solution. Undersamplin
this manner will lead to a linear-time algorithm.

We begin by describing how the PDE and finite-differenc
scheme are modified to make the advection error isotropic. T
we describe the undersampling procedure used to pass the
ability density function (p.d.f.) up the resolution pyramid fro
a finer to a coarser grid, and the interpolation procedure us
recover the source field on the finer grid from that on the coa
grid. The question of how many time steps one should ev
the p.d.f. on a fine grid before passing it up to a coarser

is answered, with the aid of the Shannon–Whittaker Sampling

e,
Theorem, in Section 4 below.

STEP 1:pt+1/6
x,y,θ = pt

x,y,θ − cosθ ·
{

pt
x,y,θ − pt

x−1x,y,θ

pt
x+1x,y,θ − pt

x,y,θ

if cosθ > 0

if cosθ < 0

STEP 2:pt+2/6
x,y,θ = pt+1/6

x,y,θ − sinθ ·
 pt+1/6

x,y,θ − pt+1/6
x,y−1y,θ

pt+1/6
x,y+1y,θ − pt+1/6

x,y,θ

if sin θ > 0

if sin θ < 0

STEP 3:pt+3/6
x,y,θ = λx pt+2/6

x−1x,y,θ + (1− 2λx)pt+2/6
x,y,θ + λx pt+2/6

x+1x,y,θ

STEP 4:pt+4/6
x,y,θ = λy pt+3/6

x,y−1y,θ + (1− 2λy)pt+3/6
x,y,θ + λy pt+3/6

x,y+1y,θ

STEP 5:pt+5/6
x,y,θ = λpt+4/6

x,y,θ−1θ + (1− 2λ)pt+4/6
x,y,θ + λpt+4/6

x,y,θ+1θ
if λ < 1

2

− λpt+5/6
x,y,θ+1θ + (1+ 2λ)pt+5/6

x,y,θ − λpt+5/6
x,y,θ−1θ =

λpt+4/6
x,y,θ−1θ + (1− 2λ)pt+4/6

x,y,θ + λpt+4/6
x,y,θ+1θ if λ ≥ 1

2

t+6/6 −1t/τ t+5/6

fied PDE can be solved using the finite-differencing schem
STEP 6:px,y,θ = e · px,y,θ ,
lds
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ely
opic
h
in

ng
hen
prob-
m
d to

rser
lve

grid

The modified PDE is

∂P

∂t
= −cosθ

∂P

∂x
− sinθ

∂P

∂y
+ σ

2

2

∂2P

∂θ2
− 1

τ
P

+ σ
2
x

2

∂2P

∂x2
+ σ

2
y

2

∂2P

∂y2
,

whereσ 2
x =σ 2

xerr(θ )+σ 2
xcorr(θ )= 1

4 andσ 2
y=σ 2

yerr(θ )+σ 2
ycorr(θ )=

1
4. The variances,σ 2

xcorr(θ ) andσ 2
ycorr(θ ), are the correction fac-

tors needed to make the advection error isotropic. Their val
are given by the expressions

σ 2
xcorr(θ ) = 1

4
− |cosθ |(1− |cosθ |),

σ 2
ycorr(θ ) = 1

4
− |sinθ |(1− |sinθ |),

which were derived by linear interpolation of the varianc
for the maximum and minimum error directions. The mod
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whereλ= 1
2σ

21t/(1θ )2, λx = 1
2σ

2
xcorr(θ ) and λy= 1

2σ
2
ycorr(θ ).

