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Abstract. We describe a method for computing the likelihood that a completion joining two contour fragments
passes through any given position and orientation in the image plane. Like computations in primary visual cortex
(and unlike all previous models of contour completion), the output of our computation is invariant under rotations
and translations of the input pattern. This is achieved by representing the input, output, and intermediate states of
the computation in a basis of shiftable-twistable functions.
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1. Introduction

Any computational model of human visual informa-
tion processing must reconcile two apparently con-
tradictory observations. First, contour computations in
primary visual cortex are Euclidean invariant—small
rotations and translations of the input pattern of light
falling on the retina produce identical rotations and
translations of the output of the computation. Second,
simple calculations based on the size of primary vi-
sual cortex (60 mm × 80 mm) and the observed den-
sity of cortical hypercolumns (4/mm2) suggest that the
discrete spatial sampling of the visual field is exceed-
ingly sparse [16]. The apparent contradiction becomes
clear when we ask the following questions: How is this
remarkable invariance achieved in computations per-
formed by populations of cortical neurons with broadly
tuned receptive fields centered at so few locations? Why
doesn’t our perception of the world change dramati-
cally when we tilt our head by 5 degrees?

One of the main goals of our research is to show
how the sparse sampling of the visual field can be rec-

onciled with the local Euclidean invariance of visual
computations. To realize this goal, we introduce the
notion of a shiftable-twistable basis of functions on
the space, R2 × S1, of positions and directions. This
notion is a generalization of the notion of a shiftable-
steerable basis of functions on the plane, R2, intro-
duced by Freeman, Adelson, Simoncelli, and Heeger
in two seminal papers [4, 14]. Freeman and Adel-
son [4] clearly appreciated the importance of the is-
sues raised above when they devised the notion of
a steerable basis to implement rotationally invariant
computations. In fact, for computations in the plane
the contradictions discussed above were largely re-
solved with the introduction by Simoncelli et al. [14]
of the shiftable-steerable pyramid transform, which
was specifically designed to perform Euclidean invari-
ant computations on R2. The basis functions in the
shiftable-steerable pyramid are very similar to sim-
ple cell receptive fields in primary visual cortex. How-
ever, many computations in visual cortex likely operate
on functions on the space of positions and directions,
R2 × S1, rather than on functions on the plane, R2 (e.g.
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[5, 6, 8, 10, 12, 17, 18, 22]). Consequently, we propose
that shiftability-twistability (in addition to shiftability-
steerability) is the property which binds sparsely
distributed receptive fields together functionally to
perform Euclidean invariant computations in visual
cortex.

In this article, we describe a new algorithm for com-
pleting the boundaries of partially occluded objects.
This algorithm is based on a computational theory
of contour completion in primary and secondary vi-
sual cortex developed in recent years by Williams and
colleagues [15, 17–19]. Like computations in visual
cortex, and unlike previous models of illusory contour
formation, our computation is Euclidean invariant. This
invariance is achieved by representing the input, output,
and intermediate states of the computation in a basis of
shiftable-twistable functions.

Mumford [9] proposed that the probability distri-
bution of natural shapes can be modeled by parti-
cles traveling with constant speed in directions given
by Brownian motions. More recently, Williams and
Jacobs [17] defined the stochastic completion field to
be the distribution of particle trajectories joining pairs
of position and direction constraints, and showed how
it could be computed in a neural network.

The neural network described in [18] is based on
Mumford’s observation that the evolution in time of
the probability density function (p.d.f.) representing
the position, (x, y), and direction, θ , of a particle can
be modeled as a set of independent advection equations
acting in the (x, y) dimension coupled in the θ dimen-
sion by the diffusion equation [9]. Unfortunately, solu-
tions of this Fokker-Planck equation computed by nu-
merical integration on a rectangular grid do not exhibit
the robust invariance under small rotations and trans-
lations which characterizes the output of computations
performed in primary visual cortex. Nor does any other
existing model of contour completion, sharpening, or
saliency ([e.g. 5, 6, 8, 10, 12, 17, 18, 22]).

Our new algorithm computes stochastic completion
fields in a Euclidean invariant manner. Figure 2 (left)
is a picture of the stochastic completion field due to the
Kanizsa Triangle stimulus in Fig. 1(b). Figure 2 (right)
shows the stochastic completion field due to a rotation
and translation of the (input) Kanizsa Triangle. The
Euclidean invariance of our algorithm can be seen by
observing that the (output) stochastic completion field
on the right in Fig. 2 is itself a rotation and translation
of the stochastic completion field on the left, by the
same amount.

Figure 1. (a) Ehrenstein figure. (b) Kanizsa triangle.

In subsequent work [20], we have extended the re-
sults presented here and in [19] by describing a discrete
neural network that enhances and completes salient
closed contours in a shift-twist invariant manner. Like
the input provided to primary visual cortex by the lat-
eral geniculate nucleus, the input to the computation
in [20] is isotropic. That is, it is composed of spots, not
edges.

Euclidean invariance is a property only of compu-
tations defined in the continuum. However, we will
show that certain Euclidean invariant computations in
the continuum can be implemented using a finite num-
ber of operations on a finite number of basis functions,
provided that the discrete implementation of the con-
tinuous computation is carefully designed to preserve
Euclidean invariance. The general approach we adopt
in this paper involves explicitly using the shiftability
and twistability of the basis functions to transform a
Euclidean invariant computation in the continuum into
a discrete computation on a lattice. The discrete com-
putation operates on the coefficients of a wavelet-like
transform of the function to be computed. This ap-
proach to visual computations is in accord with the
hypothesis of Daugman [3] (and others, e.g. [7, 11])
that an ensemble of simple cell receptive fields can be
regarded as performing a wavelet transform of the im-
age, in which the responses of the neurons correspond
to the transform coefficients and the receptive fields
correspond to the basis functions. Further biological
motivation for our approach can be found in [20].

2. Shiftable-Twistable Bases

Many visual and image processing tasks are most nat-
urally formulated in the continuum and are invariant
under a group of symmetries of the continuum. The
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Figure 2. Stochastic completion fields. Left: Of Kanizsa triangle. Right: After the initial conditions have been rotated and translated.

Euclidean group, of rotations and translations, is one
example of a continuous symmetry group. However,
because discrete lattices are not preserved by the action
of continuous symmetry groups, the natural invariance
of a computation can be easily lost when it is performed
in a discrete network. In this section we will introduce
the notion of a shiftable-twistable basis and show how
it can be used to implement discrete computations on
the continuous space of positions and directions in a
way which preserves their natural invariance.

In image processing, the input and output are func-
tions on R2, and the appropriate notion of the invariance
of computations is Euclidean invariance—any rotation
and translation of the input should produce an identical
rotation and translation of the output. Simoncelli et al.
[14] and Freeman and Adelson [4] introduced the no-
tion of a shiftable-steerable basis of functions on R2,
and showed how it can be used to achieve Euclidean
invariance in discrete computations for image enhance-
ment, stereo disparity measurement, and scale-space
analysis.

Given the nature of simple cell receptive fields, the
input and output of computations in primary visual
cortex are more naturally thought of as functions de-
fined on the continuous space, R2 × S1, of positions,
�x = [x, y]T , in the plane, R2, and directions, θ , in the
circle, S1. For such computations the appropriate no-
tion of invariance is determined by those symmetries,
T�x0,θ0 , of R2 × S1, which perform a shift in R2 by �x0,
followed by a twist in R2 × S1 through an angle, θ0. A
twist through an angle, θ0, consists of two parts: (1) a
rotation, Rθ0 , of R2 and (2) a translation in S1, both by
θ0. The symmetry, T�x0,θ0 , which is called a shift-twist

transformation, is given by the formula,

T�x0,θ0 (�x, θ ) = (
Rθ0 (�x − �x0) , θ − θ0

)
. (2.1)

The relationship between continuous shift-twist trans-
formations and computations in primary visual cortex
was first hypothesized by Williams and Jacobs [17],
who observed that the continuous shift-twist group
characterized the symmetry of the Green’s function of
the Fokker-Planck equation1 described by Mumford
[9]:

G(�x, θ ; t1 | �u, φ; t0) = G(T�u,φ(�x, θ ); t1 − t0 | 0, 0; 0).

