
Students Who Don’t Understand Information Flow Should be Eaten: An
Experience Paper

Roya Ensafi, Mike Jacobi, and Jedidiah R. Crandall
University of New Mexico,
Dept. of Computer Science

{royaen, mjacobi, crandall}@cs.unm.edu

Abstract
Information flow is still relevant, from browser privacy
to side-channel attacks on cryptography. However, many
of the seminal ideas come from an era when multi-level
secure systems were the main subject of study. Students
have a hard time relating the material to today’s familiar
commodity systems.

We describe our experiences developing and utilizing
an online version of the game Werewolves of Miller’s
Hollow (a variant of Mafia). To avoid being eaten, stu-
dents must exploit inference channels on a Linux system
to discover “werewolves” among a population of “towns-
people.” Because the werewolves must secretly discuss
and vote about who they want to eat at night, they are
forced to have some amount of keystroke and network
activity in their remote shells at this time. In each in-
stance of the game the werewolves are chosen at ran-
dom from among the townspeople, creating an interest-
ing dynamic where students must think about informa-
tion flow from both perspectives and keep adapting their
techniques and strategies throughout the semester.

This game has engendered a great deal of enthusiasm
among our students, and we have witnessed many inter-
esting attacks that we did not anticipate. We plan to re-
lease the game under an open source software license.

1 Introduction

Computer security is becoming an instrumental field of
study in any computer science curriculum. A computer
security course can reinforce other fundamental com-
puter science topics in everything from systems curric-
ula (e.g., operating systems, architecture, or networks)
to theory and data structures [24]. Although traditional
lecture-based teaching can be valuable, with respect to
computer security active learning using hands-on, prac-
tical labs has been suggested by many instructors and re-
searchers [18, 10, 5].

Games, by their very nature, can provide an active
learning environment. As is shown by Oblinger [21],
there are many attributes of games which make them
pedagogically effective learning environments.

In this paper we discuss our experience in design-
ing, programming, and playing an online version of
The Werewolves of Miller’s Hollow (a variant of Mafia),
which we hereafter refer to simply as “Werewolves.”
Werewolves is a party game in which participants are
divided into two groups: werewolves and townspeople.
The goal of the game is to eliminate members of the op-
posing group. Werewolves can eat townspeople at night.
They are outnumbered but know each others’ identities.
Townspeople vote for who to hang as a suspected Were-
wolf each day. Werewolves act as normal townspeople
during the day, so they are part of this discussion and vot-
ing process. While townspeople are given an advantage
in their numbers, they do not know the identities of the
werewolves among them so they must rely on inference.

We selected this game for its complex social interac-
tions and the fact that it necessitates privacy and confi-
dentiality for the werewolves. We decided to implement
the game within a UNIX-based operating system, so that
there are countless opportunities for the townspeople to
exploit covert inference channels. In our case, the stu-
dents must make use of these inference channels to iden-
tify the werewolves because there is no fortune teller roll
(known as the detective in Mafia) who can investigate the
identities of other players directly.

A covert channel attack is a type of side-channel at-
tack that exploits communication channels that were not
intended for communication by the system’s designers,
and violate an explicit or implied security policy [25].
Based on our past experiences of teaching this topic from
a lecture-based approach, students have struggled with
not only understanding information flow through covert
channels, but also with the importance of exhaustively
enumerating channels in a systematic way.

1

The benefits of lab-based teaching of computer secu-
rity through games are well-known and this technique is
applied regularly. For example, Fanelli et al. [10] dis-
cuss their successful experience in using practical ap-
proaches in teaching an information assurance course.
Also, Du [8] has developed a set of hands-on labs for
teaching a variety of computer security topics which is
freely available. Our main contribution is in develop-
ing a game that conveys information flow in a fun way
and challenges students to continually evolve their tech-
niques and strategies.

It is important to mention that, based on the con-
stantly evolving nature of computer security, a substan-
tial amount of effort is required in creating and maintain-
ing labs that are pertinent to the real world. We believe
that such an effort is worthwhile in improving a student’s
experience in computer security courses. All informa-
tion and code for our game will be released under an
open source license. We hope that the game can con-
tinue to evolve in a constant battle between townspeo-
ple and werewolves where no technique or strategy ex-
ists which precludes a response from the other side. As
an example of such a game, Core Wars [7] continues to
challenge beginners and experts alike to take their knowl-
edge and skill one step further. We discuss the challenges
we have identified for maintaining this property for our
Werewolves game and our plans for addressing them.

This paper is organized as follows. First, we give the
basic rules of Werewolves in Section 2. This is followed
by Section 3 which gives a brief background of informa-
tion flow research. We developed ways to prepare stu-
dents for the game, which we detail in Section 4. We ex-
plain our implementation of Werewolves and our server
setup in Section 5. In this section, we also offer some
examples of information leaks and describe some of the
attacks our students employed. The lessons we learned
from our experiences so far this semester are enumerated
in Section 6. This is followed by discussion and future
work in Section 7.