(Note thatλx is independent of1t and1x since, for a grid
spacing of1x and a time step size of1t , the variance of a
particle’s position is given byσ 2

xerr(θ )(1x)2/1t .) As long as
1x/1t =1y/1t = 1, the first two steps will be stable. Since o
undersampling schedule described below ensures that1x=1t ,
this condition will always hold. Because the maximum va
of σ 2

xcorr(θ ) andσ 2
ycorr(θ ) is 0.25, it follows thatλx < 0.5 and

λy< 0.5. Consequently the third and fourth steps will alwa
be stable. More care is required to implement theθ -diffusion
since1t is increased each time we undersample, and so
possible thatλ could exceed12, in which case the first order ex
plicit scheme described in Section 2 will become unstable
overcome this problem, in the fifth step, whenλ≥ 1

2, we switch
to a second order implicit scheme, i.e., the Crank–Nichol
method (see [7]), which is stable for all values ofλ. Although
the Crank–Nicholson method is more expensive than the exp
method, in practice this is often not an issue. For example,
completion fields in this paper are of size 256× 256 with 36 dis-
crete orientations and have a variance of order 10−3. They were
produced with 18 time steps per level and required a pyra
with five levels. So it is only on the last level or two thatλmight
exceed1

2.
After c time steps are performed at a given resolution

p.d.f., p, is spatially undersampled with a matching increase
the speed of evolution ofp. This is accomplished by doublin
1x,1y, and1t and by means of thereduction operation

pi+1(x, y, θ ; 1)← pi (2x, 2y, θ ; c),

wherei andi + 1 are successive levels in a resolution pyram
Using the above strategy we can efficiently simulate the e
lution of the PDE for a sufficient length of time. However,
compute the source field, we must still compute the integra
nly
ng
the probability over all time. Within a given level, the probability
can be accumulated as before, using the recurrence equation

ample, consider the case where the initial p.d.f. is nonzero o
at (0, 0, π2 ). As expected, the completion field is greatest alo
FIG. 3. Demonstration of the moonwalking artifact. Left: The completion
method of this paper. The moonwalking artifact is visible in a neighborhood
ET AL.
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p′i (x, y, θ )← p′i (x, y, θ )+ pi (x, y, θ ; t).

After c time-steps,p′i (x, y, θ ) will hold the partial sum for the
i th level:

p′i (x, y, θ ) =
c∑

t=1

pi (x, y, θ ; t).

The only thing that remains is to combine the partial sums
each level. This is accomplished using repeatedprojection op-
erationsto push the partial sums down the resolution pyram

for i = L downto 1 do

p′i−1(x, y, θ )← p′i−1(x, y, θ )+ Proj(p′i )(x, y, θ )

endo

where

Proj(p′i )(x, y, θ )←

p′i
(

x
2 ,

y
2 , θ

)
if x, y even,

1
2

{
p′i
(

x
2 ,

y− 1
2 , θ

)+ p′i
(

x
2 ,

y+ 1
2 , θ

)}
if x even, y odd,

1
2

{
p′i
(

x− 1
2 ,

y
2 , θ

)+ p′i
(

x+ 1
2 ,

y
2 , θ

)}
if x odd, y even,

1
4

{
p′i
(

x− 1
2 ,

y− 1
2 , θ

)+ p′i
(

x− 1
2 ,

y+ 1
2 , θ

)
+ p′i

(
x+ 1

2 ,
y− 1

2 , θ
)+ p′i

(
x+ 1

2 ,
y+ 1

2 , θ
)}

if x, y odd.

The addition of extra spatial smoothing in Steps 3 and 4
troduces an undesirable artifact in the completion field wh
we call “moonwalking” (so called because it is due to probab
ity mass moving backwards); see Fig. 3. This artifact is ch
acterized by the property that near where the initial p.d.f
nonzero the completion field is greater than expected in dir
tions roughly perpendicular to the direction of motion. For e
field due to a six-stick Ehrenstein initial stimulus computed using the linear-time
of each of the keypoints (cf. FIG. 5). Right: The region inside the box, magnified 16×.
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the y axis. However, it is also quite strong in a small interv
about the origin on thex axis. This is because the combine
effect of Steps 3 and 4 is to move a small but significant fr
tion of the initial probability mass around small loops, there
propagating mass backwards. Consequently the source and
fields, and hence the completion field, are greater than expe
on thex axis. Put succinctly, the moonwalking artifact is d
to the short-term interaction between the source and sink fie
The simplest way to remove this artifact is to subtract the pr
uct of short-term source and sink fields from the complet
field. More precisely, the source fieldp′(x, y, θ ) is decomposed
asp′ = p′S+ p′L, where theshort-term source field, p′S, is given
by integrating the p.d.f,p, up to a timeTS, i.e., p′S=