The shift-twist of a complex-valued2 function, P :
R2 × S1 → C, on R2 × S1 by an amount, (�x0, θ0) ∈
R2 × S1, is the function, T�x0,θ0 P : R2 × S1 → C,
defined by

(
T�x0,θ0 P

)
(�x, θ ) = P

(
T�x0,θ0 (�x, θ )

)
. (2.2)

A visual computation on R2 × S1 is called shift-twist
invariant if, for all (�x0, θ0) ∈ R2 × S1, a shift-twist
of the input function by (�x0, θ0) produces an identi-
cal shift-twist of the output function. Correspondingly,
we define a shiftable-twistable basis3 of functions on
R2 × S1 to be a set of functions with the property that
whenever a function, P : R2 × S1 → C, is in their
span, then so is T�x0,θ0 P , for every choice of (�x0, θ0) in
R2×S1. As such, the notion of a shiftable-twistable ba-
sis on R2 × S1 generalizes that of a shiftable-steerable
basis on R2.
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Shiftable-twistable bases can be constructed as fol-
lows. First we recall Simoncelli’s concept of the shifta-
bility of a function, which is closely related to the
Shannon-Whittaker Sampling Theorem. A periodic
function, ψ : R → C, of period X , is shiftable if
there is an integer, K , such that the shift of ψ by an
arbitrary amount, x0 ∈ R, can be expressed as a linear
combination of K basic shifts of ψ , i.e., if there exist
interpolation functions, bk : R → C, such that

ψ(x − x0) =
K−1∑
k=0

bk(x0) ψ(x − k�), (2.3)

where � = X/K is the basic shift amount.4 If we let
Tx0 : R → R be the translation operator defined by
Tx0 (x) = x − x0, then Eq. (2.3) is equivalent to

Tx0ψ =
K−1∑
k=0

bk(x0) Tk�ψ. (2.4)

The simplest shiftable function in one dimension is
a pure harmonic signal, ψ(x) = exp(2π iωx/X ), for
some integer ω, in which case K = 1. More gen-
erally, Simoncelli et al. [14] proved that any band-
limited function is shiftable. Specifically, let ψ̂k =∫ X

0 ψ(x) exp(−2π ikx/X ) dx denote the k-th Fourier
series coefficient of ψ , where k ∈ Z is an inte-
ger. If the set of non-zero Fourier series coefficients
ψ̂k of ψ is finite and is indexed by (a subset of)
B = {k0, k0 + 1, . . . , k0 + K − 1}, then ψ can be
shifted using the K interpolation functions, bk , defined
by bk(x0) = b(x0 − k�), where

b(x) = 1

K

∑
k∈B

exp(2π ikx/X ) (2.5)

is the complex conjugate of the perfect bandpass filter
constructed from the set of K frequencies, B. In partic-
ular, note that the interpolation functions only depend
on the set B, and not on ψ itself.

Strictly speaking, since they are neither periodic nor
band-limited, functions like the Gabor, Gaussian, and
derivative of Gaussian are not shiftable. However, all of
these functions decay exponentially and are therefore
effectively periodic. Moreover, for all intents and pur-
poses, a function, ψ , like one of these, can be shifted
by choosing the set, B, to consist of all Fourier series
frequencies, k, such that the Fourier amplitude, |ψ̂k |,
exceeds some small threshold value. Such functions
will be called effectively shiftable.

Next recall that Freeman and Adelson [4] define a
function, ψ : R2 → C, to be steerable if any arbitrary
rotation of ψ about the origin in R2 can be expressed
as a linear combination of a finite number, M , of basic
rotations of ψ by amounts m�θ , where M�θ = 2π .

Now let � : R2 × S1 → C be a periodic func-
tion with period X in both spatial variables, �x . In anal-
ogy with the definition of a shiftable-steerable func-
tion on R2, we say that � is shiftable-twistable on
R2 × S1 if there are integers, K and M , and inter-
polation functions, b�k,m : R2 × S1 → C, such that, for
each (�x0, θ0) ∈ R2 × S1, the shift-twist of � by (�x0, θ0)
is a linear combination of K 2 M basic shift-twists of �

by amounts (�k�, m�θ ), i.e., if

T�x0,θ0� =
∑
�k,m

b�k,m(�x0, θ0) T�k�,m�θ
�. (2.6)

Here � = X/K is the basic shift amount and �θ =
2π/M is the basic twist amount. The sum in Eq. (2.6)
is taken over all pairs of integers, �k = (kx , ky), in the
range, 0 ≤ kx , ky < K , and all integers, m, in the range,
0 ≤ m < M . As we will show, for many shiftable-
twistable bases, the interpolation functions, b�k,m on
R2 × S1, are defined in terms of the one-dimensional
interpolation functions, bk , defined by Eq. (2.5).

The simplest shiftable-twistable functions are those
which can be twisted with M = 1 basic twists: T�0,θ0

� =
b(θ0)�. Such functions will be called self-twistable.
The following Proposition shows how to construct
a shiftable-twistable basis from a shiftable-twistable
function.

Proposition 2.1. Let � be a shiftable-twistable
function with interpolation functions, b�k,m. Then the
collection of functions, ��k,m , defined by

��k,m = T�k�,m�θ
�, (2.7)

where � and �θ are the basic shift and twist amounts,
form a shiftable-twistable basis. More precisely, if

P =
∑
��,n

c��,n ���,n, (2.8)

then

T�x0,θ0 P =
∑
�k,m

c�k,m(�x0, θ0) ��k,m, (2.9)
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where

c�k,m(�x0, θ0)

=
∑
�l,n

b�k,m

(
R−n�θ

(�x0) + ���, θ0 + n�θ

)
c��,n.

(2.10)

The proof of the Proposition is a straightforward ap-
plication of the following composition rule for shift-
twist transformations. If T0 ◦ T1 denotes the composi-
tion of two transformations defined by (T0◦T1)(�x, θ ) =
T0(T1(�x, θ )), then

T�x0,θ0 ◦ T�x1,θ1 = TR−θ1 (�x0)+�x1 , θ0+θ1 . (2.11)

Details of the proof of Proposition 2.1 can be found in
the Appendix.

This paper is concerned with visual computations
whose input and output are functions on the continuum,
R2 × S1, and which are shift-twist invariant. We pro-
pose the following general framework for performing
such computations in a shift-twist invariant manner in
a discrete network. First, the various states of the com-
putation, which are functions P : R2 × S1 → C, are
to be expressed in a shiftable-twistable basis, ��k,m , as

P =
∑
�k,m

c�k,m ��k,m, (2.12)

where �c = {c�k,m} is the state or coefficient vector of P .
Second, the input state vector is to be transformed to
the output state vector in a shift-twist invariant manner
using a feedforward or recurrent neural network.

The biological plausibility of a given computation
depends on the specific choice of shiftable-twistable
basis. We conclude this section by presenting several
examples of shiftable-twistable bases, in order of in-
creasing biological plausibility and increasing com-
plexity. In each case, the basis functions � : R2×S1 →
C are separable, i.e., they are the product of a peri-
odic shiftable-steerable function, ψ : R2 → C and
a shiftable function, h : S1 → C, i.e., �(�x, θ ) =
ψ(�x)h(θ ).

2.1. Example A: The Gaussian-Fourier Basis

The Gaussian-Fourier basis of functions on R2 × S1 is
the product of a shiftable-steerable basis of Gaussians
on R2 and a Fourier series basis on S1. Let g be the
radial Gaussian of standard deviation, ν, on R2 defined

by g(�x) = 1
ν

exp(−‖�x‖2/2ν2). We regard g as a peri-
odic function of period, X , which is chosen to be much
larger than ν, so that g( X

2 , X
2 ) and its derivatives are

essentially zero. For each fixed frequency, ω ∈ Z, we
define a function, Gω : R2 × S1 → C, by

Gω(�x, θ ) = g(�x) exp(iωθ ). (2.13)

The following Proposition states that each of the func-
tions, Gω, is self-twistable. Its proof is given in the
Appendix.

Proposition 2.2. For each fixed frequency, ω ∈ Z,

the periodic function, Gω, on R2×S1 of period X in the
spatial variables, �x, is effectively shiftable-twistable.
More precisely, let M = 1 and let K be the number of
essentially non-zero Fourier series coefficients of the
factor, gX (x) = exp(−x2/2ν2), of g(�x). Then, for any
(�x0, θ0) ∈ R2 × S1,

T�x0,θ0 Gω =
∑

�k
b�k,ω(�x0, θ0) T�k�,0Gω, (2.14)

where the interpolation functions are given by

b�k,ω(�x0, θ0) = exp(−iωθ0) b�k(�x0). (2.15)

Here b�k(�x0) = b(�x0 − �k�), where

b(�x) = 1

K 2

∑
�k∈B

exp(2π i�k · �x/X ), (2.16)

and B is the set of K 2 indices of the essentially non-zero
Fourier series coefficients of g.

