
Robust Evaluation of Expressions

by Distributed Virtual Machines

Lance R. Williams

Dept. of Computer Science, University of New Mexico, Albuquerque, NM 87131

Abstract. We show how expressions written in a functional program-
ming language can be robustly evaluated on a modular asynchronous
spatial computer by compiling them into a distributed virtual machine
comprised of reified bytecodes undergoing diffusion and communicating
via messages containing encapsulated virtual machine states. Because the
semantics of the source language are purely functional, multiple instances
of each reified bytecode and multiple execution threads can coexist with-
out inconsistency in the same distributed heap.

1 A Pourable Computer

Let us consider a hypothetical molecular computer of the far future. Outwardly,
it might look like a beaker filled with water. However, instead of transistors
made of silicon, its active components would be billions of instances of hundreds
of different molecular species, all in solution. Some species would represent in-
structions while others would represent data. Whether instructions or data, the
interactions between the molecules in solution would be rapid, highly specific,
and diffusion driven. The resulting computational process would be parallel,
distributed, spatial, and asynchronous.

Compared to a conventional computer, a molecular computer of the kind
described above would have several interesting properties. For example, if half of
the contents of the beaker containing a running computation were poured into
a second beaker we would expect the computation to continue uninterrupted
in both. Similarly, if we were to continue this process, and were to pour half
of the contents of the two beakers into two more beakers, we would expect the
computation to continue uninterrupted in all four. Significantly, we would expect
to be able to continue this process of dividing the computation until the volume
of liquid in each beaker was so small that some beakers were missing instances of
one or more of the molecular species necessary for the computation to continue.
To summarize, we observe that, up to a point, dividing the computation into two
changes neither its eventual result nor the time required for it to complete–it
merely decreases the probability of its completion.

We become aware of a second and equally interesting property when we con-
sider the effect of pouring the contents of two beakers (previously divided) back
into one. We would expect that the computation in the first beaker would rein-
tegrate with the computation in the second. Reactants and products from the

J. Durand-Lose and N. Jonoska (Eds.): UCNC 2012, LNCS 7445, pp. 222–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Robust Evaluation of Expressions by Distributed Virtual Machines 223

first beaker would combine indiscriminately with reactants and products from
the second. Significantly, as was true when the computation was divided, the re-
combining of the computations changes neither its eventual result nor the time
required for its completion–it merely increases the probability of its completion.

2 A Modular Asynchronous Spatial Computer

Now, it may be that a molecular computer like the one described above will
never be practical. However, we would like to advance the radical proposition
that computations with the same desirable properties can be achieved by (some-
thing which is in effect) a simulation of a molecular computer on a modular asyn-
chronous spatial computer constructed from conventional electronic components.
As an alternative to the von Neumann stored-program computer, asynchronous
spatial computers have attracted considerable interest[1,4,5,12,13].

In this paper we focus on theMovable Feast Machine[1]. The MFM was chosen
because its semantics are expressive and well defined, and (most importantly)
because there is an actual hardware implementation based on open source Il-
luminato X Machina boards. An IXM board is small and square and has a
connector on each of its four sides. Multiple boards can be connected to form
large two-dimensional grids; each board draws its power from its neighbors. Sig-
nificantly, IXM boards can be added to and removed from a grid without halting
a computation. In the extreme, a computation running on a grid might finish on
completely different hardware than it started on.

In the MFM, each IXM board is used to simulate a 48× 48 array of sites. A
site is either empty or occupied by an atom, which is subject to random motion
or diffusion. An atom has 64 bits of state; sixteen of these bits are reserved and
comprise the atom’s header which leaves 48 bits available for general use. An
atom can sense and change the state of other atoms in its event window (sites
within L1 distance four or less) which may straddle the boundary between ad-
jacent IXM boards. The update process for atoms is random and asynchronous;
there is no global clock. Atoms can form bonds with other atoms which restrict
their relative motion so that they can remain in constant communication. Long
bonds can join any pair of actors with overlapping event windows. Short bonds
can join any pair of actors within L1 distance two or less. In effect, bonds are
short relative addresses which are automatically updated as the atoms they join
undergo diffusion. See Figure 1.

3 Virtual Machine

A general purpose computer might accept input in the form of an expression in
a programming language and then evaluate the expression, returning the result.
A standard method of evaluating expressions is to compile them into programs
in simpler languages, and then simulate the execution of those programs on a
virtual machine (VM). For the present, we ignore the problem of compilation

224 L.R. Williams

Fig. 1. In the MFM[1], each IXM board simulates a 48× 48 array of sites. The MFM
itself is a two dimensional array comprised of multiple IXM boards. An atom can sense
and change the state of other atoms in its event window (sites within L1 distance four).
A long bond can join any pair of actors with overlapping event windows. A short bond
can join any pair of atoms within L1 distance two (the region shown in grey).

by assuming that it can be performed offline and that a compiled expression, a
program comprised of bytecodes, will define the computation.