∫ TS

0 p dt.
Then the stochastic completion field is redefined to be

C = p′q′ − p′Sq′S = p′Sq′L + p′Lq′S+ p′Lq′L, (3.1)

whereq′ =q′S+q′L denotes the corresponding decomposition
the sink field. In the examples presented in Section 6 below
needed the short-term source and sink fields to be about e
time steps long to completely remove the moonwalking artif
from the completion field.

4. AN ANALYSIS OF THE RESOLUTION
PYRAMID ALGORITHM

The aim of this section is to analyze how well the multilev
resolution pyramid algorithm presented in the previous sec
computes the completion field by comparing it to the complet
field obtained by evolving the same six step finite-differenc
scheme on the bottom level of the pyramid. In particular, giv
a tolerance level,ε, we will estimate the number of time step
c, required to evolve the p.d.f.,p, on each level before passingp
up to the next level of the pyramid in order for the relative er
between the multilevel and single level solutions to be less t
the tolerance levelε. We will show thatc depends primarily on
the tolerance levelε; i.e., it is essentially independent of the gr
size and the parameters in the PDE.

To state the problem more precisely, letp(x, y, θ ; t) be the
p.d.f. obtained by evolving an initial p.d.f. on the bottom lev
of the pyramid for timet , and let PR(p) (x, y, θ ; t) be the p.d.f.
on the base-level grid obtained (by interpolation) from the
dersampled values ofp on a grid which is twice as coarse in th
spatial variablesx andy, i.e., PR(p) (x, y, θ ; t) is the projection
back to the base level of the reduction ofp(x, y, θ ; t) to the
next level of the pyramid. As time increases the high-freque
content ofp decreases (due to the extra spatial diffusion int
duced in Steps 3 and 4 of the finite-differencing scheme)
so PR(p) is a better approximation top as time increases. Th
degree to which PR(p) approximatesp can be estimated usin
the Shannon–Whittaker Sampling Theorem [8]. The condit
we use to estimate the number of time steps per level,c, is that

by time c, the probability density functions PR(p) and p are
relatively close in theL2-norm, in that
IC COMPLETION FIELDS 293
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‖PR(p)− p‖2
‖p‖2

< ε, (4.1)

whereε is the given tolerance level and where‖ f ‖2 := ∫∞−∞ ∫∞−∞
| f (x, y)|2 dx dydenotes theL2-norm in the spatial variables.

To make the calculation ofc tractable we make two simplify-
ing assumptions. First we assume that the interpolation func
used in the projection operation is the full sinc function rath
than the small kernel approximation for it which we actua
used. This assumption allows us to easily apply the Samp
Theorem. Second, we assume that the p.d.f.p(x, y, θ ; t) is sim-
ply a function,p(x, y; t), evolving according to the spatial dif
fusion equation,

∂P

∂t
= 1

8

(
∂2P

∂x2
+ ∂

2P

∂y2

)
; (4.2)

that is, we ignore the advection,θ -diffusion and decay terms
since, as numerical experiments confirm (see below), these te
do not increase the spatial frequency content of the p.d.f. T
finite-differencing scheme used to implement Eq. (4.2) is

STEP 3′: pt+1/2
n,m = 1

8 pt
n−1,m + 3

4 pt
n,m + 1

8 pt
n+1,m

(4.3)
STEP 4′: pt+1

n,m = 1
8 pt+1/2

n,m−1+ 3
4 pt+1/2

n,m + 1
8 pt+1/2

n,m+1,

wheren andm are integers.
Given these assumptions we have the following result, wh

is proved in the Appendix.