By Propositions 2.1 and 2.2, for each fixed ω ∈ Z,
the collection of periodic functions, G�k,ω, defined by

G�k,ω(�x, θ ) = (T�k�,0Gω)(�x, θ ) = g(�x − �k�) exp(iωθ ),

(2.17)

form an effectively shiftable-twistable basis. We define
the Gaussian-Fourier basis on R2 × S1 to be the set of
functions, G�k,ω, for K 2 indices, �k ∈ Z2, parameterizing
basic shifts in R2 , and N angular frequencies, ω ∈ Z.
Here N is determined by the θ -frequency content of the
functions to be represented in the basis. Because Gω is
self-twistable, �θ = 2π and therefore Propositions 2.1
and 2.2 immediately imply the following corollary.
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Corollary 2.3. The Gaussian-Fourier basis, G�k,ω,

defined by Eq. (2.17), is effectively shiftable-twistable.
Consequently, if P : R2 × S1 → C is represented in
the Gaussian-Fourier basis as

P =
∑
��,ω

c��,ωG��,ω, (2.18)

then, for any (�x0, θ0) ∈ R2×S1, the shift-twist, T�x0,θ0 P,

of P can also be represented in the basis as

T�x0,θ0 P =
∑
�k,ω

c�k,ω(�x0, θ0) G�k,ω, (2.19)

where

c�k,ω(�x0, θ0) = exp(−iωθ0)
∑

��
c��,ωb�k−�� (�x0). (2.20)

In particular, Eq. (2.20) shows that for each ω ∈ Z, the
coefficient vector, c�k,ω(�x0, θ0), of T�x0,θ0 P is obtained
from the coefficient vector, c�k,ω, of P by circular con-
volution with the interpolation function vector b(�x0)
defined in (2.16).

Although it is not as biologically plausible as the
other bases we describe, because of Eq. (2.20), a single-
scale Gaussian-Fourier basis can be a very efficient
basis to use in visual computations on R2 × S1, pro-
vided that the input function, P , to the computation can
be represented in such a basis. For example, suppose
that P is modeled as a linear combination of three-
dimensional Gaussians, all of standard deviation ν in �x
and width η in θ , that are centered at arbitrary points,
(�x0, θ0), in R2 × S1, i.e.,

P(�x, θ ) =
∑

j

g(�x − �x j )h(θ − θ j ), (2.21)

where g is the Gaussian in Eq. (2.13) and where h is a
Gaussian on S1 defined by

h(θ ) = 1

η
exp(−θ2/2η2) =

∑
ω

ĥω exp(iωθ ), (2.22)

where η satisfies η � 2π , so that h can be regarded as a
periodic function on S1. Then, by Proposition 2.2, the
coefficient vector, c�k,ω, of P in the Gaussian-Fourier
basis is given by

c�k,ω = ĥω

∑
j

b�k(�x j ) exp(−iωθ j ). (2.23)

2.2. Example B: The Complex Directional
Derivative of Gaussian (CDDG)–Fourier Basis

This example is very similar to the previous one, except
that the Gaussian, g on R2, is replaced by its complex
directional derivative, ψ , in the direction of the com-
plex valued vector, [1, i]T, defined by

ψ(�x) = ∂g

∂x
+ i

∂g

∂y
= − 1

ν2 (x + iy)g(�x). (2.24)

Notice that ψ = 2 ∂g
∂z , where z = x + iy. Although g

is not a wavelet, ψ is.5 As in Example A, we regard ψ

as a periodic function of period, X . Pictures of ψ are
shown in Fig. 3. The complex directional derivative
of Gaussian (CDDG)–Fourier basis, ��k,ω, is defined
by

��k,ω(�x, θ ) = ψ(�x − �k�) exp(iωθ ). (2.25)

Freeman and Adelson [4] showed that the complex
directional derivative of a Gaussian is self-steerable:
T�0,θ0

ψ = exp(−iθ0)ψ . Similarly the function, �ω :
R2 × S1 → C defined by �ω(�x, θ ) = ψ(�x) exp(iωθ ),
is self-twistable: T�0,θ0

�ω = exp(−iθ0) exp(−iωθ0)�ω.
As such, �ω is the simplest non-isotropic shiftable-
twistable function which is localized on R2.

The analogies of Proposition 2.2 and Corollary 2.3
hold for the basis, ��k,ω. The only difference is that in
this case, the interpolation functions in Eqs. (2.15) and
(2.20) are given by

b�k(�x0, θ0) = exp(−iωθ0) exp(−iθ0) b�k(�x0). (2.26)

Unlike the Gaussian-Fourier basis, the CDDG-
Fourier basis has the property that its spatial factor, ψ ,
is a wavelet, which means that arbitrary input func-
tions can be represented in a multi-scale shiftable-
twistable basis constructed from the functions, �ω. We
can use a multi-scale method to represent the input
function, P : R2 × S1 → C, to a visual computation
by exploiting the fact that the function, ψ on R2, is
a mother wavelet which generates an (approximately)
self-inverting, overcomplete wavelet basis [14] (i.e., an
approximately tight frame [2]). Each of the wavelet ba-
sis functions, ψp,�k on R2, is defined to be the translation
by 2p/2� �k of the scaling of ψ by 2p/2,

ψp,�k(�x) = 1

2p/2
ψ

( �x − 2p/2��k
2p/2

)
, (2.27)
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Figure 3. The real part of the complex directional derivative of a Gaussian (CDDG), steered clockwise by 45◦. Left: Real part with standard
deviation, ν = 4.0, (with 40.0 × 40.0 display region). The imaginary part is the rotation of the real part, counter clockwise by 90◦. Right: Real
part at the finer scale, ν = 0.25. The completion fields in Fig. 2 were computed by solving the Fokker-Planck equation in a CDDG-Fourier basis
of this scale.

where the (scale-dependent) period, X , of the wavelet,
ψp,�k , is chosen so that ψp,�0( X

2 , X
2 ) ≈ 0, and � is chosen

so that each scale of the wavelet-Fourier basis, �p,�k,ω,
defined by �p,�k,ω(�x, θ ) = ψp,�k(�x) exp(iωθ ), forms a
shiftable-twistable basis. Even though these basis func-
tions are neither approximately orthogonal nor linearly
independent, the discussion on tight frames in [2] can
be applied to show that a large class of functions, P ,
can be well approximated in the basis using the analysis
and synthesis formulae,

cp,�k,ω =
∫∫∫

R2×S1
P(�x, θ )�p,�k,ω(�x, θ ) d�x dθ,

(2.28)

where, since the functions, �p,�k,ω, form an approxi-
mately tight frame,

P ≈
∑
p,�k,ω

cp,�k,ω �p,�k,ω. (2.29)

We verified numerically that by using about twelve
scales, p, a Gaussian of the form (2.21) on R2 × S1

can be very well approximated using an expansion of
the form (2.29). However, for simplicity, computational
efficiency, and accuracy, for the visual computations in
this paper we chose to represent the input function us-
ing Eq. (2.21).

2.3. Example C: The Complex Directional
Derivative of Gaussian (CDDG)—Gaussian
Coupled Basis

The complex directional derivative of a Gaussian, ψ on
R2, is a simple edge detector. Since the real part of ψ

has the preferred orientation, π
2 , an edge centered at �x0

with orientation, θ0, will elicit a large response from the
real part of T�x0,θ0− π

2
ψ . Some problems in vision require

that the direction or orientation of edges in an image,
I : R2 → R, be explicitly encoded in a third variable,
θ . This can be done using a coupled basis consisting
of complex directional derivatives of Gaussians on R2

and Gaussians on S1, where the center of the Gaussian
on S1 is coupled to the preferred orientation of the
complex directional derivative of the Gaussian on R2.

