This paper appeared at the 12th ACM Conference on Computer and Communications Security, November 7-11, 2005

On Deriving Unknown Vulnerabilities from Zero-Day
Polymorphic and Metamorphic Worm Exploits

Jedidiah R. Crandall
Dept. Comp. Sci.
Univ. of Calif., Davis
Davis, CA 95616

crandall@cs.ucdavis.edu

Zhendong Su
Dept. Comp. Sci.
Univ. of Calif., Davis
Davis, CA 95616

su@cs.ucdavis.edu

S. Felix Wu
Dept. Comp. Sci.
Univ. of Calif., Davis
Davis, CA 95616

wu@cs.ucdavis.edu

Frederic T. Chong
Dept. Comp. Sci.
Univ. of Calif., Santa Barbara
Santa Barbara, CA 93106

chong@cs.ucsb.edu

ABSTRACT

Vulnerabilities that allow worms to hijack the control flow
of each host that they spread to are typically discovered
months before the worm outbreak, but are also typically dis-
covered by third party researchers. A determined attacker
could discover vulnerabilities as easily and create zero-day
worms for vulnerabilities unknown to network defenses. It
is important for an analysis tool to be able to generalize
from a new exploit observed and derive protection for the
vulnerability.

Many researchers have observed that certain predicates
of the exploit vector must be present for the exploit to
work and that therefore these predicates place a limit on
the amount of polymorphism and metamorphism available
to the attacker. We formalize this idea and subject it to
quantitative analysis with a symbolic execution tool called
DACODA. Using DACODA we provide an empirical anal-
ysis of 14 exploits (seven of them actual worms or attacks
from the Internet, caught by Minos with no prior knowledge
of the vulnerabilities and no false positives observed over a
period of six months) for four operating systems.

FEvaluation of our results in the light of these two models
leads us to conclude that 1) single contiguous byte string
signatures are not effective for content filtering, and token-
based byte string signatures composed of smaller substrings
are only semantically rich enough to be effective for content
filtering if the vulnerability lies in a part of a protocol that
is not commonly used, and that 2) practical exploit analysis
must account for multiple processes, multithreading, and
kernel processing of network data necessitating a focus on
primitives instead of vulnerabilities.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providetddbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguees prior specific
permission and/or a fee.

CCS’05,November 7-11, 2005, Alexandria, Virginia, USA.

Copyright 2005 ACM 1-59593-226-7/05/001155.00.

Categories and Subject Descriptors

D.4.6 [Operating Systems|: Security and Protection—

invasive software

General Terms

Security, languages

Keywords

worms, polymorphic worms, symbolic execution, polymor-
phism, metamorphism, honeypots

1. INTRODUCTION

Zero-day worms that exploit unknown vulnerabilities are
a very real threat. Typically vulnerabilities are discovered
by “white hat” hackers using fuzz testing [26, 27], reverse
engineering, or source code analysis and then the software
vendors are notified. The same techniques for discovering
these vulnerabilities could be as easily employed by “black
hat” hackers, especially now that computer criminals are
increasingly seeking profit rather than mischief. None of
the 14 exploits analyzed in this paper are for vulnerabilities
discovered by the vendors of the software being attacked.
A vulnerability gives the attacker an important primitive (a
primitive is an ability the attacker has, such as the ability to
write an arbitrary value to an arbitrary location in a process’
address space), and then the attacker can build different
exploits using this primitive.

The host contains information about the vulnerability and
primitive that cannot be determined from network traffic
alone. It is impossible to generalize how the attack might
morph in the future without this information. In order to
respond effectively during an incipient worm outbreak, an
automated analysis tool must be able to generalize one in-
stance of an exploit and derive protection for the exploited
vulnerability, since a worm can build multiple exploits for
the same vulnerability from primitives.

1.1 The Need to Be Vulnerability-Specific

If a honeypot or network technology generated an
exploit-specific signature for every exploit, the worm author

could trivially subvert content filtering by generating a
new exploit for each infection attempt. One approach to
ameliorate this is to compare multiple exploits and find
common substrings. This can be done in the network [21,37]
or from TCP dumps of different honeypots [24]. Our results
in Section 4 show that contiguous byte string signatures are
not semantically rich enough for effective content filtering
of polymorphic and metamorphic worms. The same con-
clusion was reached by Newsome et. al. [28], in which three
new kinds of byte-string signatures were proposed that are
sets composed of tokens (substrings). For more information
see Section 1.3.1. In this paper we generate these tokens for
14 remote exploits using DACODA and conclude that even
token-based byte strings are only semantically rich enough
to distinguish between worms and valid traffic if the worm
exploits a vulnerability that is not found in a commonly
used part of a protocol. For example, the signature token
“\x0d\nTransfer-Encoding: \x20chunked\x0d\n\x0d\n"
would have stopped the Scalper worm but also would have
dropped valid traffic if valid traffic commonly used chunked
encodings. This is the only token for this particular exploit
that distinguishes it from ordinary HTTP traffic.