THEOREM 4.1. Suppose that a p.d. f . p(x, y; t) evolves on
an N× N grid according to the finite-differencing scheme(4.3).
Then the number of time steps per level, c, required for Eq.(4.1)
to hold with relative error, ε, is determined by the inequality

∑
|n|≤N/4

(
1
4 cos2πn

N + 3
4

)2c

N/2−1∑
n=−N/2

(
1
4 cos2πn

N + 3
4

)2c
>

√
1− ε

2

2
. (4.4)

For largeN the left hand side of this inequality is a goo
approximation to the ratio of two integrals and so is essentia
independent ofN. Table 4.1 shows the relationship between t
number of time steps per level,c, and the reconstruction error
ε, for a grid of size,N= 256.

In the experimental results in Section 6 we usedc= 18 time
steps per level, which corresponds to a relativeL2-error of

TABLE 4.1

RelativeL2 error,ε 11% 8% 5% 3% 2% 1% 0.5%
Number of time steps per level,c 8 9 11 12 14 16 18
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ε= 0.5%. We required such a small relative error because of
simplifying assumptions made in Theorem 4.1. For instance,
theorem does not account for the fact that the projection ope
tion was implemented with a small kernel of width 3, rather th
with a large kernel approximation to the sinc function. Howev
the following numerical experiment suggests that our simplif
ing assumptions produce a model which approximates the
quency evolution of the p.d.f. very well. The initial p.d.f. for ou
experiment was a six-stick Ehrenstein figure on a grid of s
256× 256 with 36 discrete orientations. The p.d.f. was evolv
for 16 time steps using the six-step finite-differencing sche
in Section 3. Using the small width-3 kernel approximation
the sinc function, we found that the relativeL2 error in recon-
structing p on the fine grid from its values on the coarse gr
was 5%. We also observed that the projection of the p.d.f. fr
the coarse grid back to the fine grid was more spatially disper
than the p.d.f. on the fine grid. (A wide kernel approximation
the sinc function gives a relativeL2 error of<1%. However, we
did not use such a kernel to compute completion fields since
the conditions of the Sampling Theorem are not met quite ac
rately enough, the lack of locality in the wide kernel can res
in a severe degradation of the completion field.)

Of course, even if the p.d.f. on a given level could be pe
fectly reconstructed from its reduction to the next level, th
finite-differencing scheme used to further evolve the p.d.f.
the next level would produce a different completion field tha
if the evolution had continued for an equivalent amount of tim
on the finer grid. We observed that evolving the p.d.f. on t
coarser grid and then projecting back to the finer grid resul
in some additional spatial dispersion of the p.d.f., and hence
the completion field (see Figs. 6 and 7 below).

5. TIME COMPLEXITY

Given ann× n image withm discrete orientations, i.e., a
problem of sizen2m, the number of levels in the resolution
pyramid is

L = 1+ log2(n/c)

and the cost at thei th level to performc time-steps is

c · n
2m

4i−1
.

It follows that the total cost of running the PDE forward in tim
is

c ·
(

1+ 1

4
+ · · · + 1

4L−1

)
· n2m.
The total cost of pushing the partial sums for each level dow
ET AL.
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the resolution pyramid is(
1

4L−1
+ · · · + 1

4
+ 1

)
· n2m.

Consequently, the total amount of time required by both sta
is

(c+ 1) ·
(

1+ 1

4
+ · · · + 1

4L−1

)
· n2m<

4

3
(c+ 1) · n2m,

so that the time complexity of the new algorithm isO(n2m), i.e.,
linear in the problem size. In practice, we have observed
problems which previously took over an hour to finish (n= 256
andm= 36) can now be computed in about 2 min.

