
ONIS: Inferring TCP/IP-based Trust Relationships
Completely Off-Path

Xu Zhang
Department of Computer Science

University of New Mexico
xuzhang@cs.unm.edu

Jeffrey Knockel
Department of Computer Science

University of New Mexico
jeffk@cs.unm.edu

Jedidiah R. Crandall
Department of Computer Science

University of New Mexico
crandall@cs.unm.edu

Abstract—We present ONIS, a new scanning technique that
can perform network measurements such as: inferring TCP/IP-
based trust relationships off-path, stealthily port scanning a
target without using the scanner’s IP address, detecting off-
path packet drops between two international hosts. These tasks
typically rely on a core technique called the idle scan, which is
a special kind of port scan that appears to come from a third
machine called a zombie. The scanner learns the target’s status
from the zombie by using its TCP/IP side channels.

Unfortunately, the idle scan assumes that the zombie has IP
identifiers (IPIDs) which exhibit the now-discouraged behavior
of being globally incrementing. The use of this kind of IPID
counter is becoming increasingly rare in practice. Our technique,
unlike the idle scan, is based on a much more advanced IPID
generation scheme, that of the prevalent Linux kernel. Although
Linux’s IPID generation scheme is specifically intended to reduce
information flow, we show that using Linux machines as zombies
in an indirect scan is still possible. ONIS has 87% accuracy,
which is comparable to nmap’s implementation of the idle scan
at 86%. ONIS’s much broader choice of zombies will enable it
to be a widely used technique which can fulfill various network
measurement tasks.

I. INTRODUCTION

Port scanning is a critical first step for penetration testers
to understand network structure, in which a measurement
machine sends probes directly to a target and, e.g., determines
if a given port is open or closed based on the received
responses. Other direct scans perform OS detection, service
versioning, and obtain other information by directly probing a
machine.

In 1998, Antirez proposed an indirect type of scan called
idle scan [1]. In the idle scan, the measurement machine spoofs
the return IP address of probes so that the scan appears to
be coming from another machine. Side-channel information is
then used by the measurement machine to infer how the target
responded. Side channels are necessary because the zombie,
which is the machine used as the return IP address of the
probe, is not under the scanner’s control. Thus, the network
scanner has no direct way of knowing what packets the zombie
receives from the target. We further discuss Antirez’s idle scan
Section II-C.

The idle scan, although originally intended for learning
the status of a port, in general can be used to learn the
trust relationship between two arbitrary hosts that a network
researcher does not control. For example, consider a network

researcher in country X who wants to learn if network traffic
from a host in country Y can connect to a Tor server in country
Z. Performing this measurement off-path is necessary when
vantage points (VPNs, Planet Lab nodes, etc.) are limited or
unavailable in some countries. Ensafi et al. detail this off-
path trust relationship testing by using the idle scan in [2].
Specifically, they measured packet drops from clients to Tor
directory servers by using machines with global incrementing
IPIDs as vantage points without those machines being under
their control.

Unfortunately, use of the idle scan has two major issues.

1) It requires that the zombie has a globally incrementing
IPID. Many modern network stacks are specifically
designed to prevent information flow through IPIDs. One
of the most advanced network stacks in this respect is
Linux. The Linux IPID generation algorithm is described
in Section II-D.

2) It also assumes that the zombie is idle, hence the name
“idle scan”. Internet-connected hosts are seldom idle.
Ensafi et al. proposed using an autoregressive moving
average (ARMA) model to handle the noise on zombie
machine in [2], but sometimes the process of fitting an
ARMA model to the data fails if the zombie machine is
often not idle (e.g., web servers).

Motivated by the goal of overcoming both of these draw-
backs of the idle scan, we propose ONIS: ONIS is Not
an Idle Scan, which uses an up-to-date Linux machine as
the zombie. ONIS extends the choices of zombies of the
idle scan, by using up-to-date linux machines as zombies.
According to our estimate in Section VI, 17% of web servers
are potential zombies that can be used. Unlike an idle scan,
ONIS does not require the zombie to be completely idle.
Although ingress filtering prevents our scan by not allowing
packets with spoofed IP addresses into a network, only 23.9%
of the networks on the Internet actually perform this [3].

We summarize our major contributions as follows:

1) We propose ONIS: a novel indirect scanning technique
using TCP/IP side channels. The idle scan requires a
global incrementing IPID zombie machine, which has
been gradually phased out in many major OSes. ONIS
uses Linux machines with kernel 3.16 or later as zombies
and does not require the zombie to be idle. ONIS

achieves 87% accuracy, which is roughly as accurate
as the idle scan at 86%. In the meantime, it allows a
much broader choice of zombies.

2) We propose a new technique to do IPv4/IPv6 alias
resolution on Linux machines with kernel 3.16 or later.

3) We perform a detailed analysis of noise in our scan tech-
nique and propose an effective model selection method
to handle noise.

The rest of this paper is structured as follows: Section II
gives a review of what an IPID is and how Linux generates
IPIDs. Section III talks about the methodology of ONIS, as
well as a new technique to perform IPv4 and IPv6 alias reso-
lution and a model selection method called “AIC”. Section IV
describes the details of our experimental setup. We provide
a direct comparison of results between ONIS and nmap
implementation of the idle scan in Section V. In Section VI
we discuss the applicability of ONIS, ethics concerns and
possible defenses against ONIS. We document related work
in Section VII and our conclusion in Section VIII.

II. BACKGROUND

In this section, we briefly review IP identifiers and then
discuss Linux’s changing approach to generating them in
response to different attacks.

A. IP Identifiers

Every IPv4 packet contains a 16-bit field known an IP
identifier (IPID). When an IP datagram is too large to be
transmitted over a link, a router can break it up into smaller
packets called fragments. The datagram’s final destination can
reassemble the original datagram by collecting each incoming
fragment until all fragments have been received. The final
destination uses each fragments’ IPID to determine which
datagram it belongs to.