2 The rules of Werewolves

The game Werewolves (also known as Mafia) is a popu-
lar game that is not only studied theoretically [6, 20], but
also is used for researching other topics such as video
conferencing [2]. There are several variants of this game
which differ only in minor details. In the Werewolves
version as we have implemented it, players are divided
into three groups: townspeople, werewolves, and the
witch. Typically, there is also a fortune teller who can
view the identity of one other player every night. How-
ever, we omitted this role because we want to encour-
age the townspeople to exploit covert inference channels
rather than rely on the fortune teller. Initially, players

only know their own identity. The werewolves know of
each other and can infer that all other players are there-
fore townspeople or the witch, but the werewolves do not
know which townsperson is the witch. At night, were-
wolves open their eyes and decide, through discussion
and voting, whom to eat from among the townspeople.
At the end of their discussion, which should be hidden
from the townspeople, they eat the chosen player and
then close their eyes. The witch then opens his/her eyes,
and can then select a player to kill with a poison, save
the player who the werewolves had eaten with a potion,
or decide to not perform either of these actions (pass).
The poison and the potion can each only be used once
by the witch in the game. When the next day starts, all
still-living players open their eyes and debate amongst
themselves which players that are still in the game could
be werewolves, and potentially kill one of the accused
players via hanging. The days and nights pass until ei-
ther all the townspeople or all the werewolves are dead.
The group with players still remaining alive in the end
wins.

We explain in further sections how this game has be-
come a great pedagogical tool for teaching the concepts
of information flow and covert channels.

3 Background on information flow and
covert channels

The term “covert channel” was coined by Lampson [15],
who posed the confinement problem. The confinement
problem is: can we design and implement a service that
takes inputs from a customer but provably does not save
the inputs or transmit them to the service’s owner against
the customer’s wishes. A related idea is Fenton’s mem-
oryless subsystems [11]. Lipner [16] commented that
covert channels would be extremely difficult and costly
to close.

Covert channels are channels of potential information
flow in a system that were not intended by the system de-
signers for communication, but can be used to commu-
nicate information, especially in a way that violates an
explicit or implied security policy. Covert channels can
be divided into two types: storage and timing. Storage
channels are based on the storage of information, such
as a shared semaphore. Timing channels are channels
where the information is represented as timing, such as
the position of the head with respect to certain tracks on
a hard disk drive. Note that these examples are a bit am-
biguous in that exploitation of either implies both storage
and timing elements (the state of the lock is inferred by
processes via the timing of when they are able to obtain
it, and the position of the hard disk drive head implies
information and therefore is a form of storage itself).

2

Goguen and Meseguer [12] describe non-interference,
which is a property that says that high-security inputs
should never affect low-security outputs. Kemmerer [14]
describes a shared resource matrix methodology for enu-
merating storage and timing channels based on a transi-
tive closure operation on a matrix that describes informa-
tion storage objects by their resource attributes and prim-
itives. Wray [26] gives some clarification on the nature
of timing channels, and describes a method for enumerat-
ing channels with timing aspects by considering pairs of
“clocks.” “Clocks” are an abstract notion and correspond
with any observable event in the system. By enumerat-
ing all “clocks” and considering all pairs of “clocks” it
is possible to enumerate all covert channels with timing
aspects.

To get students started so that they could systemati-
cally reason about how to play the Werewolves game
and relate it to existing research and practice in infor-
mation flow, we assigned and discussed three papers:
Kemmerer [14], Wray [26], and a paper that applies
non-interference to an intuitive and simple problem in
network security [9]. We also gave students a link to
Goguen and Meseguer [12], the paper that defined the
notion of non-interference, but since our students were
a mix of undergraduates and graduates from a variety
of major areas of study, we did not make Goguen and
Meseguer required reading. These readings were in ad-
dition to the material in Chapters 8, 16, and 17 of the
course textbook, Bishop’s Computer Security: Art and
Practice [4].

Students typically have little trouble understanding the
simple version of non-interference and how to apply it to
a practical problem such as keystroke inference among
UNIX processes. Kemmerer’s and Wray’s methodolo-
gies are also straightforward to understand, but students
struggle to some degree when trying to apply these lat-
ter two methodologies to practical problems. This strug-
gle is very fruitful and helps them to better understand
Kemmerer’s and Wray’s methodologies in terms of their
power and limitations.