The process of evaluating expressions by compiling them into bytecodes which
are executed on a VM was first described by Landin[11] for Lisp and was gener-
alized for Scheme by Dybvig[8]. Because it plays an important role in our work,
it is worth examining Dybvig’s model for Scheme evaluation in some detail.

Expressions in Scheme can be numbers, booleans, primitive functions, clo-
sures, symbols, and pairs. A closure is an expression with free variables together
with a reference to the lexical environment; these two items suffice to describe
a function in Scheme. Symbols can serve as names for other expressions and
pairs are the basic building blocks of lists. As such, they are used to represent
both Scheme source code and list-based data structures. All other types are self-
evaluating, that is, they are simply constants. Evaluating an expression which is
not a constant or a symbol requires saving the current evaluation context onto
a stack, then recursively evaluating subexpressions and pushing the resulting
values onto a second stack. The second stack is then reduced by applying either
a primitive function or a closure to the values it contains. Afterwards, the first
stack is popped, restoring the prior evaluation context. Expressions in Scheme
are compiled into trees of bytecodes which perform these operations when the

Robust Evaluation of Expressions by Distributed Virtual Machines 225

Fig. 2. Dybvig’s virtual machine for evaluating compiled Scheme expressions showing
its registers and associated heap-allocated data structures

bytecodes are interpreted. For book keeping during this process, Dybvig’s VM
requires five registers. See Figure 2.

With the exception of the accumulator, which can point to an expression of
any type, and the program counter, which points to a position in the tree of
bytecodes, each of the registers in the VM points to a heap allocated data struc-
ture comprised of pairs; the environment register points to a stack representing
the values of symbols in enclosing lexical scopes, the arguments register points
to the stack of values which a function (or closure) is applied to, and the frames
register points to a stack of suspended evaluation contexts.

Evaluation occurs as the contents of these registers are transformed by the
interpretation of the bytecodes. For example, the constant bytecode loads the
accumulator with a constant, while the refer bytecode loads it with a value from
the environment stack. Other bytecodes push the frame and argument stacks
(and allocate the pairs which comprise them). For example, the frame bytecode
pushes an evaluation context onto the frame stack while the argument bytecode
pushes the accumulator (which holds the value of an evaluated subexpression)
onto the argument stack. Still other bytecodes pop these stacks. For example, the
apply bytecode restores an evaluation context after applying a primitive function
(or a closure) to the values found in the argument stack, leaving the result in
the accumulator.

Lastly, we have extended Dybvig’s VM with a bytecode which is identical
to his close bytecode (used to create closures) except that the first value in the
enclosed lexical environment of a closure created by our bytecode is a self-pointer.
This device makes it possible to define recursive functions without the need for

226 L.R. Williams

a mutable global environment. In this way, we preserve referential transparency
without incurring the overhead associated with the use of the applicative order
Y-combinator.

4 A Reified Actor Model

Actors are universal primitives for constructing concurrent computations [10].
Although the actor model has been significantly elaborated over the years [2,3,6,9].
the basic theory is extremely simple. In essence, an actor is a lightweight process
with a unique address which can send and receive messages to and from other
actors. In response to receiving a message, and (depending on the message’s
contents) an actor can: 1) send a finite number of messages of its own; 2) create
a finite number of new actors; and 3) change its internal state so that its future
behavior is different. All of these things happen asynchronously.

In the MFM actors are reified as atoms undergoing diffusion. If more than 48
bits of state is needed (and it will be in the system described here) bonded pairs
of atoms can be used instead. Message passing is accomplished when the sender
of a message recognizes that the recipient of a message is within L1 distance two
and changes the recipient’s state.

5 Distributed Virtual Machine

We propose to use a set of actors reified as bonded pairs of atoms in the MFM
as a distributed heap. The actors comprising the distributed heap can repre-
sent any of the datatypes permissible in Scheme including numbers, booleans,
primitive functions, closures, and pairs. Significantly, they can also represent the
bytecodes of a compiled Scheme program. We call the set of bytecode actors rep-
resenting a compiled program, a distributed virtual machine (DVM). Like other
heap-objects, a bytecode actor will respond to a get message by returning its
value, but unlike actors representing other heap-objects, it can also send and
receive encapsulated virtual machine states, or continuations. Upon receipt of
a continuation, a bytecode actor transforms it in a manner specific to its type,
then passes it on to the next bytecode in the program, and so on, until the
continuation reaches a halt bytecode at which point the accumulator field of
the continuation contains the result of evaluating the expression. In contrast
to a conventional VM, where all control is centralized, control in a DVM is
distributed among the bytecodes which comprise it. One might say that if the
central premise behind the von Neumann computer is “program as data,” then
the central premise behind the DVM is “program as computer.” See Figure 3.