Let h be the Gaussian on S1 defined by Eq. (2.22),
and let M be the number of essentially non-zero fre-
quencies of h. Let ψ be the complex directional deriva-
tive of Gaussian defined in Eq. (2.24). The complex di-
rectional derivative of Gaussian (CDDG)—Gaussian
coupled basis functions, ��k,m on R2 × S1, are defined
by

��k,m = T�k� , m�θ
(ψh). (2.30)

Given an image, I , the function J on R2×S1 defined
by

J =
∑
�k,m

c�k,m��k,m, (2.31)
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explicitly encodes the position and direction of edges
in I . Here,

c�k,m =
∫∫

R2
I (�x)ψ�k,m(�x) d�x, (2.32)

whereψ�k,m : R2 → C is defined byψ�k,m = T�k� , m�θ
ψ .6

Let bm and b�k denote the interpolation functions re-
quired to shift h and ψ respectively. Then the functions,
��k,m , form a shiftable-twistable basis with interpola-
tion functions7

b�k,m(�x0, θ0) = exp(−iθ0) exp(im�θ ) b�k(�x0) bm(θ0).
(2.33)

2.4. Example D: The Gabor-Gaussian Basis

The two-dimensional Gabor function, ψ : R2 → C,
is defined by ψ(x, y) = exp(−iξ0(x + y)) exp(−(x2 +
y2)/2), where exp(−(x2 + y2)/2) is a radial Gaussian
and exp(−iξ0(x + y)) is a harmonic grating of fre-
quency, ξ0.8 Like the complex directional derivative
of Gaussian, the Gabor possesses a preferred direction,
and so one might attempt to construct a coupled Gabor-
Gaussian shiftable-twistable basis. Unfortunately, such
a coupled basis is not shiftable-twistable since the
Gabor function cannot be written in polar coordinates,
(r, φ), as the product of a function of r and a pure har-
monic in φ. Stated differently, the Gabor, unlike the
complex directional derivative of Gaussian, is not self-
steerable. Nevertheless the uncoupled basis, ��k,m,n de-
fined by ��k,m,n(�x, θ ) = (T�k� , m�θ

ψ)(�x) h(θ − n�θ ),
is shiftable-twistable since the Gabor function, ψ on
R2, is shiftable-steerable and the Gaussian, h, on R is
shiftable.

3. Stochastic Completion Fields

In their computational theory of illusory contour for-
mation, Williams and Jacobs [17] argued that, given
a prior probability distribution of possible completion
shapes, the visual system computes the local image
plane statistics of the distribution of all possible com-
pletions, rather than simply the most probable comple-
tion. This view is in accord with human experience—
some illusory contours are more salient than others, and
some appear sharper than others. They defined the no-
tion of a stochastic completion field to model illusory
contours in a probabilistic manner. The stochastic com-
pletion field is a probability density function (p.d.f.) on

the space, R2×S1, of positions, �x = (x, y), in the plane,
R2, and directions, θ , in the circle, S1. It is defined
in terms of a set of position and direction constraints
representing the beginning and ending points of a set
of contour fragments (called sources and sinks), and
a prior probability distribution of completion shapes,
which is modeled as the set of paths followed by par-
ticles traveling with constant speed in directions de-
scribed by Brownian motions [9]. The magnitude of
the stochastic completion field, C : R2 × S1 → R,
at a point (�x, θ ), is the probability that a completion
from the prior probability distribution will pass through
(�x, θ ) on a path joining two of the contour fragments.

The stochastic completion field is computed as fol-
lows. First, let P(�x, θ ; t) be the probability that a par-
ticle traveling with unit speed in R2 in a direction de-
scribed by a Brownian motion with strength, σ 2, on S1

is at the point, (�x, θ ), at time, t , given that it decays with
a half-life, τ , and that it was sampled from an initial
probability distribution of sources, P(�x, θ ; 0), at time,
t = 0. Mumford observed that P evolves according to
a Fokker-Planck equation of the form,

∂ P

∂t
= − cos θ

∂ P

∂x
− sin θ

∂ P

∂y
+ σ 2

2

∂2 P

∂θ2
− 1

τ
P,

(3.1)

where the initial probability distribution of sources (or
sinks) is described by P(�x, θ ; 0). This partial differ-
ential equation can be viewed as a set of independent
advection equations in �x = (x, y) (the first and sec-
ond terms) coupled in the θ dimension by the diffu-
sion equation (the third term). The advection equa-
tions translate probability mass in direction θ with unit
speed, while the diffusion term models the Brownian
motion in direction, with diffusion parameter, σ . The
combined effect of these three terms is that particles
tend to travel in straight lines, but over time they drift
to the left or right by an amount proportional to σ 2. Fi-
nally, the effect of the fourth term is that particles decay
over time, with a half life given by the decay constant,
τ . This represents our prior expectation on the length
of gaps—most are quite short.

Williams and Jacobs [17] showed that the stochastic
completion field could be factored into a source field,
P ′ : R2 ×S1 → R, and a sink field, Q′ : R2 ×S1 → R.
The value of the source field, P ′ at (�x, θ ), represents
the probability that a contour beginning at a source will
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pass through (�x, θ ). It is defined by

P ′(�x, θ ) =
∫ ∞

0
P(�x, θ ; t) dt, (3.2)

where the initial p.d.f., P(�x, θ ; 0), represents the initial
distribution of sources. The value of the sink field, Q′

at (�x, θ ), represents the probability that a contour be-
ginning at (�x, θ ) will reach a sink. Since the probability
that a contour joins (�x, θ ) to (�u, φ) is equal to the prob-
ability that a contour joins (�u, φ +π ) to (�x, θ +π ), the
sink field can be defined as follows. Let Q(�x, θ ; 0) rep-
resent the initial distribution of sinks, and let Q̃(�x, θ ; t)
be the solution of the Fokker-Planck equation with ini-
tial condition, Q̃(�x, θ ; 0) = Q(�x, θ + π ; 0). Then the
sink field, Q′, is defined by

Q′(�x, θ ) =
∫ ∞

0
Q(�x, θ ; t) dt, (3.3)

where Q(�x, θ ; t) = Q̃(�x, θ + π ; t). Finally, the com-
pletion field is given by

C = P ′ · Q′. (3.4)

In Williams and Jacobs [18] stochastic completion
fields were computed by solving the Fokker-Planck
equation using a standard finite differencing scheme
on a regular grid.

In Williams and Jacobs [17, 18] the initial sources
and sinks were extracted automatically from the input
image using steerable filters [13] to identify corners
and measure orientations. However, this method should
only be regarded as an interim solution to the problem
of specifying initial conditions given a brightness im-
age, since we believe that in the long term, the solution
lies in the generalization of the notion of a completion
field described in [19]. For this reason and for conve-
nience’s sake, in all experiments in this paper, the initial
sources and sinks were specified by hand.

4. Description of Algorithm

One of the main goals of this paper is to derive a discrete
numerical algorithm to compute stochastic completion
fields in a shift-twist invariant manner. This invariance
is achieved by first evolving the Fokker-Planck equa-
tion in a shiftable-twistable basis of R2 × S1 to ob-
tain representations of the source and sink fields in the
basis, and then multiplying these representations in a
shift-twist invariant manner to obtain a representation

of the completion field in a shiftable-twistable basis.
We observe that a discrete Dirac basis, consisting of
functions,

δ�k,m = T�k� , m�θ
δ, (4.1)

where δ is the Dirac delta function at (�0, 0), and where
(�k, m) is a triple of integers, is not shiftable-twistable.
This is because a Dirac function located off the grid
of Dirac basis functions is not in their span. A major
shortcoming of all previous contour completion algo-
rithms [5, 6, 8, 10, 12, 17, 18, 22] is that they perform
computations in this basis. As a consequence, initial
conditions which do not lie directly on the grid can-
not be accurately represented. This problem is often
skirted by researchers in this area by choosing input
patterns which match their choice of sampling rate and
phase. For example, Li [8] used only six orientations
(including 0◦) and Heitger and von der Heydt [6], only
twelve (including 0◦, 60◦ and 120◦). Li’s first test pat-
tern was a line of orientation, 0◦, while Heitger and von
der Heydt used a Kanizsa Triangle with sides of 0◦,
60◦, and 120◦ orientation. There is no reason to believe
that the experimental results they show would be the
same if their input patterns were rotated by as little as
5◦.9

In addition to the problem of representing the in-
put, the computation itself must be Euclidean invariant.
Stochastic completion fields computed using the finite
differencing scheme of [18] exhibit marked anisotropic
spatial smoothing due to the manner in which advec-
tion on R2 is performed on a grid (see Figs. 8–10).
Although probability mass advects perfectly in either
of the two principal coordinate directions, mass which
is moving at an angle to the grid gradually disperses,
since, at each time step, bilinear interpolation is used
to place the mass on the grid. One way to restore the
isotropy of the advection transformation is to carefully
add extra spatial smoothing [21].