IPv6 is different from IPv4 in this matter in that every IPv6
packet does not necessarily have an IPID. If fragmentation
of a datagram is required for it to reach its final destination,
then the original sender fragments the datagram, adding to
each fragment an IPv6 extension header containing a 32-bit
identifier, a field 16 bits larger than an IPv4 packet’s IPID.

B. Early Linux IPID generation

The Linux kernel originally determined each IPv4 data-
gram’s IPID by using a globally incrementing counter. Every
time a host sends a datagram, the value of the counter is
incremented (mod 216) and then used as that datagram’s IPID.

In 1998, a technique called an idle scan was discovered
to port scan machines off-path by exploiting globally incre-
menting counters as a side-channel [1]. In response, kernel
developers switched to having a separate counter for each IP
destination.

C. The idle scan

A measurement machine can use the idle scan technique to
port scan a target machine completely off-path by performing
the procedure described in this section.

Before the scan, the measurement machine identifies a
suitable zombie machine with the following characteristics:
the measurement machine can communicate with the zombie,
the zombie can communicate with the target, the zombie
responds to SYN-ACKs with RSTs, the zombie has a globally
incrementing IPID counter, and its network communication is
idle, i.e., aside from the scan, it is not otherwise sending any
datagrams.

The measurement machine first probes the current value of
the zombie’s IPID counter by sending it a SYN-ACK packet.
The zombie responds with a RST packet with the current value
of its IPID counter. Next, the measurement machine sends a
SYN packet to the target with the source address spoofed to
be that of the zombie. If the destination port number of the
spoofed SYN packet is open on the target, the target will send
a SYN-ACK to the zombie, and the zombie, not expecting
the SYN-ACK since it did not send the spoofed SYN, sends
a RST to the target, incrementing the zombie’s IPID counter.
Otherwise, if the port on the target is closed, the target sends a
RST to the zombie, which does not cause the zombie to send
any packets, and so the zombie’s IPID counter is unaffected.
Finally, the measurement machine sends another SYN-ACK
probe to the zombie to once again measure the current value
of its IPID counter. If the IPID of the responding RST packet
is one greater (mod 216) than that of the last probe, then the
destination port of the spoofed SYN must be closed on the
target. However, if the IPID of the RST is two greater (mod
216) than that of the original probe, then the port is open, since
the SYN-ACK the target sent to the zombie incremented its
counter in between the probes.

D. Recent Linux IPID generation

In 2014, in Linux 3.16, the kernel developers recognized
performance issues with using a separate counter for each IP
destination [4]. Since having a globally incrementing counter
was still undesirable, they adopted a hybrid approach con-
sisting of 2048 globally incrementing counters. To determine
which counter to use for an IP datagram, that datagram’s
destination address is hashed with a secret value randomly
generated at system startup. The resulting hash (mod 211) is
used to determine the index of the counter. Each counter is
32 bits to accommodate IPv6, and for IPv4 the IPID is taken
from only the lower 16 bits of the counter.

During the same time, a side-channel technique was discov-
ered that could count the number of datagrams sent between
machines off-path [5]. The technique worked by inferring the
values of per-destination IPID counters off-path but could also
be extended to work for the kernel’s new hybrid approach [6].
In response, the kernel developers made additional changes
to make each counter less predictable. Every time a counter
is used to assign an IPID, instead of incrementing it by one,
the kernel adds to it a number uniformly distributed between
1 and the number of system ticks since the counter was last
used.

In light of defending against machines being used as zom-
bies in the idle scan, this new hybrid approach was identified

as partially having the problems of per-destination counters
and partially having the problems of a globally incrementing
counters [7]. It has the problems of per-destination counters
in that the counters would still partially isolate information
about which hosts a zombie is sending packets to, since the
probability of any two destination machines hashing to the
same counter is only 1/2048. This means that a zombie need
not necessarily be completely idle, only the counter that it
uses to send packets to the target need be idle. Moreover,
it partially has the problems of globally incrementing IPID
counters in that, if a measurement machine has an address
hashed to the same counter on the zombie as that of the
target, then that counter shares information between the target
and the measurement machine the same way a single globally
incrementing counter would. However, the probability of this
occurring between any one measurement machine address and
any one target machine address is only 1/2048.

The effort to make IPID counters less predictable by adding
a value uniformly chosen at random also makes the idle scan
more difficult to perform due to the random noise being added.
The addition of this random noise results in the number of
datagrams the zombie sends no longer significantly affecting
the expected value of the observed increase to its IPID counter.
However, it has been noted [7] that, although the expected
value does not significantly change, the number of packets
sent by the zombie still changes the distribution by which the
IPID counter is observed to have increased. This is because, if
U(a, b) is a discrete uniformly distributed observation between
a and b, then U(1, n), the observed increase when no datagram
from some counter has been sent in between IPID probes
received n system ticks apart, has a different distribution than
U(1, n/2) + U(1, n/2), which would be the approximate ob-
served increase if one datagram were sent exactly in between
the two IPID probes having been received. Note that for large
k and n,

∑k
i=1 U(1, n/k) approximates a normal distribution

due to the central limit theorem.

III. IMPLEMENTATION

In this section, we describe how ONIS works by using
Linux machines with kernel 3.16 or later as zombies. We
start by describing a general approach to perform ONIS.
Then we propose a new technique to do IPv4 and IPv6 alias
resolution on Linux machines with kernel 3.16 or later. Next,
we introduce our implementation of ONIS which uses dual-
stack Linux machines as zombies. Finally, we talk about how
to process the result by using a model selection technique
called “Akaike information criterion” (AIC).