6. EXPERIMENTAL RESULTS

In this section we present examples of stochastic comple
fields constructed using the linear-time algorithm described
Section 3 and compare them to completion fields construc
using the algorithm of Williams and Jacobs, recalled in Sectio

In each example the completion field is represented by
array of size 256× 256× 36. In the figures brightness encod
the sum over all orientations. In each figure completion fie
on the left were computed using the method of Williams a
Jacobs, while those on the right were obtained using the lin
time algorithm in this paper. In the multilevel resolution pyram
algorithm 18 time steps were performed at each level of
pyramid and (unless otherwise stated) 8 time steps were u
in the short-term source to ensure that the moonwalking arti
was removed.

As a first demonstration we consider the stochastic comple
field due to an Ehrenstein stimulus consisting of four sticks
[11]). The variance isσ 2= 0.0004/γ 2 and the decay constan
is τ = 160γ , where the speed of propagation isγ = 1. Figure 4
(left) shows the completion field computed using the method
Williams and Jacobs, both clipped above at 10−9. The horizontal
and vertical straight edges are due to the anisotropic natur
the advection error. Figure 4 (right) shows the completion fi
computed using the linear-time algorithm, scaled by 5.0× 1010.
In our second demonstration the initial stimulus is an Ehrens
figure with six sticks. The varianceσ 2 and decay rateτ are
the same as for the four-stick Ehrenstein initial stimulus. T
completion fields are shown in Fig. 5, both clipped above
3× 10−7. Notice that the completion field on the right is a litt
duller and is more dispersed half way between each stimulu
comparison with that on the left.

Finally we consider the completion field due to an initial dist
bution consisting of two points, at (32, 128, 30◦) and (224, 128,
−30◦). Figure 6 shows the completion fields, which are conc
trated along the arc of a circle. In this caseσ 2= 0.0004/γ 2 and
n
τ = 160γ , where the speed was chosen to beγ = 1.92 since the
radius of the circular arc is 1.92 times the radius of the Ehrenstein
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FIG. 4. Left: Stochastic completion field for a four-stick Ehrenstein figure computed using the method of Williams and Jacobs [11]. Right: The sa
computed using the linear-time method described in this paper.

FIG. 5. Left: Stochastic completion field for a six-stick Ehrenstein figure computed using the method of Williams and Jacobs [11]. Right: The same, but cd
using the linear-time method described in this paper.

FIG. 6. Stochastic completion fields for a two-point initial distribution withp = (32, 128, 30◦) and p = (224, 128,−30◦).
1 2
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FIG. 7. Sections of the completion fields in Fig. 6. The horizontal axes of these graphs corresponds to the vertical linesx= 128 shown in Fig. 6. Notice that the

section on the right is somewhat more dispersed since by the time probability mass reaches the midpoint of the arc the Fokker–Planck equation is being solved on
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a very coarse grid.

initial stimuli discussed above. Twelve time steps were requi
to remove the moonwalking artifact. Both completion fields a
clipped above at 3× 10−9. The interesting thing to note her
is that even with such a large distance between the two in
points the completion field constructed with only 18 steps
level looks quite good. See also Fig. 7.

7. CONCLUSION

In two recent papers, Williams and Jacobs [11, 12] have
scribed a representation of visible and occluded image cont
called a stochastic completion field. The stochastic comple
field is based on the idea that the distribution of contour sha
can be modeled by the paths of particles traveling with cons
speed in directions described by Brownian motions. The al
rithm described in the more recent paper [12] is based on a sim
finite-differencing scheme for integrating the partial different
equation given by Mumford [6]. The time-complexity of the a
gorithm described in [12] isO(n3m) (for ann× n image withm
discrete orientations). Their solution also introduced unwan
anisotropic smoothing which resulted in noticeable artifacts
the completion fields. In our approach, we carefully add smoo
ing so as to make the error isotropic. We then decrease the sp
and temporal sampling rate as the high spatial frequencies
out of the evolving solution. The result is anO(n2m) method.
In practical terms, the previous algorithm took over an hour
produce an answer (for a problem of size 256× 256× 36) and
the new method takes about 2 min.