Stochastic completion fields can be computed using
any of the shiftable-twistable bases in Section 2. For
reasons of simplicity, in this paper, we chose to per-
form the computation in a Gaussian-Fourier basis. Us-
ing Eq. (2.21), we model the initial distribution of edge
fragments using three-dimensional Gaussians of a fixed
fine scale whose centers are determined by the locations
and directions of the edge fragments. The initial distri-
bution, P(�x, θ ; 0), is represented in a Gaussian-Fourier
basis, G�k,ω, using Eq. (2.18) with an initial coefficient
vector, c(0) = {c�k,ω(0)}, given by Eq. (2.23).
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To solve the Fokker-Planck equation, we express its
solution, P(�x, θ ; t), in terms of the basis functions,
G�k,ω, as

P(�x, θ ; t) =
∑
�k,ω

c�k,ω(t) G�k,ω(�x, θ ), (4.2)

where the coefficient vector, c(t) = {c�k,ω(t)}, depends
on time. As is explained in Section 5, we derive a linear
transformation, c(t + �t) = (A ◦ D)c(t), to evolve the
coefficient vector in time. This transformation is the
composition of an advection transformation, A, which
has the effect of transporting probability mass in di-
rections θ , and a diffusion-decay transformation, D,
which implements both the diffusion of mass in θ , and
the decay of mass over time.

If we represent the source field P ′ in the Gaussian-
Fourier basis as

P ′ =
∑
�k,ω

p′
�k,ω

G�k,ω, (4.3)

then the source field coefficient vector, p′ = {p′
�k,ω

}, is
given by

p′
�k,ω

=
∫ ∞

0
p�k,ω(t) dt, (4.4)

where p�k,ω(t) is the coefficient vector of the solution of
the Fokker-Planck equation in the basis at time t , and
where the initial coefficient vector, p(0), is determined
by the sources, using Eq. (2.23). Similarly, we represent
the sink field, Q′, in the basis as

Q′ =
∑
�k,ω

q ′
�k,ω

G�k,ω, (4.5)

where the sink field coefficient vector, q ′ = {q ′
�k,ω

}, is
defined analogously to p′.

The shiftability-twistability of the basis functions is
used in two distinct ways to obtain shift-twist invariant
source and sink fields. First, it enables any two initial
conditions, which are related by an arbitrary transfor-
mation, T�x0,θ0 , to be represented equally well in the
basis. Second, it is used to derive a shift-twist invariant
advection transformation, A, thereby eliminating the
grid orientation artifacts described above. In summary,
given a desired resolution at which to represent the ini-
tial conditions, our new algorithm produces source and
sink fields, at the given resolution, which transform ap-
propriately under arbitrary Euclidean transformations

of the input image. In contrast, in all previous con-
tour completion algorithms, the degree of failure of
Euclidean invariance is highly dependent on the reso-
lution of the grid, and can be quite large relative to the
grid resolution.

The final step in our shift-twist invariant algorithm is
to compute the completion field (which by Eq. (3.4) is
the product of the source and sink fields) in a shiftable-
twistable basis. As we explain in Section 6, the partic-
ular basis used to represent the completion field is the
same as the one used to represent the source and sink
fields, except that the variance of the Gaussian basis
functions in R2 needs to be halved.10

5. The Solution of the Fokker-Planck Equation

In this section we derive a shift-twist invariant linear
transformation,

c(t + �t) = (A ◦ D)c(t), (5.1)

of the coefficient vector, c(t) = {c�k,ω(t)}, which
evolves the Fokker-Planck equation in a shiftable-
twistable basis. The action, c(t + �t) = Dc(t), of the
diffusion operator on the coefficient vector corresponds
to solving

∂ P

∂t
= σ 2

2

∂2 P

∂θ2
− 1

τ
P, (5.2)

and the action, c(t + �t) = Ac(t), of the advection
operator corresponds to solving

∂ P

∂t
= − cos θ

∂ P

∂x
− sin θ

∂ P

∂y
, (5.3)

both from t to t +�t . We numerically compute a solu-
tion to the Fokker-Planck equation at time, t , by alter-
nately applying the diffusion and advection operators
to c, using many small time steps of size, �t .

Our derivation holds for any shiftable-twistable basis
constructed from shiftable-twistable functions of the
form, �ω(�x, θ ) = ψ(�x) exp(iωθ ), for some function,
ψ on R2. Since the transformation, A ◦ D, will only
involve interactions between functions, ψ , at different
positions �k�, and not at different orientations or scales,
the basis functions and coefficients will be denoted by
��k,ω = T�k�,0�ω and c�k,ω(t) respectively.

To derive an expression,

c��,η(t + �t) =
∑
�k,ω

A��,η ; �k,ω(�t) c�k,ω(t), (5.4)
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for the advection transformation, A, in the basis, ��k,ω,
we exploit the fact that advection on R2 in a direction
θ can be done perfectly using shiftable basis functions,
ψ�k = T�k�,0ψ , on R2, and the continuous variable, θ ∈
S1. Suppose that P is given in the form,

P(�x, θ ; t) =
∑
�k,ω

c�k,ω(t) ψ�k(�x) exp(iωθ )

=
∑

�k
č�k,θ (t) ψ�k(�x), (5.5)

where č(t) is related to c(t) by the standard syn-
thesis formula for Fourier series on S1, č�k,θ =∑

ω c�k,ω exp(iωθ ), which we denote by č = F−1c.
Since translation in R2 in direction θ at unit speed for
time �t is a translation by �x0 = �t[cos θ, sin θ]T, we
have that

P(�x, θ ; t + �t)

= P(�x − �t[cos θ, sin θ ]T, θ ; t) (5.6)

=
∑

�k
č�k,θ (t)ψ�k(�x − �t[cos θ, sin θ ]T), (5.7)

where the second equation follows from Eq. (5.5). The
shiftability of ψ then implies that

č��,θ (t + �t) =
∑

�k
Ǎ��,θ ;�k,θ (�t) č�k,θ (t), (5.8)

where

Ǎ��,θ ;�k,θ (�t) = b��−�k(�t[cos θ, sin θ ]T), (5.9)

and b�k is defined in (2.16).
Finally, the advection transformation, A, in the

basis, ��k,ω, is given by the similarity transforma-
tion, A = FǍF−1, where F denotes the stan-
dard analysis formula for Fourier series, (F f )(ω) =

1
2π

∫ 2π

0 f (θ ) exp(−iωθ ) dθ . Since c = Fč we have the
following result.

Theorem 5.1. In the shiftable-twistable basis, ��k,ω,

the advection transformation, A, is given by

c��,η(t + �t) =
∑
�k,ω

b̂��−�k,η−ω(�t) c�k,ω(t), (5.10)

where

b̂�k,η(�t)

= 1

2π

∫ 2π

0
b�k(�t[cos θ, sin θ ]T) exp(−iηθ ) dθ.

(5.11)

In particular, the transformation, A, is shift-twist in-
variant and is a convolution operator on the vector
space of coefficients, c�k,ω.

The proof of the shift-twist invariance of A is given in
the Appendix.

The degree of accuracy with which the discrete ad-
vection transformation, A, models the continuous ad-
vection process is determined by the number of ba-
sis functions in the shiftable-twistable basis. In or-
der to prevent aliasing in the representation of P
in the basis, the set of Fourier series frequencies,
ω, must be large enough to capture the θ -frequency
content of the p.d.f., P(�x, θ ; t). Suppose that the
initial p.d.f. is the Gaussian-Fourier basis function,
P(�x, θ ; 0) = Gω(�x, θ ) = g(�x) exp(iωθ ). Then the
advection, P(�x, θ ; t) = P(�x − t[cos θ, sin θ ]T, θ ; 0),
of P can be described as follows. For each fixed an-
gle, θ , the function, g is translated in R2 by t units in
the direction, θ , and weighted by the factor, exp(iωθ ).
Consequently, at time, t , the p.d.f. is supported on a
neighborhood of a helix11 of radius, t , oriented about
the θ -axis in R2 × S1.

Consider the case that the initial p.d.f., P(�x, θ ; 0),
is the Gaussian-Fourier basis function, P(�x, θ ; 0) =
G�0,12(�x, θ ) = exp(−8.0‖�x‖2) exp(12iθ ) (of period
X = 40.0), where the basis consists of K = 160
basic shifts in the x and y variables and 176 fre-
quencies, ω, in the θ variable. Figure 4 (left) shows
the integral over S1 of the advection of P(�x, θ ; 0)
at time, t = 14.0, i.e.,

∫ 2π

0 P(�x, θ ; 14.0) dθ . In par-
ticular, note that

∫ 2π

0 P(�x, θ ; 14.0) dθ is supported
on a circle of radius 14.0, which is the projection
from R2 × S1 to R2 of the helical support of P(�x, θ ;
14.0).