One issue that often comes up when applying these
methodologies to practical problems in the classroom is
that most of the early research on information flow and
covert channels was driven by the desire to build multi-
level secure systems. Thus, this early research either ex-
plicitly or implicitly makes the assumption of collusion,
that is, it is assumed that the sender and receiver of the
information are both intending for the illicit flow of in-
formation to occur. In inference channels, the sender of
the information is not always intending to send the infor-
mation. For example, in Percival’s attack on SSL RSA
encryption via cache timings [22] the RSA encryption
software does not intend to modulate its memory usage
timings based on the secret RSA key. Instead, this hap-

pens by accident as a property of performance optimiza-
tion and the Chinese remainder theorem. By asking stu-
dents to apply classical research on covert channels to the
more contemporary problem of inference channels, they
gain a better understanding of both the classical research
and what it is that distinguishes inference channels from
other covert channels that are based on collusion.

Although we did not do so in our class, for a gradu-
ate class it might be appropriate to also discuss recent
papers that apply ideas about timing and inference chan-
nels from the perspective of contemporary research on
information flow, such as Ensafi et al. [9], Askarov et
al. [1], Qian and Mao [23], or Jana and Shmatikov [13].

4 Lab preparation

At the beginning of the semester, we spent three weeks
on ethical training. The goal of the training was to make
students familiar with the current cyber-related laws and
policies in practice and give them some notion of the
ethics of security such as ethical disclosure. Students
were assigned to imagine themselves in three different
environments (e.g., on campus, at a coffee shop, at home)
performing actions that most people would consider be-
nign, but that might violate laws or polices. Then, stu-
dents exchanged their reports and acted as lawyers hired
by a client to determine the legality of these actions. For
the ethics part, we discussed the impact of attacks and
ethical disclosure issues.

A security based game helps students to grasp the se-
curity concepts intuitively. Werewolves is an interesting
party game, but it can be difficult to understand if you
have not played it before. Therefore, in one class ses-
sion we had students play the actual game with cards, to
become familiar with the rules.

As explained in Section 3, we assigned and discussed
three papers: Kemmerer [14], Wray [26], and a simpler
paper about non-interference [9] that is easier for stu-
dents to understand than Goguen and Meseguer [12].

After preparing students for the game, we divided
them into groups of three and gave them a username and
password to be able to log in remotely to the game server.
All of the game code was made available to students on
the course website, which also included a sample client
script (more details in Section 5).

4.1 Werewolves on Mondays
The introductory Cybersecurity course that we devel-
oped this game for is a three-credit course, which met
three times a week for an hour each session. We dedi-
cated a month to this lab, where every Monday students
were required to meet with their groups someplace away
from the classroom to remotely log into the game server.

3

As the instructors, we initiated a game session for stu-
dents to connect to during class time and play the game.
On Wednesdays and Fridays, we met in class to discuss
techniques and help groups to improve their inference
methods.

4.2 Proposed improvements for prepara-
tion

During game play, we noticed that poor strategies that
were not related to information flow caused the were-
wolves to be detectable even without inference attacks.
This detracted from the desired aspect of the game that
students should learn about information flow. For exam-
ple, werewolves would often vote against their accusers
during the day as townspeople, rather than killing them
anonymously at night, making it clear who the were-
wolves were based solely on their voting patterns. Note
that killing an accuser always draws suspicion to a were-
wolf, but voting openly for an accuser is an even worse
strategy.

When students submitted their writeups about this
lab at the end of the semester, most groups tended to
only scratch the surface of overarching concepts such as
Kemmerer’s shared resource matrix methodology, non-
interference, or game theory. For example, some groups
found inference channels using informal methods and
then described how such a channel would look in a
Kemmerer-style matrix, rather than using the Kemmerer-
style matrix to enumerate possible inference channels.

To improve preparation for this lab in the future, we
recommend the following:

• More time should be dedicated to class discussions
about strategies for basic gameplay.

• Students should be given very specific instructions
for applying overarching concepts. For example,
students could be given a subset of Linux system
calls and told to create the full Kemmerer-style ma-
trix for any resource attributes referred to in those
system calls (typically these would be referenced
by pointers into userspace to data structures that the
kernel should read or modify).

5 Game design

The game architecture resembles a client-server architec-
ture where the client and server are on the same host and
communicate through named pipes. Gameplay is hosted
on a single machine that players remotely log into via
SSH (Figure 1). Initially, the Werewolves server was a
small laptop with an Intel Atom processor and 1GB of
RAM. Later the server was moved to a dual quad-core

Intel Xeon with 16GB of RAM. The laptop had been
specifically selected to increase the probability of dis-
covering side-channel attacks because of its limited re-
sources, but this turned out to not be necessary.

Players were assigned a username and password that is
linked to a user account which is set up for Werewolves.
The server, written in Python, is an automated modera-
tor that manages the game. All communication between
the server and clients is handled through Linux named
pipes. Security is enabled through UNIX permissions
and server-side controls. Players were required to write
their own clients to obscure their communication, though
they were given a default client to start from. All com-
munication is recorded to provide real-time updates and
detailed post-game analysis.