APPENDIX

In this appendix we prove Theorem 4.1. The calculation

‖PR(p)− p‖2 proceeds as follows. First recall that‖PR(p)−
p‖2=‖P̂R(p)− p̂‖2 by Plancherel’s theorem. Second, by th
ed
re

tial
er

de-
urs
ion
pes
ant
o-
ple

al
l-

ed,
in
th-
atial
rop

to

of

Sampling Theorem,

PR(p)(x, y; t)

=
∞∑

n,m=−∞
p(2n, 2m; t) sinc

(
(x − 2n)

π

2

)
sinc

(
(y− 2m)

π

2

)
,

where sinc(x) := sinx
x . The (continuous) Fourier transform o

PR(p) is

P̂R(p)(ω, η; t)= χ (ω, η)
∞∑

n,m=−∞
p̂(ω− nπ, η−mπ ; t), (A.1)

whereχ (ω, η) is the indicator function of the square|ω| ≤ π
2 ,|η| ≤ π

2 . Since the high frequencies drop out as time increa
we may assume that

p̂(ω, η) is negligible for|ω| or |η| > 3π

2
. (A.2)

(A calculation of p̂ shows that this assumption is reasonabl
This assumption implies that PR(p) is well approximated by

P̂R(p) ≈ χ
1∑

n,m=−1

p̂n,m,

where p̂n,m(ω, η; t)= p̂(ω − nπ, η −mπ ; t), and so

P̂R(p)− p̂ ≈ (1− χ ) p̂+ χ
∑

(n,m)∈I

p̂n,m, (A.3)

where the index set isI ={(n,m) : |n|, |m| ≤1, (n,m) 6= (0, 0)}.
e
A second application of the assumption (A.2), together with

the fact that thep̂n,m are translates of̂p, implies that the two
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terms in Eq. (A.3) are approximately equal, and so

P̂R(p)− p̂ ≈ 2(1− χ ) p̂.

Consequently our condition (4.1) forc can be reformulated as

‖(1− χ ) p̂‖2
‖ p̂‖2

<
ε√
2
. (A.4)

To calculate the time evolution of̂p, let p evolve on an
N× N grid according to the finite-differencing scheme giv
by Steps 3′ and 4′ in Eq. (4.3), and letp̂(n,m; t) denote the
discrete Fourier transform ofp, i.e., p̂(n,m; t) is the compo-
nent of p with x-frequency 2πn/N and y-frequency 2πm/N.
HereN is assumed to be even andn,m are integers in the range
−N/2≤ n,m≤ N/2− 1. A calculation ofp̂(n,m; t) presented
below shows that, if the p.d.f.p is initially concentrated at a
single point of the grid, then condition (A.4) is equivalent to t
inequality (4.4) given in Theorem 4.1.

The discrete Fourier transform̂p(n,m, ; t) of the p.d.f.,p(n,
m; t), is calculated as follows. Letpx(n; t) and py(m; t) evolve
according to Steps 3′ and 4′ of the finite-differencing scheme
(4.3), respectively. Since Steps 3′ and 4′ commute it follows that

p̂(n,m; t) = p̂x(n; t) p̂y(m; t),

where

p̂x(n; t) = 1

N

N/2−1∑
k=−N/2

px(k; t)e−2π ink/N

is the discrete Fourier transform ofpx(n; t). Let Tx be the linear
operator given bypx(·; t)= Tx px(·; t−1) and lethx = Txδ be the
response ofTx to the impulse at the origin,δ. SinceTx is a shift-
invariant operator it follows that̂px(n; t)= (ĥx(n))t p̂x(n; 0). If
p(·; t)= δ then a short calculation shows that

p̂x(n; t) = 1
(

1
cos

2πn + 3
)t

.

Nt+1 4 N 4
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n

e

A similar formula holds for p̂y(m; t). The required inequal-
ity (4.4) now follows from Condition (A.4) using elementar
algebra.
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