Coupling the θ -diffusion process to the advection
process decreases the θ -frequency content of the p.d.f.,
P(�x, θ ; t), and so fewer Fourier series frequencies
are required in the basis. For example, if the diffu-
sion parameter is σ = 0.08, then the number of θ -
frequencies can be reduced from 176 to 92. Figure 4
(right) shows the integral over S1 of the source field ob-
tained by evolving the initial p.d.f., G�0,12, according to
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Figure 4. Left: The integral over S1 of the advection of the Gaussian-Fourier basis function, G�0,12 on R2 × S1, at time t = 14.0. Right: The

integral over S1 of the source field, P ′(�x, θ ) ≈ ∫ 14.0
0 P(�x, θ ; t)dt , where P(�x, θ ; t) is the solution of the Fokker-Planck equation, with initial

conditions given by the basis function, G�0,12.

the Fokker-Planck equation, with diffusion parameter,
σ = 0.08 and decay constant, τ = 15.0.

The θ -frequency content of the helical p.d.f. and the
accuracy of the advection process are analyzed in the
Appendix. This analysis implies that if the spatial res-
olution of the Gaussian initial conditions is increased
by a factor of two in all three variables, (�x, θ ), then
the number of basis functions must be multiplied by
sixteen to ensure the same degree of accuracy in the
advection of the initial conditions.12

The diffusion-decay transformation, c(t + �t) =
Dc(t), which we use, is given in the following Propo-
sition, the proof of which is in the Appendix.

Proposition 5.2. Let N be the number of Fourier
series frequencies, ω, used in the shiftable-twistable
basis, and let �θ = 2π/N. The diffusion-decay
transformation, D, is given by

c�k,ω(t + �t) = exp(−�t/τ ) [λ exp(−iω�θ )

+ (1 − 2λ) + λ exp(iω�θ )] c�k,ω(t),

(5.12)

where λ = σ 2

2
�t

(�θ )2 . Furthermore, D is shift-twist in-
variant.13

The factor, λ exp(−iω�θ ) + (1 − 2λ) + λ exp(iω�θ ),
in Eq. (5.12) is the transfer function for the diffusion
equation, and the factor, exp(−�t/τ ), implements the
decay. If c�k,ω(t) evolves according to Eq. (5.12), then

P(�x, θ ; t) evolves according to the standard, explicit,
3-point stencil finite differencing scheme for diffusion
in θ and exponential decay in time. In particular, if �t
is chosen so that λ ≤ 0.5, then this finite differencing
scheme is stable.

Theorem 5.1 and Proposition 5.2 imply that the com-
putation of source and sink fields can be performed in a
recurrent neural network using a fixed set of units as de-
scribed in [18]. Furthermore, the resulting source and
sink field coefficient vectors only depend on the initial
data and on the set of (essentially) non-zero Fourier
series frequencies of the basis function, ψ .

Since the advection transformation, A, is a convo-
lution operator on the space of coefficients, for effi-
ciency’s sake we implemented both A and D in the 3D
Fourier domain of the coefficient vector. In this domain,
A is given by a diagonal matrix and D by a circulant
tridiagonal matrix.

6. Completion Fields in the Basis

The representation of completion fields in the
Gaussian-Fourier basis uses basis functions on R2

which have half the variance of those used to repre-
sent source and sink fields. The reason we need to
use finer scale basis functions is that the product of
the Gaussian, exp(−x2/2), with itself is the finer scale
Gaussian, exp(−x2). The superscript “ ˜ ” will be
used to refer to the finer scale basis. Set ν̃ = ν/

√
2,

�̃ = �/
√

2, K̃ = √
2K and Ñ = N , and define
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g̃(�x) = g(
√

2�x) = exp(−‖�x‖2/2̃ν2). Then the cor-
responding Gaussian-Fourier basis, G̃ �j,α , is shiftable-
twistable, with interpolation functions, b̃�j .

Recall from Eq. (3.4) that the completion field, C
on R2 × S1, is the product of the source and sink
fields, C = P ′ · Q′, where we represent the source
and sink fields in the Gaussian-Fourier basis G�k,ω as
in Eqs. (4.3) and (4.5), respectively. To represent the
completion field in the Gaussian-Fourier basis, G̃ �j,α , it
suffices to express the product, G�k,ωG��,η, of two basis
functions in the basis, G̃ �j,α . In the Appendix we prove
the product formula14

G�k,ωG��,η = 1

2̃ν
exp

[
−

(
�̃

2̃ν
‖�k − ��‖

)2]

×
∑

�j
b̃�j

[
�̃√

2
(�k + ��)

]
G̃ �j,ω+η. (6.1)

Combining this product formula with Eqs. (4.3) and
(4.5) gives the following Theorem.

Theorem 6.1. The expression for the completion
field, C on R2 × S1, in the Gaussian-Fourier basis
G̃ �j,α is given by

C =
∑
�j,α

C�j,α G̃ �j,α, (6.2)

where the completion field coefficient vector, C�j,α, is
given by

C�j,α = 1

2̃ν

∑
�k,��

∑
β

p′
�k,β

q ′
��,α−β

× exp

[
−

(
�̃

2̃ν
‖�k − ��‖

)2]

×
∑

�j
b̃�j

[
�̃√

2
(�k + ��)

]
, (6.3)

where p′
�k,ω

and q ′
��,η are the source and sink field coef-

ficient vectors.
In particular, the calculation of C�j,α from the initial

source and sink coefficient vectors, p�k,ω(0) and q��,η(0),
can be performed in a recurrent neural network using
a fixed set of units as described in [18].

It is helpful to observe two features of Eq. (6.3).
First, the presence of the Gaussian factor involving
‖�k − ��‖ means that in practice, the sum can be taken

only over those indices �k and �� for which ‖�k − ��‖ is
quite small, i.e., only spatially proximal pairs of source
and sink field coefficients need to interact to compute
the completion field coefficient vector. Second, the cir-
cular convolution of p′

�k,α
and q ′

��,β in the frequency vari-
able, α, corresponds to multiplication in the θ variable,
which occurs when the completion field is constructed
from the source and sink fields.

7. Completion Fields in the CDDG—Fourier
Basis

The algorithm we have presented for computing
stochastic completion fields in the Gaussian-Fourier
basis can be interpreted as a computation in the more
biologically plausible complex directional derivative of
Gaussian (CDDG)-Fourier basis. As in the Gaussian-
Fourier basis, a single scale basis of functions, ��k,ω

on R2 × S1 defined by Eq. (2.25), is used to repre-
sent the initial conditions and solve the Fokker-Planck
equation.

Rather than solving the Fokker-Planck equation with
Gaussian initial conditions, as in Eq. (2.24), we take a
directional derivative in the spatial variables, �x , of the
initial conditions (2.21) to obtain new initial condi-
tions which can be represented in the CDDG-Fourier
basis using the coefficient vector given by (2.23). Us-
ing the directional derivatives of the initial sources as
initial conditions, a source field coefficient vector, p′

�k,ω
,

is obtained by solving the Fokker-Planck equation in
the basis. In this manner we obtain a representation of
a derivative of the source field in the CDDG-Fourier
basis:

D(P ′) =
∑
�k,ω

p′
�k,ω

��k,ω, (7.1)

where D is the operator, D = ∂
∂x + i ∂

∂y , in Eq. (2.24). A
representation of the source field itself can be obtained
by integrating Eq. (7.1) as follows. Let G�k,ω be the
Gaussian-Fourier basis function defined in Eq. (2.17).
By Eq. (2.24), ��k,ω = DG�k,ω. Therefore, by Eq. (7.1),
the source field can be represented in the Gaussian-
Fourier basis as 15

P ′ =
∑
�k,ω

p′
�k,ω

G�k,ω. (7.2)

Note that the two source field coefficient vectors, p′
�k,ω

,
obtained by solving the Fokker-Planck equation in the
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two bases, ��k,ω and G�k,ω are identical, since the fre-
quency content of Gω and �ω are essentially the same
and since the source field coefficient vector, p′

�k,ω
, only

depends on the interpolation functions, b�k , and on the
locations and directions of the source initial conditions.
Finally, the expression for the directional derivative,
D C , of the completion field in the CDDG-Fourier ba-
sis is given by

D C =
∑
�j,α

C�j,α �̃�j,α, (7.3)

where C�j,α is given by Eq. (6.3).