Each user owns two pipes, a read and a write
pipe, and the moderator is in the group associated with
these pipes. The write pipe is used for user-to-server
communication and has permissions -wxr-x---. The
read pipe facilitates server-to-user communication and
has permissions r-x-wx---. Further, each pipe is
stored in its own directory with the same permissions
as its pipe, to prevent stat()s from other users. All
individual pipe directories are stored in a pipes direc-
tory owned by the moderator with rwx-----x permis-
sions. The strict file architecture and permissions ensure
that each pipe is being used only by the appropriate user,
and that information does not flow through the nodes for
the pipes since this would make it too easy to detect the
werewolves.

There is a communications Python script that pro-
vides generic helper functions to the clients and the
server. The most basic of these functions are send
and receive. These functions simply provide pars-
ing and error handling for cats and echos on pipes
(read and write, respectively), and are important because
other functions are built on top of them. This imple-
mentation is significant because it means all communi-
cation is handled via system calls (which are voluntary
context switches) and influences the types of informa-
tion inference techniques. Other significant functions
include broadcast, groupChat, and poll. The
broadcast function sends the same message to every
user, and is used for public messages. The groupChat
function allows a group of users to all communicate with
one another. This enables, for example, werewolves to
communicate amongst each other at night, or the towns-
people to communicate during the day. Finally, poll is
used to handle the voting aspects of the game, i.e., whom
the werewolves vote to eat, or how the witch chooses to
play.

The main role of the server, which is owned by the
moderator user, is to initialize a game and cycle be-
tween rounds of day and night until an end state is

4

Werewolves
Server

Group 2
@lab 209

Group 1
@office

Group 15
@library. . .

SS
H
co
nn
ec
ti
on

SS
H
co
nn
ec
ti
on SSH connection

. . .

Begin
There are 3 wolves, and 10 townspeople.
***************ROUND 1****************
Townspeople:['uno1','dos2','tres3','cuatro4','siete7',
'ocho8','nueve9','diez10','doce12']
Werewolves:['cinco5','seis6','trece13']
Witch:['once11']
Night falls and the town sleeps. Everyone close your eyes.
Werewolves, open your eyes.
Werewolves, you choose a victim. You have 120" to discuss.
cinco5: lets eat doce12
seis6: no why him?,vote for tres3
Time to vote.
cinco5 vote for doce12. seis6 and trece13 vote for tres3.
Werewolves, you selected to eat tres3.
Werewolves, close your eyes.
Witch, open your eyes.
Time to vote:['pass','poison','save']
Witch passed.
Witch, close your eyes.
Everyone, the werewolves ate tres3.
tres3 is giving death speech for 60".
tres3: I was town people, I think cuatro4 is werewolves.
tres3: Goodbye, cruel world
It is day. Everyone open your eyes. You have 240" to
discuss who the werewolves are, 60" to vote....

Figure 1: Basic topology of our game.

reached. Prior to the game starting, the moderator se-
lects how long each chat and vote session lasts. Initializ-
ing the game consists of starting a moderator listener
thread, starting a groupChat thread, listening for client
connections, and randomly assigning roles to the con-
nected players. The game starts at night, in which the
werewolves group chat for wolfchat seconds, and
then a vote session is spawned amongst them. Then, a
vote session is spawned for the witch, with a dynamic
list of options based upon the werewolves action. Next,
the game enters day, and the townspeople group chat for
townchat seconds. The day concludes with a town
vote to accuse one player of being a werewolf and then
hang them, and then the next night begins. If a player
is eliminated, either through a werewolf vote, a witch
poison, or a town vote, the server removes that player
from the appropriate list(s) and allows them to make

concluding remarks. Throughout the night and day, the
server checks for end game conditions before continuing.
Though the server is fully automated, the moderator has
access to various commands to intervene with an active
game. For example, the moderator may broadcast to
the group to spur discussion, remove a player suspected
of unauthorized play, or skip over sessions that are last-
ing too long.

The default client is written in Python and has two
threads. The send thread sits in an infinite loop waiting
for keyboard input to send to the server. The listener
thread infinitely loops to receive server input and print
it to the screen. This client acts in predictable ways,
and may be modified to obscure its actions. Further, the
only dependencies to communicate with the server are
the designated pipes, so a client may be written in any
language, or emulated entirely from the command line.

5.1 Examples of information leaks
In this section, we describe several attacks of the type
that we expect the townspeople to employ against the
werewolves, to illustrate the kinds of information flows
and inferences that the game is about. All commands and
stated properties of Linux systems were tested in Ubuntu
10.04. All of these inference attacks are designed for
inferring information about processes that are not owned
by the attacker, where neither the process nor the attacker
are running with administrator privileges.