A. Overview of ONIS

ONIS requires that the zombie machine is running Linux
with kernel version 3.16 or later and replies to unsolicited
SYN-ACKs with RSTs as per RFC 793 [8]. Similar to the
idle scan described in Section II-C, there are also three steps
for ONIS.

In the first step, the measurement machine sends a SYN-
ACK packet to the zombie machine, using the measurement

Step 1:

Step 3:

Step 2:

M z
SYN-ACK

RST
Time = t1
IPID = x1

M z

T

Spoofed SYN
from Z

RST

M z
SYN-ACK

RST
Time = t3

IPID = x1 + rand(1, t3 - t1)

Fig. 1. Scan of closed port on the target using ONIS.

machine’s IP address as its source IP address. According to
RFC 793 [8], the zombie will reply with a RST packet back
to the measurement machine, since the zombie did not send
any SYN. Let the IPID in the RST packet be x1 and the time
in system ticks when the zombie generates x1 be t1. After
receiving the RST packet from the zombie, the measurement
machine records x1.

In the second step, the measurement machine sends a
spoofed SYN packet to a port of the target machine using
the zombie machine’s IP address as the source IP address.
Depending on the status of the port (open, closed/filtered), the
target will respond differently.

1) In the case that the port on the target is closed (see
Figure 1), the target will reply with a RST packet to
the zombie. The zombie will simply ignore the RST
and not send any packets in response. For a filtered port
in the target, the SYN packet spoofed from the zombie
is silently filtered and thus there is no traffic between
the zombie and the target. The result is the same as a
closed port scenario, since the zombie will not generate
any new IPIDs.

2) In the case that the port on the target is open (see
Figure 2), the target will reply with a SYN-ACK packet
to the zombie. The zombie, which did not send any
SYN to the target, will send a RST packet to reset
the handshake. Let the IPID in this RST packet be
x2 and the time in system ticks it was generated at
be t2. Here we assume that x2 draws from the same
Linux IPID counter as x1, as we will later show how to
ensure this, which we discuss in Section III-B. Then,
according to the Linux behavior of generating IPIDs
(see Section II-D), we have x2 = x1 + U(1, t2 − t1),

Step 1: M z
SYN-ACK

RST
Time = t1
IPID = x1

M z

RST
Time = t2
IPID =x2
= x1 + rand(1, t2 - t1)

T

Spoofed SYN
from Z

SYN-ACK

M z
SYN-ACK

RST
Time = t3

IPID = x3 = x2 + rand(1, t3 - t2)
= x1 + rand(1, t2 - t1) + rand(1, t3 - t2)

Step 3:

Step 2:

Fig. 2. Scan of an open port on the target using ONIS.

where U(a, b) is a discrete uniformly distributed random
variable as before.

In the third step, similarly to step one, the measurement
machine sends a SYN-ACK to the zombie to collect x3, the
IPID in the following RST. Let the time in system ticks when
the zombie generates x3 be t3. Then the distribution of x3 will
differ according to the status of the port of the target.

1) If the port is closed, the zombie only generates an IPID
in the first and third steps, thus yielding x3 = x1 +
U(1, t3 − t1).

2) If the port is open, as seen in step 2, the zombie has an
additional access to the IPID counter in which case x3 =
x2 + U(1, t3 − t2) = x1 + U(1, t2 − t1) + U(1, t3 − t2).

Whether x2 is generated is not directly known to the
measurement machine. However, from repeated measures of
the values of x1 and x3, it is possible to infer the status of
the port on the target by analyzing the distribution of their
differences, x3 − x1.

B. Finding dual-stack Linux machines

As described in Section II-D, Linux 3.16 or later uses
2048 global counters to generate IPIDs. The scan method we
talked about in the previous section relies on the fact that
the measurement machine has an address that hashes to the
same IPID counter on the zombie as that of the target. It is
possible to try differing measurement machine addresses until
a collision is found with the target’s IP address. Each time,
we have a possibility of 1/2048 for the hashes to collide.
If we have 10,000 IP addresses to try, the chance to have a
collision of a certain IP address at least once is more than
99%. (1− (2048−12048)10000 ≈ 99.2%)

Such resources are usually within the capabilities of network
researchers, especially considering how easy to obtain a /64

IPv4 SYN-ACKs

RSTs

IPv6 Echo Fragments

IPv6 Echo Reply Fragments

MM Target

Fig. 3. IPv4 and IPv6 alias resolution.

of IPv6 addresses nowadays (a /114 of IPv6 addresses would
be sufficient). In our experiment, we demonstrate how ONIS
works by using multiple IPv6 addresses in our measurement
machine since the same 2048 IPID global counters are used
by both IPv4 and IPv6.

Now we present a new technique to do IPv4 and IPv6
alias resolution on a Linux machine with kernel 3.16 or later.
Previous alias resolution techniques are either IPv4 or IPv6
only, and so our alias resolution technique is novel. We use
a TCP/IP side channel discussed above in Section II-D to
achieve this, as shown in Figure 3. Here we call the machine
we perform IPv4 and IPv6 alias resolution on the “target”,
although for ONIS this target will become the zombie.

Given an IPv4 address and an IPv6 address, in each round
we simultaneously send an IPv4 SYN-ACK packet and a large
IPv6 Echo Request to the target to collect its IPv4 IPID and
IPv6 fragment ID. We fill the IPv6 Echo Request’s body such
that the unfragmented size of the datagram is 2000 bytes and
so the subsequent reply will require fragmentation to reach the
measurement machine, ensuring that it will contain an IPv6
extension header containing an IPv6 fragment ID. Then, we
vary the source IPv6 address with another, and resend the same
type of packets.