8. Experimental Results

We present four experiments demonstrating the
Euclidean invariance of our algorithm. In each experi-
ment, the Gaussian-Fourier basis consisted of K = 160
translates in each spatial variable of a Gaussian (of
period X = 40.0 units), and harmonic signals of
N = 92 frequencies in the angular variable, for a total
of 2.355 × 106 basis functions. Pictures of completion
fields were obtained by analytically integrating over
S1 and rendering the completion field on a 256 × 256
grid.

In the first experiment, we computed source fields
using the new algorithm. The diffusion parameter
was σ = 0.12, the decay constant, τ = 25.0, and
the time increment, �t = 0.1. The left column of
Fig. 5 shows the p.d.f. and source field due to a single
three-dimensional Gaussian initial condition centered
at (�x0, θ0) = (−16.0, 0.0, 0◦), while in the right col-
umn the initial condition has been shifted and twisted
to be centered at (�x0, θ0) = (−14.125, −12.875, 45◦).
The p.d.f.’s are shown at time, t = 30.0, and the source
fields were obtained by integrating the p.d.f. up to time,
t = 30.0. The source fields were clipped above at
5 × 10−4.

In the remaining experiments, we compare the new
algorithm with the finite differencing scheme of [18].
For the finite differencing scheme, the 40.0×40.0×2π

space was discretized using a 256 × 256 spatial grid
with 36 discrete orientations, for a total of 2.359 × 106

Dirac basis functions. The intent was to use approx-
imately the same number of basis functions for both
algorithms. The initial conditions were represented on
the grid using tri-linear interpolation and pictures of
the completion fields were obtained by summing over
the discrete angles. The same parameters were used for

Figure 5. Probability density functions and source fields due to
a single 3D Gaussian initial condition centered at a point, (�x0, θ0),
computed using the new algorithm. The p.d.f.’s are shown at time,
t = 30.0, and the source fields are integrated out to time, t =
30.0. Top left: P.d.f., P(�x, θ ; 30.0), with initial condition centered
at (�x0, θ0) = (−16.0, 0.0, 0◦). Top right: P.d.f. with (�x0, θ0) =
(−14.125, −12.875, 45◦). Bottom left: Source field, P ′(�x, θ ) ≈∫ 30.0

0 P(�x, θ ; t) dt , with (�x0, θ0) = (−16.0, 0.0, 0◦). Bottom right:
Source field with (�x0, θ0) = (−14.125, −12.875, 45◦).

both algorithms. The decay constant was τ = 4.5 and
the time increment, �t = 0.1. The diffusion parameter
was σ = 0.08 for the second and third experiments and
σ = 0.14 for the last.16 In Figs. 8–10 the completion
fields constructed using the algorithm of [18] are in
the left column, while those constructed using the new
algorithm are in the right column.

In the second experiment, we computed straight line
completion fields joining two diametrically opposed
points on a circle of radius, 16.0, with initial direc-
tions normal to the circle. That is, given an angle,
φ, the initial stimulus consisted of the two points,
(±16.0 cos φ, ±16.0 sin φ, φ), see Fig. 6 (left). The
completion fields are shown in Fig. 8, with those in
the left column, computed using the method of [18],
clipped above at 2 × 10−6.

To evaluate the Euclidean invariance of the new algo-
rithm, we extracted a section of each completion field
along the diameter of the circle normal to the direc-
tion of the completion field (see Fig. 6). In Fig. 7, we
plot the mean of each section as a function of the an-
gle, φ. The dashed line indicates the means computed
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Figure 6. The geometry of the straight line completion field exper-
iment.

using the new algorithm, and the solid line shows the
means computed using the first-order, explicit Euler
method described by Williams and Jacobs [18].17 The
fact that the dashed line graph is constant provides solid

Figure 7. Graph of the mean along a section normal to the straight line completion field as a function of the direction, φ. Solid line: Using
shiftable-twistable functions. Dashed line: Using the first-order, explicit, Euler method described in Williams and Jacobs [18].

evidence for the Euclidean invariance of the new al-
gorithm. The solid line graph demonstrates the two
major sources of the lack of Euclidean invariance in
the method of described by Williams and Jacobs [18].
First, the rapid oscillation of period 10◦ is due to the
initial conditions coming in and out of phase with the
angular grid. This 10◦ periodicity can be seen in the pe-
riodicity of the general shape of the completion fields
in the left column of Fig. 8. Second, the large spikes
at 90◦ intervals are due to the anisotropic manner in
which the advection transformation was solved on the
spatial grid. These large spikes correspond to the very
bright horizontal line artifacts in the first two comple-
tion fields in the left column of Fig. 8.

In the third experiment, we computed completion
fields due to rotations of the Ehrenstein initial stimu-
lus in Fig. 1(a). Pictures of the completion fields are
shown in Fig. 9.18 The top row shows the completion
fields due to the Ehrenstein stimulus in Fig. 1(a), while
in subsequent rows, the initial conditions have been
rotated clockwise through angles, θ0 = 5◦, 15◦, and
45◦. The completion fields computed using the method
of Williams and Jacobs [18] were clipped above at
1.25 × 10−8. For our final experiment, we compute
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Figure 8. Straight line completion fields due to an initial stimulus
consisting of two points on a circle with direction φ normal to the
circle, with φ = 0◦, 5◦, 10◦, 15◦. Left: Using the algorithm of [18].
Right: Using the new algorithm.

completion fields due to rotations and translations of
the Kanizsa Triangle stimulus in Fig. 1(b). Completion
fields are shown in Fig. 2, which was discussed in the
Introduction, and in Fig. 10. The top row of Fig. 10
shows completion fields due to the Kanizsa Triangle in
Fig. 1(b). In the third row the initial conditions have
been rotated clockwise by 5◦. The second and fourth

Figure 9. Completion fields due to rotations of the Ehrenstein initial
stimulus in Fig. 1(a). From top to bottom, the initial conditions are
rotated clockwise through angles, θ0 = 0◦, 5◦, 15◦ and 45◦. Left:
Using the algorithm of [18]. Right: Using the new algorithm.

rows show the regions inside the boxes in the first and
third rows, magnified 16 times. The completion fields
computed using the method of Williams and Jacobs
[18] were clipped above at 9 × 10−5.

The completion fields in the right columns of Figs. 9
and 10, and in Fig. 2, demonstrate the Euclidean invari-
ance of our new algorithm. This is in marked contrast
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Figure 10. Top row: Completion fields due to the Kanizsa trian-
gle initial stimulus in Fig. 1(b). Left: Using the algorithm of [18].
Right: Using the new algorithm. Second row: The regions inside the
boxes, magnified 4×. Third row: Initial conditions rotated clock-
wise by 5◦. Bottom row: The regions inside the boxes, magnified
4×.

with the obvious lack of Euclidean invariance in the
completion fields in the left columns of Figs. 9 and 10.
The visible straight line artifacts in these completion
fields, which are oriented along the coordinate axes, are
due to the anisotropic nature of the advection process
in the algorithm of Williams and Jacobs [18], and (to a

lesser extent), to the way in which the initial conditions
were represented on the grid.

9. Conclusion

An important initial stage in the analysis of a scene
requires completion of the boundaries of partially oc-
cluded objects. Williams and Jacobs introduced the
notion of the stochastic completion field which mea-
sures the probability distribution of completed bound-
ary shapes in a given scene. In this paper we have
described a new algorithm for computing stochastic
completion fields. As is required of any computational
model of human visual information processing, our al-
gorithm attempts to reconcile the apparent contradic-
tion between the Euclidean invariance of human early
visual computations on the one hand, and the observed
sparseness of the discrete spatial sampling of the vi-
sual field by primary and secondary visual cortex on
the other hand. The new algorithm reconciles these two
contradictions by performing the computation in a basis
of separable functions with spatial components similar
to the receptive fields of simple cells in primary visual
cortex. In particular, the Euclidean invariance of the
computation is achieved by exploiting the shiftability
and twistability of the basis functions.

In this paper, we have described three basic results.
First, we have generalized Simoncelli et al.’s notion
of shiftability and steerability in R2 to a more general
notion of shiftability and twistability in R2 × S1. The
notion of shiftability and twistability mirrors the cou-
pling between the advection and diffusion terms in the
Fokker-Planck equation, and at a deeper level, basic
symmetries in the underlying random process charac-
terizing the distribution of completion shapes. Second,
we described a new method for numerical solution of
the Fokker-Planck equation in a shiftable-twistable ba-
sis. Finally, we used this solution to compute stochastic
completion fields, and demonstrated, both theoretically
and experimentally, the invariance of our computation
under translations and rotations of the input pattern.