To maintain a balance between townspeople and were-
wolves in the game, we want for it to be possible for
the townspeople to infer who the werewolves are, but
also possible for the werewolves to evade detection. For
this reason, we have made attempts to close information
flows that make it too easy for the townspeople to detect
the werewolves. For example, it is possible to tell when-
ever a named pipe has been written to by performing a
stat() on the named pipe, even without ownership or
any permissions on the pipe:
while : ; do stat /tmp/mypipe | grep Change; \
sleep 1; done

Since stat() gives both the time a file or pipe was
last accessed when it was last modified, this makes it triv-
ial for the townspeople to detect the werewolves directly
through their interactions with the server via the pipe.
Note that Linux systems allow a user to stat() a file or
pipe even if they do not own it and have no read, write,
or execute permissions. However, to stat() a file a
user needs execute permissions for all dentry’s in the
file path. Thus, our solution to this flow of information
was to place all named pipes in subdirectories that only
the moderator and the user who is using the pipe to com-
municate with the moderator have execute permissions
for.

5

To get students started and give them an example of
how to spy on another process, we gave them two exam-
ples. The first can only detect keystroke activity through
the physical keyboard attached to the computer, it does
not work for SSH logins over the network. This attack is
described in more detail by Zalewski [27].

cat -v /dev/random

Because every keystroke on the keyboard adds entropy
to the entropy pool, after the entropy pool is drained
keystrokes cause blocking reads to the entropy pool
to be fulfilled because of the entropy each keystroke
adds. The special character device /dev/random
blocks when the entropy pool is empty, in contrast to
/dev/urandom which continues to return the results
of a cryptographic hash even after the entropy pool runs
out of entropy.

To show students the potential for information flow in-
ference in the /proc filesystem, we gave them an exam-
ple that was based off of scheduler information, specif-
ically voluntary context switches. The stack pointer of
other processes that was used in Zhang and Wang [28]
is no longer visible. However, for a process that is idle
except for reading keystrokes, every keystroke is exactly
one voluntary context switch. So, it is possible to count
the keystrokes of a process (in this example, the pro-
cess with PID 1234 that could be, e.g., an interactive
command bash shell) using the following from another
bash shell:

while : ; do grep "nr_voluntary_switches" \
/proc/1234/sched; sleep 1; done

Every time a key is pressed this variable is incre-
mented. If the process is using a file descriptor in non-
canonical mode, then each write to or read from the file
descriptor of a line (e.g., through a named pipe) will also
appear as a voluntary context switch.

From there, students were encouraged to find their
own information flow inference attacks. One example
of a more refined variant of the attack on voluntary con-
text switches is to only consider transitions to/from a wait
state:

while : ; do grep "se\.wait_count" \
/proc/1234/sched; sleep 1; done

For SSH sessions, it is possible to infer keystrokes and
other network activity in a way that is specific to indi-
vidual network sockets by looking for resets in the TCP
keepalive timers for each socket:

while : ; do netstat -an --timer | grep ":22" \
| grep "(0" | grep -v LISTEN; sleep 0.1; done

With root privileges it is trivial to connect a network
socket to a specific process and user via fuser, ss, or
lsof. Doing so directly is not permitted in Linux with-
out root privileges, but the IP address of other users
logged into the system can be obtained via who --ips.
Also, correlations between network traffic and process
activity can help to tie sockets to processes.

It is also possible to get more detailed information
about the state of a process, including, e.g., if the file
object it is waiting for is a pipe:

ps -eo user,pid,args,wchan | grep pipe

This ability to get detailed information about process
state created a very powerful information flow inference
attack for the townspeople to exploit in the first version of
our server. Specifically, the werewolves were forced into
a very conspicuous interaction with the server that took
them through process state transitions that the townspeo-
ple did not need to go through. For example, the towns-
people do not transition out of a pipe wait state when
the server makes an announcement such as “Werewolves,
cast your votes...” However, at that point in each round
the werewolves are forced to be in a pipe wait state
and transition out of it. Part-way through the semester we
fixed the server by synchronizing the townspeoples’ and
werewolves’ transitions so that the server always printed
a message to all players, e.g., “Werewolves, cast your
votes...” to the werewolves and “The werewolves are
now casting their votes...” to the townspeople.

In terms of strategies for the werewolves to hide their
activities, at least one werewolf must make at least one
write to their named pipe during the night if they are to
kill any townsperson. This introduces many interesting
strategies for how the werewolves vote and kill, but an-
other interesting strategy is to hide which process they
are using to interact with the game server, e.g., by contin-
ually forking child processes that inherit the file descrip-
tors and state of their parent and then the parent exits, so
that the PID keeps changing.

We expect the game to continually evolve over time
both in terms of general strategies and in terms of spe-
cific information flow inference attacks. As long as the
probability of any given townsperson detecting any given
werewolf in a round is neither too close to 0% nor to
100%, we hope that the game will remain interesting and
students will continue to increase the sophistication of
their attacks and defenses. To maintain this, however,
we anticipate also needing to adapt the game server over
time.