If an IPv4 address (a4) and an IPv6 address (a6) are aliases
of the same Linux 3.16 or later machine, then it is possible
to find a measurement machine IPv6 address that hashes
to the same IPID counter receiving probe replies from a6
as our measurement machine’s IPv4 address does receiving
probe replies from a4. We test 10,000 different measurement
machine IPv6 addresses. For each measurement machine IPv6
address we would like to test, we generate ten IPv4 SYN-
ACK probes and ten large, 2000 byte IPv6 Echo Requests,
large enough so that the probed machine will need to reply
adding IPv6 fragment extension headers containing fragment
IDs. We alternate sending each IPv4 and IPv6 probe, waiting
0.05 seconds between sending each probe.

If xi stands for the ith result of the IPv4 probe, and yi stands
for the ith result of the IPv6 probe (mod 216), then if we have
a strictly increasing sequence x1 < y1 < x2 < y2 . . . xn < yn
and yi − xi ≥ 1 and

∑n
i=1 yi −

∑n
i=1 xi > n, where n = 10,

then we conclude that the machine is dual-stacked. (In this
analysis, we say that X < Y if Y occurs in X’s upcoming
half of the 16-bit sequence space.)

C. Finding a collision with target’s IP address

In the previous section, we discussed a new technique to
do IPv4 and IPv6 alias resolution on Linux machines with
kernel 3.16 or later. Assuming we will use an IPv4 and IPv6
dual stack machine as the zombie machine in ONIS, we also
need to know the exact source IPv6 address that causes the
collision with the target machine’s IPv4 address. Similar to
the previous method, we pick a source IPv6 address and send
a 2000 byte IPv6 Echo Request to the zombie at t1. Then
we send a spoofed IPv4 SYN-ACK packet using the target’s
return address to the zombie at t2. Finally, we send another
2000 byte IPv6 Echo Request at t3.

We want our three probes to arrive in the order in which
we sent them, but also, to eliminate the random noise that
Linux adds to its IPID counters, we want them to arrive within
one system tick from each other. This eliminates all noise
because when they arrive one tick after each other, the kernel
will increase the IPID counter by U(1, 1) = 1, but if they
arrive within zero change of the system clock, the kernel still
increments by one. If we can have the packets arrive in order
and within one system tick of each other, then, for the open
port case, we will observe an IPID increase of 1 + 1 = 2 and
for the closed port case, we will observe an IPID increase of
only one.

Naively, we might want to send the probes at t2 = t1 +
0.5ms, and t3 = t1 + 1ms. (We choose milliseconds because,
while the tick rate of the kernel is never faster than one tick
per millisecond, it may be slower.) However, often the round
trip time (RTT) between the measurement machine and the
zombie are different for IPv4 versus IPv6 routes and so the
order of IPv4 packets and IPv6 packets arriving at the zombie
might be at different times than we expect.

To overcome this, we first send IPv4 and IPv6 probe packets
to the zombie to estimate the average RTT between the zombie
and the measurement machine both in IPv4 and IPv6. Let the
measured IPv4 RTT be r4, the measured IPv6 RTT be r6,
and the difference between them δ such that r4 + δ = r6. By
approximating the path from the measurement machine to the
zombie as half of the RTT, we divide δ by two and use the
adjustment t2 = t1 + 0.5 + δ/2, leaving t3 unchanged. This
way we can increase the chance that all three probes arrive
within one system tick of each other. Note than an IPv4-only
version of ONIS would not face this challenge.

If the IPID returned from the third probe is at least two
greater than that of the IPID returned by the first probe, we
conclude that the tested IPv6 address shares the same IPID
counter as that of the target. Otherwise, we conclude that
it does not. (Here we say that Y > X if Y occurs in X’s
upcoming half of the 32-bit sequence space.)

D. An implementation of ONIS using dual-stack zombies

After discovering a source IPv6 address that shares an IPID
counter with the target’s IPv4 address, we can adapt ONIS to
use dual stack Linux machines as zombie machines. In the
first step, the measurement machine sends a fragmented IPv6
Echo Request, whose unfragmented datagram is 2000 bytes, to

Z

MM
Spoofed IPv4 SYN

T

IPv4 RST

IPv6
 Ech

o F
rag

men
ts

Step 1:
Step 2:
Step 3:

IPv6
 Ech

o F
rag

men
ts

IPv6
 Ech

o R
ep

ly

IPv6
 Ech

o R
ep

ly

2n

Fig. 4. Scan of a closed port with a dual stack zombie using ONIS.

Z

MM
Spoofed IPv4 SYN

T

IPv4 SYN-ACK

IPv4 RST

IPv6
 Ech

o F
rag

men
ts

Step 1:
Step 2:
Step 3:

IPv6
 Ech

o F
rag

men
ts

IPv6
 Ech

o R
ep

ly

IPv6
 Ech

o R
ep

ly

n

n

Fig. 5. Scan of an open port with a dual stack zombie using ONIS.

the zombie and records the IPID in the fragmented response.
As before, a large request is used to ensure that the response
is fragmented, ensuring that the IPv6 fragmentation extension
header containing an IPID is included. The second step is
exactly as before. In the final step, the measurement machine
queries the IPID again by sending another fragmented IPv6
Echo Request. Figure 4 shows using ONIS when the target’s
port is closed. Figure 5 shows using ONIS when target’s port
is open. After collecting a group of IPIDs, we use the method
in Section III-E to determine which model fits the data.

E. Model selection and noise handling

As mentioned in Section III-A, in order to find out if a
target’s port is open or closed, we need to be able to distinguish
between two distributions, U(1, t3 − t1) and U(1, t2 − t1) +
U(1, t3−t2). Let t3−t1 = 2n. Moreover, we will approximate
t2− t1 = t3− t2 = n. Now we need only distinguish between
the distributions U(1, 2n) and U(1, n) + U(1, n). We showed
that it is trivial to distinguish simulated cases. However, in the
experiment we found noise on the network made such analysis
challenging. For example, the round trip time between the
measurement machine and the zombie changed in different
rounds when collecting IPIDs. Thus in practice we have
U(1, 2n+ δ), where δ is a variant.