Appendix

Proof of Proposition 2.1

First observe that, by Eq. (2.8),

T�x0,θ0 P =
∑
��,n

c��,nT�x0,θ0���,n, (10.1)
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and that the composition rule (2.11) for shift-twist
transformations implies that

T�x0,θ0���,n = T����x0+R−n�θ
(�x0) , θ0+n�θ

�. (10.2)

The result now follows by applying the defining
Eq. (2.6) for shiftability-twistability to express the right
hand side of Eq. (10.2) in terms of the basis functions,
��k,m , and then substituting the resulting equation into
Eq. (10.1).

Proof of Proposition 2.2

For any (�x0, θ0) ∈ R2 × S1,

(
T�x0,θ0 Gω

)
(�x, θ )

= g(Rθ (�x − �x0), θ − θ0) exp(iω(θ − θ0)) (10.3)

= exp(−iωθ0) g(�x − �x0) exp(iωθ ) (10.4)

= exp(−iωθ0)
∑

�k
b�k(�x0)(T�k�,0Gω)(�x, θ ), (10.5)

where (10.4) holds since ||Rθ �x − �x0|| = ||�x − �x0||, and
(10.5) holds since g is effectively shiftable.

Analysis of the Accuracy and Shift-Twist Invariance
of the Advection Process

In the continuum, the advection process is shift-twist
invariant. Consequently, the greater the accuracy with
which the continuous advection process (for time, �t)
is modeled by the discrete advection transformation,
A, the greater the degree to which A is shift-twist
invariant.

If the coefficient vector, c�k,ω, evolves according
to Eq. (5.10), then the the p.d.f., P , will advect
in the continuum according to Eq. (5.7) provided
that the basis, ��k,ω, is perfectly shiftable-twistable19

and includes all (essentially) non-zero θ -frequencies
of the interpolation functions, b�k(�t[cos θ, sin θ ]T),
and of the continuous solution, P(�x, θ ; t) =
P(�x − t[cos θ, sin θ ]T), θ ; 0), of the advection
process.20

A numerical study showed that in the case that
the initial p.d.f is a three-dimensional Gaussian,
P(�x, θ ; 0) = exp(−‖�x‖2/2 σ 2

�x ) exp(−θ2/2 σ 2
θ ), the

number, N , of essentially non-zero θ -Fourier series co-
efficients of P(�x, θ ; t) is given by the formula

N = 1

σθ

(
at

σ�x
+ b

)
, (10.6)

for some constants a and b. In particular if the spa-
tial resolution of the initial conditions is increased
by a factor of two in all three variables, then the
number of frequencies, ω, must be multiplied by
four to prevent aliasing in the advection process,
and the number of spatial basis functions, ψ�k , must
also be multiplied by four to ensure that the basis is
shiftable.

Proof of Proposition 5.2

The standard explicit finite difference scheme for the θ -
diffusion of P(�x, θ ; t) on the grid of points, θn = n�θ ,
where n = 0, 1, ..., N − 1, is given by

P(�x, θn; t + �t) = λP(�x, θn−1 ; t)

+ (1 − 2λ)P(�x, θn ; t)

+ λP(�x, θn+1 ; t). (10.7)

Substituting Eq. (10.7) into P(�x, θ ; t) = ∑
�k,ω c�k,ω(t)

ψ�k(�x) exp(iωθ ) and equating coefficients of ψ�k yields
the formula

∑
ω

c�k,ω(t + �t) exp(iωθn)

=
∑

ω

c�k,ω(t) exp(iωθn)[λ exp(−iω�θ )

+(1 − 2λ) + λ exp(iω�θ )] (10.8)

where we have used the fact that θn+1 = θn + �θ .
Equation (5.12) now follows by equating coefficients
of exp(iωθn).

The following argument shows that the diffusion
transformation, D, is shift-twist invariant. First, a sim-
ilar argument to the one just presented shows that
Eq. (5.12) implies that

P(�x, θ ; t + �t) = λP(�x, θ − �θ ; t)

+ (1 − 2λ)P(�x, θ ; t)

+ λP(�x, θ + �θ ; t) (10.9)
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for all θ ∈ S1. Equation (10.9) implies that
D(T�x0,θ0 P)(�x, θ ) is given by

λ
[
P

(
Rθ0 (�x − �x0), θ − θ0 − �θ ; t + �t

)
+ P

(
Rθ0 (�x − �x0), θ − θ0 + �θ ; t + �t

)]
+ (1 − 2λ)P

(
Rθ0 (�x − �x0), θ − θ0; t + �t

)
which is equal to T�x0,θ0 (DP)(�x , θ ), i.e., D is shift-twist
invariant.

Proof of Equation (6.1)

Equation (6.1) follows immediately from the two equa-
tions.

g�k(�x) g��(�x) = 1

2̃ν
exp

[
−

(
�̃

2̃ν
‖�k − ��‖

)2]

× g̃

[
�x − �̃√

2
(�k +�l)

]
(10.10)

and the shiftability formula

g̃

[
�x − �̃√

2
(�k +�l)

]
=

∑
�j

b̃�j

[
�̃√

2
(�k +�l)

]
g̃�j (�x).

(10.11)

To verify Eq. (10.10), observe that

g�k(�x) g��(�x)

= 1

ν2
exp[−(‖�x − �k�‖2 + ‖�x − ���‖2)/2ν2],

(10.12)

and that, by completing the square, ‖�x − �k�‖2 +‖�x −
���‖2 = 2‖�x − �

2 (�k + ��)‖2 + �2

2 ‖�k − ��‖2.
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Notes

1. A discussion of this equation is provided in Section 3 below, see
Eq. (3.1).

2. Although we allow the functions in visual computations to be
complex valued, the input and output functions are defined to be
the real parts of complex-valued functions.

3. We use this terminology even though the basis functions need
not be linearly independent.

4. Periodic functions, ψ , are used in this definition (and in the
definition of shiftable-twistable functions given below) simply
to ensure that the number of basic shifts of ψ is finite.

5. The function, ψ , looks much more like the receptive field of a
simple cell in primary visual cortex than does a Gaussian.

6. The θ -marginal, ψ�k,m on R2, of the function, ��k,m on R2 × S1,
is similar in shape to the profile of a simple cell receptive field
in primary visual cortex.

7. The factor exp(−i(θ0 − m�θ )) steers T�0,θ0
ψ to T�0,m�θ

ψ .
8. The Gabor function is often used to model two-dimensional sim-

ple cell receptive fields in primary visual cortex [7].
9. Nor are we blameless in this respect. Williams and Jacobs [17, 18]

used 36 directions (including 0◦, 60◦ and 120◦) and demonstrated
their computation with a Kanizsa Triangle with sides of 0◦, 60◦
and 120◦ orientation.

10. The need to use a slightly different basis to represent comple-
tion fields is not biologically implausible, since the experimental
evidence described in [20] suggests that the neural locus of the
source and sink fields could be primary visual cortex, while com-
pletion fields are more likely located in secondary visual cortex.

11. The parameterization of the helix is x(s) = t cos s, y(s) = t sin s,
θ (s) = s, where 0 ≤ s ≤ 2π .

12. Note that this simple scaling result does not imply that if the
spatial resolution of the initial conditions is increased by a factor
of two, that sixteen times as many basis functions are required to
represent the source field. In fact, because the diffusion operator
attenuates high frequencies, only about eight times as many basis
functions are required.

13. If the transformations, A and D, are shift-twist invariant, then so
is A ◦ D.

14. The interpolation functions b̃�j are evaluated at �̃√
2

(�k + ��) =
�
2 (�k + ��), since G�k,ωG��,η is a Gaussian centered at �

2 (�k + ��).
15. The rationale for this method of calculating the source field is

that, for each fixed θ , the Fokker-Planck equation is a constant
coefficient linear equation.

16. The diffusion parameter, σ , was required to be larger in the last
experiment because of the high curvature circles in the Kanizsa
triangle.

17. The angles, φ, were taken in 5◦ increments from 0◦ to 45◦. For
illustration purposes the φ-axis was extended to 360◦ so as to
reflect the symmetry of the grid. Both graphs were normalized
to have average value one.

18. Because of the periodicity in the spatial variables, �x , to avoid
wrap around in this experiment, for the new algorithm the compu-
tation was performed on a 80.0×80.0×2π space with K = 320.

19. Since the basis functions are only effectively shiftable-twistable,
there is inevitably some error in the advection process. This error
is not Euclidean invariant.

20. For small �t ≈ 0.1, the number of nonzero θ -frequencies of the
interpolation functions is much less than that of P .
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