Recall that applying a function requires the construction of a stack of eval-
uated subexpressions. In the simplest case, these subexpressions are constants,
and the stack is constructed by executing the constant and argument bytecodes
in alternation. We will use this two bytecode sequence to illustrate the operation
of a DVM in more detail.

Robust Evaluation of Expressions by Distributed Virtual Machines 227

Fig. 3. Conventional virtual machine (top) and distributed virtual machine (bottom).
In the DVM, the registers are encapsulated in a message called a continuation which
is passed between bytecodes reified as actors. The sexprs register holds the next free
address on the execution thread. No program counter is needed since each bytecode
actor knows the address of its children in the bytecode tree. Each actor is a finite state
machine which transforms the continuation in manner specific to its type then passes
it to the next bytecode in the program. Control is distributed not centralized.

An actor of type constant bytecode in the locked state loads its accumulator
with the address of its constant valued operand and enters the continue state.
When a bytecode actor in the continue state sees its child in the bytecode tree
within L1 distance two, it overwrites the child actor’s registers with the contents
of its own, sets the child actor’s state to locked, and returns to the ready state.

The behavior of an actor of type argument bytecode in the locked state is
more complicated. It must push its accumulator onto the argument stack, which
is comprised of heap-allocated pairs. Since this requires allocating a new pair,
it remains in the put state (possibly for many MFM updates) until it sees two
adjacent empty sites in its event window. After creating the bonded pair of
atoms representing the new pair actor on the empty sites, it increments the
register representing the last allocated heap address (for this execution thread)
and enters the continue state.

228 L.R. Williams

6 Redundancy

By restricting ourselves to pure functional programs, forgoing mutation and side-
effects, we accrue important benefits which will be critical in achieving our goal
of increased robustness. The most important of these is that two heap-objects
with the same address are absolutely interchangeable and this is true irrespective
of which actors created them and when they were last accessed. Significantly, this
means that it is possible for multiple instances of each heap-object and multiple
execution threads to coexist without inconsistency in the same distributed heap.

We can demonstrate the theoretical robustness of bytecode redundancy ob-
tainable in a DVM, compared to the more obvious approach of simply cloning
VMs, using an argument similar to von Neumann’s [14] discussion of machines
cross-checking each of their operations. Suppose a program needs to execute
n = 256 bytecodes to finish, and the probability that a bytecode will fail is
p = 0.01, and we want at least a 0.99 chance of success. If there are m cloned
VMs, the probability that at least one of them will succeed is 1−(1−(1−p)n)m.
Consequently, m must be at least 59 to achieve a 0.99 chance of success. On the
other hand, in a DVM with r copies of each bytecode, the probability of success
is (1− pr)n, and a mere r = 3 suffices to achieve 0.99 percent chance of success.
If we compare communication costs, the result is similar; although the cloned
VMs require only O(nm) continuation messages total, and the distributed vir-
tual machine requires a quadratic O(nr2), given that m = 59 versus r = 3 with
the above parameters, the cloned VMs must send 15104 continuation messages,
while the DVM requires only 2298.

7 Experimental System

The programming language used in our experimental system is a purely func-
tional subset of Scheme. Because it is purely functional, define, which associates
values with names in a global environment using mutation, and letrec, which also
uses mutation, have been excluded. Also, for simplicity, closures are restricted
to one argument. Consequently, user defined functions with more than one ar-
gument must be written in a curried style. This simplifies the representation
of the lexical environment which is used at runtime by making all variable ref-
erences integer offsets into a flat environment stack[7]. Finally, we introduce a
new special-form, lambda+, which creates a closure which contains a self-pointer,
and which can be used to create locally defined recursive functions at runtime
without define or letrec. In all other ways, we have faithfully implemented the
heap-based compiler for Scheme described by Dybvig[8] and have also respected
the semantics of his VM in the implementation of the transformations performed
on continuations by the bytecode actors which comprise our DVMs. To accom-
plish this, each bytecode actor must possess sufficient state to represent 9 heap
addresses:

– 1 address representing the current size of the heap
– 4 addresses for the VM registers encapsulated in the continuation

Robust Evaluation of Expressions by Distributed Virtual Machines 229

1

1

1

1

2

2

2
2

3

3

3

3

constant

argument

frame

argument

halt

halt

halt

halt

1

1

1
1

2

2

2

2

3

3

3

3

3

3

3

3

9

9

9

9

Fig. 4. Screenshots of a DVM evaluating the Scheme expression (* (+ 1 2) 3). The
simulated MFM is of size 48×48, i.e., one IXM board. Actors are reified as bonded pairs
of atoms and the redundancy level is four. Only bytecodes which possess a continuation
and numbers are labeled. In the right screenshot, all four continuations have reached
halt bytecodes; the four number nines are the result of the computation.