To overcome these issues, we use a model selection method
which is resistant to noise when collecting IPIDs called Akaike
information criterion (AIC). Unlike the null hypothesis testing
approach, AIC does not give the quality of a single model with
respect to a null hypothesis, but rather estimates the relative

quality of one model with respect to another. Because of this,
AIC is ideal for us to handle noise in the scan.

We use AIC to select between U(1, 2n) and U(1, n) +
U(1, n) for a given measurement dataset of IPIDs. By defi-
nition, AIC is defined as

AIC = 2k − 2 ln(L̂) (1)

where L̂ is the maximum value of the likelihood function,
and k is the number of parameters in the model. In our case,
k = 1. Thus, according equation 1, we wish to find the model
with larger maximum likelihood, L̂, in order to get a smaller
AIC value. Below we will show how to calculate L̂ in both
of the cases of our scan.

1) Case 1: Closed or filtered port: Assuming that an
observed IPID increase was generated by U(1, 2n), the prob-
ability density function is:

f(x) =

{
1
2n for 1 ≤ x ≤ 2n

0 otherwise.
(2)

The likelihood function is:

L(n) =

k∏
i=1

f(xi) =

{
1

(2n)k
for 1 ≤ xi ≤ 2n for all i

0 otherwise.
(3)

where k is our sample size.
Note that the likelihood function defined in equation 3 may

have maximum value when 1 ≤ xi ≤ 2n for all i. Therefore,
max{x1, . . . , xk} ≤ 2n, and n ≥ dmax{x1,...,xk}

2 e. Note that
in equation 3, 1

(2n)k
is monotonically decreasing when n ≥ 1,

i.e., when n = dmax{x1,...,xk}
2 e, the likelihood function L(n)

in equation 3 gets its maximum value.
2) Case 2: Open port: Assuming that an observed IPID

increase is generated by U(1, n) + U(1, n), the probability
density function is

f(x) =

{
n−|x−(n+1)|

n2 for 2 ≤ x ≤ 2n

0 otherwise.
(4)

The likelihood function is:

L(n) =
1

n2k

k∏
i=1

(n− |xi − (n+ 1)|) (5)

for 2 ≤ xi ≤ 2n, for all i.
The monotonicity of the likelihood function in equation 5

cannot be determined a priori. However, we know that to
get the maximum likelihood, 2 ≤ xi ≤ 2n for all i, i.e.
max{x1, . . . , xk} ≤ 2n , and n ≥ dmax{x1,...,xk}

2 e. There-
fore, we adopt a numerical approach and enumerate multiple
possible n such that n ≥ dmax{x1,...,xk}

2 e to see which n
maximizes L(n) in equation 5. We try m such values from
dmax{x1,...,xk}

2 e to dmax{x1,...,xk}
2 e + m, finding the n that

gives the maximum L(n). The parameter m is tunable, but we
provide evidence that it is typically very low in Section IV-B.

IV. EXPERIMENTAL SETUP

In this section we describe the details of our experimental
setup.

Fig. 6. After trying m = 1, 000 different n, the distribution of iterations i
it took to find the n that maximizes the likelihood function while performing
ONIS.

A. Zombie selection

Our measurement machine ran Ubuntu server 16.04 with
kernel version 4.4.0. The zombie machines we selected were
IPv4 and IPv6 dual-stack Linux machines with kernel 3.16 or
later. In the beginning, we collected a list of domains from the
Alexa top one million websites and sixy.cn. For each domain
name, we performed a DNS lookup to find its corresponding
A record and AAAA record. Given pairs of IPv4 and IPv6
address, we performed IPv4 and IPv6 alias resolution using
the method described in Section III-B. The IPv4 and IPv6
resolution tests were performed three times for every IPv4
and IPv6 pair to make sure it was a desired zombie. The rate
we created packets on the zombie’s network was about 30
packets per second. Note that to compare IPIDs in IPv4 and
IPv6, we used a 16-bit mask to mask out the leftmost 16 bits
of IPIDs in IPv6. We found 78 zombies which we used in our
implementation of ONIS.

B. Performing the scan

To select a target for our ONIS scan, we randomly
generated an IPv4 address and started to send SYN packets to
three commonly open ports (22, 80 and 443) at that address.
Each packet was re-sent three times to avoid possible packet
loss. We recorded the IPv4 address as a valid target address if
we received a SYN-ACK response for any of the three ports.

Once the scan started, the measurement machine created
multiple threads, each randomly picking up a zombie machine
from the pool and finding a valid target address as discussed
above to perform the scan on ports 22, 80, and 443. The
scanning methodology was described in Section III. For each
port on a target, we collected 100 IPv6 IPID pairs, at a packet
rate of three packets per second in the zombie’s network.
Each experiment takes about 20 minutes to finish. Then we
processed the IPID samples by using AIC (see Section III-E).

In Section III-E, we mentioned that in order to find the
maximum likelihood for the open port model, we had to

enumerate the parameter n in m times. Each time we added
one to n and calculated the corresponding likelihood L. During
our experiment, we set m = 1000, as in practice we found
out from our result that most of the time the first few i, where
0 ≤ i ≤ m lead to the maximum likelihood. Figure 6 shows
the distribution of i which gives the maximum likelihood for
model U(1, n)+U(1, n). n is virtually always less than 1000.

To compare the accuracy of our results, we ran nmap’s
built-in idle scan (nmap -Pn) on the same targets that we
performed ONIS on. Nmap implements the idle scan technique
by using zombies with globally incrementing IPIDs. To find
machines with globally incrementing IPIDs, we generated
random IP addresses and tested to see if the IPIDs were
globally incrementing. After we got a list of zombies, we
culled the list for several rounds until all zombies appeared to
be idle. We were able to identify 175 machines with globally
incrementing IPIDs. Both the nmap idle scan results and ONIS
results were compared with direct scan (SYN scan) results in
order to calculate the accuracy.