6

5.2 Advanced attacks and strategies we did
not anticipate

One important lesson we learned is that if the game
server reveals the identities of the werewolves in a way
that the werewolves have no way of ameliorating, then
the game quickly devolves to the point where it is im-
possible for the werewolves to win. Our server had a
bug where it forked separate cat binaries as children to
write into named pipes of the werewolves. Since com-
mand line arguments are publicly visible and the named
pipe was specific to one group, the townspeople could
easily find the identities of the werewolves by monitor-
ing the child processes the server forked, no matter what
the werewolves did. By the end of the semester, at least
two groups out of thirteen had found this and were eas-
ily identifying the werewolves in the first round of every
game. We plan to fix this bug in our server before releas-
ing the server and its source code.

One method that appeared to be effective for the were-
wolves to hide their identity was for one werewolf to vote
right at the end of a voting round and the others to remain
silent. In other words, if the werewolves were given 60
seconds to vote and there were three werewolves, two
would remain silent and one would count down 60 sec-
onds and try to register their vote right before the server
transitioned to the witch phase. This strategy was effec-
tive in one game where one of two groups who could
identify the werewolves from server actions was a were-
wolf and the other was killed in the first night by the
werewolves. Another method that one group attempted
was to make many system calls all the time, whether or
not they were a werewolf. This resulted in this group be-
ing accused of being a werewolf and subsequently being
hanged every game.

We also found it interesting that several groups also
tried social engineering or more conventional attacks on
the game and on other users. Our instructions had stated
that only denial-of-service attacks were prohibited, all
other types of attacks were allowed. In fact, students
were told that for this lab, “If you’re not cheating, you’re
not trying.” One group obtained the /etc/shadow file
of the server containing the password hashes of the mod-
erator and all other groups, and made an unsuccessful at-
tempt to find weak passwords with a dictionary attack1.
Another group discovered a vulnerability in our game
server where they could change their identity to any other
user during the chat phase, then made it appear as though
a werewolf were confessing to being a werewolf. At
least two of the thirteen groups attempted to exploit a
local privilege escalation vulnerability in Ubuntu 10.04
that we had already patched.

6 Lessons learned and discussion

We remained in constant contact with the students
throughout the semester to understand the early develop-
ment of the game. We also read writeups that the students
submitted at the end of the semester detailing their tech-
niques and strategies for the game and the attacks they
developed. The lessons we learned include:

1. It is necessary for the server to be designed
carefully so that the werewolves have at least
a fighting chance. After playing several games,
we learned that the design of our server made it
too easy for the townspeople to identify the were-
wolves. This was explained in Section 5.1. Ba-
sically, twice we were made aware by students of
bugs in the game server where it wrote to the were-
wolves’ pipes in a way that created a blatant leak
of information that the werewolves had no control
over. We anticipate that the game server will require
careful design and maybe some updates to encour-
age the evolution of the game over time.

2. Students exceeded our expectations in terms of
the sophistication of their attacks. Students dis-
covered the aforementioned information flow vul-
nerability in the server, and developed many other
attacks that exceeded our expectations. For exam-
ple, a vulnerability in our server was discovered by
students that enabled them to post messages appear-
ing to be from other users and employ social engi-
neering attacks (this was described in Section 5.2).

3. All students were challenged, but still able to
contribute. Because of the continuous evolution
of the game and the open-ended nature of possi-
ble techniques and strategies, students with strong
backgrounds in UNIX system hacking were chal-
lenged and students who were learning UNIX sys-
tem hacking were still able to contribute. In other
words, the nature of the game put our students
on relatively equal footing and challenged them to
learn.

4. Students’ enthusiasm for the game led to many
interesting discussions about information flow
and game theory. We found that our students were
extremely enthusiastic about the game, and were
so excited to talk about different inference chan-
nel attack techniques and strategies that they shared
detailed information even with students from other
groups, despite the ostensibly competitive nature of
the game. After games, students would often come
from the scattered locations in which they had met
with their groups during the game and congregate

7

outside our offices for discussion. This level of en-
thusiasm is contrary to our experience from past
semesters of teaching information flow in a lecture-
style format.

5. Students needed to apply techniques to deal with
the noise in the system. Soon after understanding
the game and our game implementation, students
learned to use context switches as a way of detect-
ing werewolves. However, any efforts to count the
context switches of other processes in turn gener-
ated a lot of context switches. Students had to re-
think their techniques and strategies, and in partic-
ular they needed to think more deeply about how
to enumerate possible covert inference channels as
exhaustively as possible to overcome this signal-to-
noise-ratio issue.