– 1 address for a self-pointer
– 2 addresses for child-pointers in the bytecode tree
– 1 address for message recipient.

In addition, 5 bits are required to represent heap-object type and 5 bits are
required to represent execution state for the most complex of the byetcodes.
Because atoms in the MFM can contain at most 48 bits of state, we reified a
bytecode actor as a pair of atoms joined by a short bond. See Figure 4. This
mechanism gives actors up to 88 bits of state each (since 4 bits in each atom
are required to maintain the short bond), permitting an 8 bit address space.
Although not very large, an 8 bit address space permits the evaluation of rela-
tively complex expressions like ((lambda+ f x (if (= x 1) 1 (+ x (f (- x 1))))) 9)
which returns the sum of the integers between 1 and 9. This expression compiles
into 67 unique heap-objects consisting of a mixture of bytecodes, numbers, clo-
sures, and primitive functions. With a redundancy level of 16, these are reified
as 2176 bonded pairs of atoms. Evaluating this expression requires a heap size
of 232–well within the 8 bit maximum.

The goal of the first experiment was to determine the effect of redundancy
on the time required to evaluate an expression. We evaluated ((lambda+ f x (if
(= x 1) 1 (+ x (f (- x 1))))) N) for N in the range 1 to 9 and for redundancy
levels of 1, 2, 4, 8 and 16. Ten trials were run for each condition. The dimensions
of the simulated MFM were fixed at 128 × 128. We observe that at all redun-
dancy levels, the average time required for the first execution thread to reach the
halt bytecode increases linearly with N . See Figure 5. Furthermore, this time
is inversely proportional to the redundancy level, which strongly suggests that

230 L.R. Williams

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 T
im

e

N

1
2
4
8

16

Fig. 5. Average time (measured in millions of updates per actor) required to evaluate
((lambda+ f x (if (= x 1) 1 (+ x (f (- x 1))))) N) as a function of N and for different
levels of redundancy. Error bars show plus or minus one standard deviation.

message latency is independent of the number of distinct addresses (heap size)
and depends only on the number of copies of each address (redundancy). The
analogy with molecular computation is compelling since (for an MFM of con-
stant size) redundancy corresponds to reactant concentration. However, unlike
actual molecules which have negligible volumes, bonded pairs of atoms in the
MFM have non-negligible areas. Consequently the product of redundancy and
heap size cannot exceed some fraction of the area of the MFM before the area
occupied by actors is so large that it impedes diffusion. Hence, message latency
can only be decreased by increasing redundancy to this point.

The goal of the second experiment was to explore the robustness of DVMs
with different levels of redundancy to a constant background rate of actor failure.
We assume that when an actor fails, the bonded pair of atoms representing it
is removed from the MFM and that there is no other form of corruption. The
expression evaluated was (* (+ 1 2) 3) which compiled to 29 unique heap-objects.
Redundancy ranged from 1 to 16 and failure rate ranged from 1 to 128 failures
per millions actor updates. In order to keep the actor concentration (and hence
message latency) constant for all levels of redundancy r, the dimensions of the

simulated MFM were set to N ×N where N = 16× 2
log r

2 .
One hundred trials were run for each experimental condition. A trial was

classified as a success when any execution thread reached the halt bytecode. A
trial was classified as a failure when either no actors remained or when time
equaled 5 × 104 updates per actor (on average). The results of this experiment
are shown in Figure 6. Error bars represent 95% confidence intervals. The most
striking thing about these results is that they show that beyond a failure rate
of 64 per million updates, additional redundancy has no effect on robustness.

Robust Evaluation of Expressions by Distributed Virtual Machines 231

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
om

pl
et

io
n

pr
ob

ab
ili

ty

Log failures per million updates

1
2
4
8

16

Fig. 6. Robustness of DVM evaluating (* (+ 1 2) 3) with different levels of redundancy
as a function of actor failure rate (log failures per million updates). Error bars show
95% confidence interval.