V. RESULTS

We collected 1309 results using 78 zombies starting May 1,
2017 and ending May 12, 2017. Each result showed whether
specific ports (22, 80, 443) on a target machine were open
or closed. We compared ONIS results with direct scan results
and found that 1141 out of 1309 are correct, with an accuracy
of 87.2%. There were 145 false negatives (failed to find an
open port) and 23 false positives (reported a port as open that
was not) out of 168 incorrect results. One possible reason for
more false positives might be due to the fact that we found
an incorrect collision with target IPv4 address using our IPv6
address before the scan. Thus once the scan started, the IPIDs
in the TCP flow were not hashed into the expected bucket.

For comparison, we also collected 175 zombies with global
incrementing IPIDs. To form a direct comparison between
nmap results and ONIS results, we performed nmap idle scan
on the same 1309 results. The nmap idle scan had 86.4%
accuracy, with 1131 correct results and 178 incorrect results.
64 of the results were false positive, 57 of the results were
false negative. 57 of the results showed that the zombie was
too noisy to be used to perform the idle scan.

The resulting comparison of the two methods is shown in
Table I. We can see that the overall accuracy of the two
methods is comparable. Both scans have a certain amount
of false negatives. One reason for that might be the possible
ingress filtering in the target’s network which prevents the
spoofed SYN packets from the zombie. As a result, there is
no subsequent traffic created. The zombie will not generate an
IPID in response to the client. Both scans falsely assume that
the port is closed in this case.

We also noticed that ONIS has more false negatives than the
idle scan. We believe that is due to the fact that the previous
step of collision finding is very sensitive to round trip time
variations between IPv4 and IPv6. For example, route changes
of IPv6 can cause the round-trip time for IPv6 between the
zombie and the measurement machine to be larger. As a result,

Corret False Positive False Negative Failed
ONIS 1141 23 145 0
Idle Scan 1131 64 57 57

TABLE I
RESULT COMPARISION OF ONIS AND THE IDLE SCAN

the second IPv6 echo fragments arrive at the zombie later than
1 millisecond. In this case, it is possible that the U(1, 1 + α)
generates a number larger than 1, where α is a delay of the
second IPv6 packet fragments.

Table I also shows that nmap has more false positives.
Although we ensure that zombies with global IPID on our
list are all idle before the scan, it is possible that during the
nmap idle scan the zombie is connecting with other hosts,
causing it to no longer be idle thus breaking the scan. As a
result, nmap falsely thinks that the target has an open port.
We also noticed that during the nmap idle scan, every zombie
may become active at certain time. In order to get ideal
results with nmap’s current implementation, we need to cull
the list such that the zombies were noiseless right before we
start the idle scan. Otherwise, the accuracy of results drops
significantly. While for ONIS, there is only a 1/2048 chance
of interference with any other host because of Linux’s 2048-
bucket implementation.

VI. DISCUSSION

A. Scan applicability

ONIS allows a broader choice of zombies and it is more
reliable compared to the idle scan, which uses zombies with
globally incrementing IPIDs.

The idle scan requires the zombie to be completely idle,
while ONIS does not because the chance of every other
connection on the zombie with the same global incrementing
counter is just 1/2048. Machines on the Internet are seldom
idle, so in this sense, ONIS greatly improves on the reliability
of the idle scan.

We set up experiments by using dual-stack zombies with
Linux kernel 3.16 or later. This is just one implementation of
ONIS to show that it works. We also provided a new technique
to perform IPv4 and IPv6 alias resolution for Linux systems.
However, ONIS is not limited to use on IPv4 and IPv6 dual
stack systems.

In applications where the zombie can be, e.g., from a
specific large network (such as a particular country) and need
not be a specific machine, we can scan and get a list of
Linux machines with kernel 3.16 or later. Then for a randomly
selected target, we can try every zombie in our list until a
collision is found. Each time there’s a 1/2048 chance that the
measurement machine will share the same IPID counter on
the zombie as the target. For 10,000 zombies, there is more
than a 99% probability of finding a collision.

ONIS allows broader choices of zombies when inferring
TCP/IP-based trusting relationship off-path. We performed a
IPv4 SYN-ACK scan on the Alexa top web 1 million machines
and found 170,630 of them to have per-flow IPIDs (about
17%), which are potential zombies that can be used in ONIS.

B. Ethical concerns

Compared to the idle scan, we perform an extra step to
perform collision finding. However, the packets we send in
this step are only IPv6 echo fragments and IPv4 SYN-ACKs,
which should not consume too much computation resources on
zombies’ systems. Our IPv6 echo request is 2000 bytes long,
and an IPv4 SYN-ACK is just 60 bytes. At a packet rate of 30
packets per second, we can create 40.6 kilobytes per second
per zombie. During the scan on the target, the packet rate is
only 3 packets per second. Since the spoofed SYNs to the
target will end up reset by the zombie, it will not cause any
denial of service on the target.

C. Defending against ONIS

One way that the Linux kernel could protect against being
used as a zombie is to switch to a different kind of IPID
counter. However, it is unclear which kind could protect widely
against this sort of scan. Linux previously used per-destination
counters, but this exposed them to a side channel attack that
could leak the number of packets a machine sends another [5].
However, as the authors of that attack note, RFC 791 [9]
mandates that IPIDs must be unique for every in-flight path,
and so there will always be non-zero information flow in any
shared sequence of numbers that has restrictions on repetition.