6. Operating-system-level covert inference chan-
nels are numerous and serious enough that
lower-level inference channels are not necessary.
Covert inference channels that are at a higher layer
of abstraction, such as the operating system (see ex-
amples in Section 5.1), are much easier to under-
stand and to exploit than low-level attacks such as
the timing of cache misses (e.g., attacks such as
Percival’s [22] or Bernstein’s [3]). When we first
designed the game, we were not sure if the operat-
ing system would provide enough information flow
leaks to allow students to be successful with simple
attacks implemented as shell commands or in script-
ing languages. We had been anticipating that we
would need to teach some more advanced hardware-
level attacks that were very delicate and difficult
to implement. We even initially used a resource-
constrained server to make the implementation of
hardware-level attacks more viable. After we re-
alized that many very simple attacks were possi-
ble, even from just shell commands, we moved the
server to more high-performance hardware.

7. Continuously engaging the students between
games turned out to be more valuable than we
had imagined. Because we had individual and
whole-class discussions during the week between
the games on Mondays, we were able to create a
tight feedback loop where the students understand-
ing and sophistication of attacks and our under-
standing of how the game was evolving were tightly
coupled. We learned a great amount from the stu-
dents and they learned a great amount from each
other.

6.1 Evolution of the game over time

We expect the game to continually evolve over time both
in terms of general strategies and in terms of specific in-
formation flow inference attacks. As long as the prob-
ability of any given townsperson detecting any given
werewolf in a round is neither too close to 0% nor to
100%, we hope that the game will remain interesting and
students will continue to increase the sophistication of
their attacks and defenses. To maintain this, however,
we anticipate also needing to continually adapt the game
server.

Our strategy for this anticipated evolution of the game
is to have “knobs to turn” that change the dynamics of the
game in favor of either the werewolves or the townspeo-
ple. However, we first need to do an inference channel
analysis of our server to make sure that it is not possible
to infer the identities of the werewolves directly from the
server in a way that the werewolves cannot ameliorate.

A very powerful knob that can shift the game toward
either direction is to vary the number of werewolves in
the game. The werewolves always have perfect informa-
tion about who is a werewolf and who is a townsperson.
At one extreme, if the townspeople have zero informa-
tion about who the werewolves are then they can only
hang players at random and the optimal number of were-
wolves to make the game fair is

√
R where R is the to-

tal number of players. At the other extreme, where the
townspeople have full information about who the were-
wolves are, the game devolves into a deterministic se-
quence of killings, but as we approach this extreme the
optimal number of werewolves is approximately R

2 . In
between these extremes, with partial information, the op-
timal number of werewolves is Ω(R), i.e., it grows lin-
early with respect to the number of players [6].

Another possible knob, that can shift the game in fa-
vor of the townspeople, is to enforce rules on the were-
wolves’ voting. For example, a rule that stated that the
werewolves could only kill someone if all living were-
wolves voted unanimously would force all werewolves to
vote and would encourage discussion amongst the were-
wolves.

The progress of the game could become an issue, par-
ticularly if the werewolves decided that total silence was
their best chance of survival. Progress could be enforced
by limiting the number of rounds the werewolves have
in order to win, for example. Denial-of-service was pro-
hibited by us this semester, but could create an interest-
ing aspect of the game that might be a good learning aid
for availability issues and robustness techniques. In fact,
many aspects of information security could be explored
within the context of the online Werewolves game we
have developed that pervade the McCumber INFOSEC
Model [19, 17].

8

7 Concluding remarks and future work

Mafia, the game that Werewolves is a variant of, was in-
vented in Russia over 25 years ago and has inspired a
vibrant community and a large amount of research and
learning in everything from psychology to game theory.
Our hope is that our online variant of Werewolves will
inspire a similar community within the academic com-
puter security community. We envision that the game,
and the community’s understanding of information flow
and covert inference channels, can continue to develop
indefinitely. This paper has described our experiences in
pursuit of this goal.

Acknowledgments
We would like to thank Nick Aase, the CSET anony-

mous reviewers, and our shepherd, Sean Peisert, for valu-
able feedback. We would also like to thank the students
in our Spring 2012 CS 444/544 “Introduction to Cyber-
security” class for their input and patience. Finally, we
would like to thank the UNM Department of Computer
Science for supporting Mike Jacobi with a teaching as-
sistantship. This material is based upon work supported
by the National Science Foundation under Grant Nos.
#0844880, #0905177, and #1017602.

References

[1] ASKAROV, A., ZHANG, D., AND MYERS, A. C.
Predictive black-box mitigation of timing chan-
nels. In Proceedings of the 17th ACM conference
on Computer and communications security (New
York, NY, USA, 2010), CCS ’10, ACM, pp. 297–
307.

[2] BATCHELLER, A. L., HILLIGOSS, B., NAM, K.,
RADER, E., REY-BABARRO, M., AND ZHOU,
X. Testing the technology: playing games with
video conferencing. In Proceedings of the SIGCHI
conference on Human factors in computing sys-
tems (New York, NY, USA, 2007), CHI ’07, ACM,
pp. 849–852.

[3] BERNSTEIN, D. J. Cache-timing attacks on AES.
http://cr.yp.to, 2005.

[4] BISHOP, M. Computer Security: Art and Science.
Addison-Wesley, 2003.