Although this result might initially be puzzling, it makes perfect sense when
one considers that removing actors from the simulation without also decreasing
the area of the MFM decreases reactant concentration and therefore increases
message latency. This (in turn) slows the rate of the computation, making it even
more vulnerable to actor failure, which further decreases reactant concentration,
and so on. The effect on completion probability is pronounced.

The goal of the last experiment was to explore the robustness of DVMs with
different levels of redundancy to failures of different fractions of the whole MFM.
A fractional failure of size x consists of the removal of all sites (and bonded pairs
of atoms occupying those sites) outside a square region of area n× n positioned
in the lower left corner of a simulated MFM where n =

√
(1− x)N .

In each trial, a single fractional failure (ranging in size from 0.1 to 0.9) was
simulated at the (condition independent) time when 7500 updates per actor
had been completed (on average). The expression evaluated and the termination
criteria were the same as those in the second experiment. One hundred trials
were run for each experimental condition. Inspection of the results (shown in
Figure 7) reveals that higher levels of redundancy result in higher probabilities
of successful completion over the full range of fractional machine failure sizes.

Significantly, even with a fractional failure size of 70%, the simulated MFM
with redundancy level of 16 still successfully finishes 90% of the time. We con-
jecture that this trend would continue indefinitely so that tolerance to fractional
board failures of any degree less than 100% could be achieved by a sufficiently
large MFM.

232 L.R. Williams

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

pl
et

io
n

pr
ob

ab
ili

ty

Failure fraction

1
2
4
8

16

Fig. 7. Robustness of DVM evaluatting (* (+ 1 2) 3) with different levels of redundancy
as a function of machine failure fraction. Error bars show 95% confidence interval.

8 Conclusion

We have shown how expressions written in a functional programming language
can be evaluated on a modular asynchronous spatial computer. This was accom-
plished by compiling the expressions into a distributed virtual machine comprised
of reified bytecodes undergoing diffusion and communicating via messages con-
taining encapsulated virtual machine states.

Because the semantics of the source language are purely functional, multiple
instances of each reified bytecode and multiple execution threads can coexist
without inconsistency in the same distributed heap. Significantly, it was shown
that evaluation efficiency and robustness both increased with increased redun-
dancy. It was further shown that the evaluation process is robust to two types of
hardware failure...but less so to the second, namely, failures which result in a de-
crease in the spatial density (concentration) of actors representing heap-allocated
objects. However, it was shown to be extremely robust to the elimination of en-
tire regions of space (since this doesn’t affect concentration), and this may be
the more realistic failure model in an asynchronous spatial computer comprised
of discrete modules.

Acknowledgements. Thanks to Dave Ackley for sharing his vision of a post
von Neumann future.

References

1. Ackley, D.H., Cannon, D.C.: Pursue robust indefinite scalability. In: Proc. HotOS
XIII (May 2011)

2. Agha, G.: Actors: A model of concurrent computation in distributed systems (1986)

Robust Evaluation of Expressions by Distributed Virtual Machines 233

3. Baker, H.: Actor Systems for Real-Time Computation. PhD thesis (January 1978)
4. Beal, J., Michel, O., Schultz, U.P.: Spatial computing: Distributed systems that

take advantage of our geometric world. TAAS 6(2), 11 (2011)
5. Chapiro, D.M.: Globally Asynchronous Locally Synchronous Systems. PhD thesis

(1984)
6. Clinger, W.: Foundations of Actor Semantics. PhD thesis (1981)
7. De Bruijn, N.G.: Lambda calculus notation with nameless dummies: a tool for

automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 34, 381–392 (1972)

8. Kent Dybvig, R.: Three Implementation Models for Scheme. PhD thesis (1987)
9. Greif, I., Hewitt, C.: Actor semantics of PLANNER-73. In: Principles of Program-

ming Languages (January 1975)
10. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for arti-

ficial intelligence. In: IJCAI, pp. 235–245 (1973)
11. Landin, P.J.: The mechanical evaluation of expressions. The Computer Jour-

nal 6(4), 308–320 (1964)
12. Muttersbach, J., Villiger, T., Fichtner, W.: Practical design of globally-

asynchronous locally-synchronous systems. In: ASYNC, pp. 52–59 (2000)
13. Sipper, M.: The emergence of cellular computing. IEEE Computer 32(7), 18–26

(1999)
14. von Neumann, J.: The general and logical theory of automata. In: Jeffress, L.A.

(ed.) Cerebral Mechanisms in Behaviour. Wiley (1951)

	Robust Evaluation of Expressions by Distributed Virtual Machines
	A Pourable Computer
	A Modular Asynchronous Spatial Computer
	Virtual Machine
	A Reified Actor Model
	Distributed Virtual Machine
	Redundancy
	Experimental System
	Conclusion