A strategy that may help defend against the technique
used in this paper is to use a Poisson distribution instead
of a uniform distribution for generating IPID noise. Our
technique takes advantage of the fact that U(0, n) has a
different distribution than U(0, n/2) + U(0, n/2). However,
the Poisson distribution does not have this limitation. If P(λ)
is a Poisson random variable parameterized by rate λ, then
P(λ)+P(µ) = P(λ+µ), and so P(λ) = P(λ/2)+P(λ/2).
However, Poisson random numbers are computationally ex-
pensive to generate, and so they may not be suitable as a
means to add noise to an IPID counter that may be accessed
frequently.

VII. RELATED WORK

Here we describe related work that is concerned with port
scanning and that uses side channels.

Ensafi et al. [10] demonstrated that their SYN backlog
TCP/IP side channel could be used to determine open vs.
filtered ports on certain hosts, but the host-based firewall
configurations that make this possible are not a common case.
Follow-on work [11], [12] presented a hybrid method that
combined the idle scan with the SYN backlog idle scan to
improve the results and determine in which direction packets
were being blocked by a firewall. The hybrid method still
assumes that the zombie has a globally incrementing IPID,
and is intended for global-scale measurements of national
firewalls, e.g., Internet censorship, rather than port scans of
local networks. Zhang et al. [3] showed that the SYN backlog
side channel can be used to find hidden machines behind
firewalls, but did not attempt to make inferences about open
ports.

Port scanning is an active research area. Nmap FTP Bounce
Attack [13] is able to make FTP servers port scan an target
server (Modern FTP servers are configured by default to
prevent this). Staniford et al. [14] and Gates et al. [15]
focus on large enterprise network protection. Leckie and
Kotagiri [16] use a probabilistic approach to detect port scans.
Treurniet [17] aims to detect stealthy scans using classification
schema. Muelder et al. [18] proposes a visualization for port
scan detection. Jung et al. [19] develop a fast port scanning
detection method using the theory of sequential hypothesis
testing. Other work [20], [21], [22] use a neural network
approach to detect malicious port scanning. Gates [23], [24]
and Kange et al. [25] considers stealthy port scans that are
based on using many distributed hosts. There has also been
some research on improving port scans, such as port scan
techniques that increase the speed of horizontal scans based on
techniques that use the same principle as SYN cookies [26],
[27], [28], [29].

Idle scans and TCP/IP side channels are a nascent area of
research, but there has been a considerable amount of work.
Morbitzer [30] explores idle scans in IPv6. Qian et al. [31],
[32] infer the TCP sequence number of a connection and
perform off-path TCP/IP connection hijacking using a firewall-
based side channel. Some work uses global IPID fields to
perform inference for Internet measurement purposes. Chen et
al. [33] explore new uses of the IPID to infer the amount of
internal traffic generated by a server, the number of servers
in a large scale server complex, and one-way delays to a
target computer. Bellovin [34] describes a technique to detect
NATs and count the number of hosts behind them. Kohno et
al. [35] use the IPID to perform remote device fingerprinting.
Knockel and Crandall [5] demonstrated that it was possible
in a previous iteration of the Linux IPID generation algorithm
to count packets sent to a specific destination by a remote
server, and subsequently Cao et al. [36] demonstrated that
related techniques can be used to interfere with connections
completely off-path. Quach et al. [37] performed a com-
prehensive measurement of the impact of the ACK limiting
vulnerability. The work of Gilad and Herzberg in this area is
also notable [38], [39], [40].

Spoofed return IP addresses and side channel infer-
ences [10], [31], [11] have been shown to be very useful for
Internet measurement, see, e.g., Chen et al. [33]’s inferences
based on IPIDs, reverse traceroute [41], or PoiRoot [42],
or Flach et al. [43]’s use of spoofed IP addresses to locate
Destination-Based Forwarding rule violations.

VIII. CONCLUSION

We presented ONIS, a novel scanning technique which
provides much broader choices of zombies when performing
off-path TCP/IP trust relationship measurement. ONIS’s ac-
curacy is comparable to nmap’s implementation. One caveat
is that ONIS requires access to many IP addresses for the
measurement machine, but the scan is flexible enough to
enable different trade-offs in this sense, and IP addresses are
easily obtainable in various ways. We expect that ONIS will

become an essential part of a network researcher’s toolbox and
fulfill the practical potential for various network measurement
tasks.

IX. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and An-
tonio Espinoza for valuable feedback. We would like to thank
Ben Edwards for helpful discussions about Akaike information
criterion. This material is based upon work supported by the
U.S. National Science Foundation under Grant Nos. #1518523,
#1518878.

REFERENCES

[1] Antirez, “new tcp scan method,” Posted to the bugtraq mailing list, 18
December 1998, 1998.

[2] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting
intentional packet drops on the Internet via TCP/IP side channels.”

[3] X. Zhang, J. Knockel, and J. R. Crandall, “Original SYN: Finding ma-
chines hidden behind firewalls,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2015, pp. 720–728.

[4] E. Dumazet, “inetpeer: get rid of ip id count,” 2014. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.
git/commit/?id=73f156a6e8c1074ac6327e0abd1169e95eb66463

[5] J. Knockel and J. R. Crandall, “Counting packets sent between arbitrary
internet hosts,” in 4th USENIX Workshop on Free and Open Communi-
cations on the Internet (FOCI 14), 2014.

[6] E. Dumazet, “ip: make ip identifiers less
predictable,” 2014. [Online]. Available: https://git.kernel.
org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/?id=
04ca6973f7c1a0d8537f2d9906a0cf8e69886d75

[7] J. Knockel and J. R. Crandall, “Counting packets sent between
arbitrary internet hosts (slides),” 2014. [Online]. Available: https:
//www.cs.unm.edu/∼jeffk/publications/foci2014counting.pdf

[8] J. Postel, “Transmission Control Protocol,” Internet Requests for
Comments, RFC Editor, RFC 793, September 1981. [Online].
Available: http://tools.ietf.org/html/rfc793

[9] J. Postel et al., “Rfc 791: Internet protocol,” 1981.
[10] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scanning

and non-interference analysis of network protocol stacks using model
checking.” in USENIX Security Symposium, 2010, pp. 257–272.