[5] BRATUS, S. What hackers learn that the rest of us
don’t: Notes on hacker curriculum. IEEE Security
and Privacy 5 (2007), 72–75.

[6] BRAVERMAN, M., ETESAMI, O., AND MOSSEL,
E. Mafia: A theoretical study of players and coali-
tions in a partial information environment.

[7] DEWDNEY, A. Computer Recreations. Scientific
American, 250, 5, 14-22, May, 1984 (and generally
1984-86).

[8] DU, W., TENG, Z., AND WANG, R. SEED: a suite
of instructional laboratories for computer SEcurity
EDucation. In Proceedings of the 38th SIGCSE
technical symposium on Computer science educa-
tion (New York, NY, USA, 2007), SIGCSE ’07,
ACM, pp. 486–490.

[9] ENSAFI, R., PARK, J. C., KAPUR, D., AND
CRANDALL, J. R. Idle port scanning and non-
interference analysis of network protocol stacks us-
ing model checking. In Proceedings of the 19th
USENIX conference on Security (Berkeley, CA,
USA, 2010), USENIX Security’10, USENIX As-
sociation, pp. 17–17.

[10] FANELLI, R. L., AND O, CONNOR, T. J. Ex-
periences with practice-focused undergraduate se-
curity education. In Proceedings of the 3rd in-
ternational conference on Cyber security experi-
mentation and test (Berkeley, CA, USA, 2010),
CSET’10, USENIX Association, pp. 1–8.

[11] FENTON, J. S. Memoryless subsystems. The Com-
puter Journal 17, 2 (1974), 143–147.

[12] GOGUEN, J. A., AND MESEGUER, J. Security
policies and security models. In IEEE Symposium
on Security and Privacy (1982), pp. 11–20.

[13] JANA, S., AND SHMATIKOV, V. Memento: Learn-
ing secrets from process footprints. In Proceedings
of the 33nd IEEE Symposium on Security & Privacy
(San Francisco, CA, May 2012).

[14] KEMMERER, R. A. Shared resource matrix
methodology: an approach to identifying storage
and timing channels. ACM Trans. Comput. Syst. 1,
3 (1983), 256–277.

[15] LAMPSON, B. W. A note on the confinement prob-
lem. Communications of the ACM 16, 10 (1973),
613–615.

[16] LIPNER, S. B. A comment on the confinement
problem. In SOSP ’75: Proceedings of the fifth
ACM Symposium on Operating Systems Principles
(New York, NY, USA, 1975), ACM Press, pp. 192–
196.

9

[17] MACONACHY, W. V., SCHOU, C. D., RAGSDALE,
D., AND WELCH, D. A model for information as-
surance: An integrated approach. In Proceedings
of the 2001 IEEE Workshop on Information Assur-
ance and Security (2001).

[18] MATETI, P. A laboratory-based course on internet
security. In Proceedings of the 34th SIGCSE tech-
nical symposium on Computer science education
(New York, NY, USA, 2003), SIGCSE ’03, ACM,
pp. 252–256.

[19] MCCUMBER, J. R. Information systems secu-
rity: A comprehehnsive model. In Proceedings of
the 14th National Computer Security Conference
(1991), National Institutde of Standards and Tech-
nology.

[20] MIGDA, P. A mathematical model of the Mafia
game. Current (2010), 12.

[21] OBLINGER, D. The next generation of educational
engagement. Journal of Interactive Media in Edu-
cation 2004, 1 (2004).

[22] PERCIVAL, C. Cache missing for fun and profit,
2005. http://www.daemonology.net/
hyperthreading-considered-harmful/.

[23] QIAN, Z., AND MAO, Z. M. Off-path TCP se-
quence number inference attack – how firewall
middleboxes reduce security. In Proceedings of the
33nd IEEE Symposium on Security & Privacy (San
Francisco, CA, May 2012).

[24] VAUGHN, R. B., AND III, J. E. B. Integration
of computer security into the software engineering
and computer science programs. Journal of Systems
and Software 49, 2-3 (1999), 149–153.

[25] WIKIPEDIA. Covert channels — Wikipedia, the
free encyclopedia. [Online; accessed 22-April-
2012].

[26] WRAY, J. C. An analysis of covert timing chan-
nels. In IEEE Symposium on Security and Privacy
(1991), pp. 2–7.

[27] ZALEWSKI, M. Silence on the Wire. No Starch
Press, Inc., San Francisco, CA, 2005.

[28] ZHANG, K., AND WANG, X. Peeping Tom in the
neighborhood: keystroke eavesdropping on multi-
user systems. In Proceedings of the 18th con-
ference on USENIX security symposium (Berkeley,
CA, USA, 2009), SSYM’09, USENIX Association,
pp. 17–32.

Notes
1We do not know how they obtained the /etc/shadow file, which

is usually only visible to the root user.

10