[11] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting
intentional packet drops on the Internet via TCP/IP side channels,” in
Passive and Active Measurement. Springer, 2014, pp. 109–118.

[12] ——, “Detecting intentional packet drops on the Internet via TCP/IP side
channels: Extended version,” CoRR, vol. abs/1312.5739, 2013, available
at http://arxiv.org/abs/1312.5739.

[13] “FTP-bounce,” https://nmap.org/nsedoc/scripts/ftp-bounce.html.
[14] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated

detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1, pp. 105–136, 2002.

[15] C. Gates, J. J. McNutt, J. B. Kadane, and M. I. Kellner, “Scan
detection on very large networks using logistic regression modeling,”
in Computers and Communications, 2006. ISCC’06. Proceedings. 11th
IEEE Symposium on. IEEE, 2006, pp. 402–408.

[16] C. Leckie and R. Kotagiri, “A probabilistic approach to detecting
network scans,” in Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP. IEEE, 2002, pp. 359–372.

[17] J. Treurniet, “A network activity classification schema and its application
to scan detection,” Networking, IEEE/ACM Transactions on, vol. 19,
no. 5, pp. 1396–1404, 2011.

[18] C. Muelder, K.-L. Ma, and T. Bartoletti, “Interactive visualization for
network and port scan detection,” in Recent Advances in Intrusion
Detection. Springer, 2006, pp. 265–283.

[19] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Security and Privacy,
2004. Proceedings. 2004 IEEE Symposium on. IEEE, 2004, pp. 211–
225.

[20] B. Soniya and M. Wiscy, “Detection of TCP SYN scanning using
packet counts and neural network,” in Signal Image Technology and
Internet Based Systems, 2008. SITIS’08. IEEE International Conference
on. IEEE, 2008, pp. 646–649.

[21] J. Cannady, “Artificial neural networks for misuse detection,” in National
information systems security conference, 1998, pp. 368–81.

[22] J. Li, G.-Y. Zhang, and G.-C. Gu, “The research and implementation of
intelligent intrusion detection system based on artificial neural network,”
in Machine Learning and Cybernetics, 2004. Proceedings of 2004
International Conference on, vol. 5. IEEE, 2004, pp. 3178–3182.

[23] C. Gates, “Co-ordinated port scans: a model, a detector and an evaluation
methodology,” 2006.

[24] ——, “Coordinated Scan Detection.” in NDSS, 2009.
[25] M. G. Kang, J. Caballero, and D. Song, “Distributed evasive scan tech-

niques and countermeasures,” in Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2007, pp. 157–174.

[26] “Scanrand,” https://www.sans.org/security-resources/idfaq/scanrand.php.
[27] “Unicorn Scan,” http://www.unicornscan.org/.
[28] “Zmap,” https://zmap.io/.
[29] “MASSCAN: Mass IP port scanner,” https://github.com/

robertdavidgraham/masscan.
[30] M. Morbitzer, “TCP Idle Scans in IPv6,” Master’s thesis, Radboud

University Nijmegen, The Netherlands, 2013.
[31] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference

attack-how firewall middleboxes reduce security,” in Security and Pri-
vacy (SP), 2012 IEEE Symposium on. IEEE, 2012, pp. 347–361.

[32] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence
number inference attack: how to crack sequence number under
a second,” in Proceedings of the 2012 ACM conference on
Computer and communications security, ser. CCS ’12. New
York, NY, USA: ACM, 2012, pp. 593–604. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382258

[33] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang, E. d. S. e Silva,
J. Kurose, and D. Towsley, “Exploiting the IPID field to infer network
path and end-system characteristics,” in Passive and Active Network
Measurement. Springer, 2005, pp. 108–120.

[34] S. M. Bellovin, “A technique for counting NATted hosts,” in Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM,
2002, pp. 267–272.

[35] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” Dependable and Secure Computing, IEEE Transactions
on, vol. 2, no. 2, pp. 93–108, 2005.

[36] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M.
Marvel, “Off-path tcp exploits: Global rate limit considered dangerous,”
in 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, pp. 209–225.

[37] A. Quach, Z. Wang, and Z. Qian, “Investigation of the 2016 linux tcp
stack vulnerability at scale,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 1, no. 1, p. 4, 2017.

[38] Y. Gilad and A. Herzberg, “Spying in the dark: Tcp and tor traffic anal-
ysis,” in International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 2012, pp. 100–119.

[39] ——, “Fragmentation considered vulnerable: blindly intercepting and
discarding fragments,” in Proceedings of the 5th USENIX conference on
Offensive technologies. USENIX Association, 2011, pp. 2–2.

[40] ——, “Off-path tcp injection attacks,” ACM Transactions on Information
and System Security (TISSEC), vol. 16, no. 4, p. 13, 2014.

[41] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott,
J. Sherry, P. Van Wesep, T. Anderson, and A. Krishnamurthy,
“Reverse traceroute,” in Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 15–15. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855711.1855726

[42] U. Javed, I. Cunha, D. Choffnes, E. Katz-Bassett, T. Anderson,
and A. Krishnamurthy, “PoiRoot: Investigating the root cause of
interdomain path changes,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New
York, NY, USA: ACM, 2013, pp. 183–194. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486036

[43] T. Flach, E. Katz-Bassett, and R. Govindan, “Quantifying violations
of destination-based forwarding on the Internet,” in Proceedings of
the 2012 ACM Conference on Internet Measurement Conference, ser.
IMC ’12. New York, NY, USA: ACM, 2012, pp. 265–272. [Online].
Available: http://doi.acm.org/10.1145/2398776.2398804