1.2 DACODA: The Dawis MalcOde Analyzer

Complicating the problem of deriving the vulnerability
from a single exploit is the fact that many exploits can in-
volve more than one network connection, multiple processes,
multithreading, and a significant amount of processing of
network data in the kernel. Such experiences with real
exploits have motivated us to develop two different mod-
els in order to be more perspicuous in discussing polymor-
phism and metamorphism: the Epsilon-Gamma-Pi (e, 7,
7) model [14] for control flow hijacking attacks and the PD-
Requires- Provides model for exploits. Both of these mod-
els take a “from-the-architecture-up” view of the system in
which context switches and interprocess communication are
simply physical transfers of data in registers and memory.

We have developed a tool called DACODA that analyzes
attacks using full-system symbolic execution [22] on every
machine instruction. In this paper, we use DACODA for a
detailed, quantitative analysis of 14 real exploits. DACODA
tracks data from the attacker’s network packets to the hi-
jacking of control flow and discovers strong, explicit equality
predicates about the exploit vector; strong, explicit equality
predicates are predicates that show equality between labeled
data and an integer that are due to an explicit equality check
by the protocol implementation on the attacked machine
using a comparison instruction followed by a conditional in-
struction (typically a conditional jump). Using Minos [13]
as an oracle for catching attacks, DACODA honeypots have
been analyzing attacks exploiting vulnerabilities unknown
to Minos or DACODA with zero observed false positives for
the past six months. More details on DACODA'’s operation
are in Section 3.

1.3 Related Work

The details of the Epsilon-Gamma-Pi model are in an-
other paper [14] and will be summarized in Section 2. For
categorizing related work in this section we will only state
here that, in simple terms, ¢ maps the exploit vector from
the attacker’s network packets onto the trace of the machine
being attacked before control flow hijacking occurs, v maps
the bogus control data used for hijacking control flow (such

as the bogus return pointer in a stack-based buffer overflow
attack), and m maps the payload executed after control flow
has been hijacked.

1.3.1 Vulnerability Specificity

Vigilante [10,11] captures worms with a mechanism simi-
lar to Minos [13], but based on binary rewriting of a single
process, and uses dynamic dataflow analysis to generate a
vulnerability signature. The basic idea proposed in Costa
et al. [10] is to replay the execution with an increasingly
larger suffix of the log and check for the error condition.
Binary rewriting of a single process does not capture in-
terprocess communication, inter-thread communication, or
any data processing that occurs in kernel space. It also
modifies the address space of the process being analyzed,
which has the potential of breaking the exploit in its early
stages [3]. DACODA is a full-system implementation and
does not modify the system being analyzed. Another im-
portant distinction of DACODA is that, because it is based
on the Epsilon-Gamma-Pi model, DACODA’s symbolic exe-
cution helps distinguish between what data looks like on the
network and what it looks like at various stages of process-
ing on the host. Encodings such as UNICODE encodings or
string to integer conversion cannot be captured by simply
comparing I1/0 logs to TCP dumps.

TaintCheck [29] is also based on binary rewriting of a sin-
gle process and proposed dynamic slicing techniques as fu-
ture work to generate vulnerability-specific signatures. DA-
CODA is based on symbolic execution of every machine in-
struction in the entire system. For RIFLE [41] an Itanium
architecture simulator was augmented with dataflow analy-
sis capabilities similar to DACODA, without predicate dis-
covery, but the aim was to enforce confidentiality policies
while DACODA’s aim is to analyze worm exploits.

Newsome et. al. [28] proposed three types of signatures
based on tokens. These tokens can be ordered or associ-
ated with scores. Polygraph, unlike EarlyBird [37], Auto-
graph [21], or Honeycomb [24], does not automatically cap-
ture worms but instead relies on a flow classifier to sort
worm traffic from benign traffic with reasonable accuracy.
The invariant bytes used for tokens were typically from ei-
ther protocol framing (€) or the bogus control data (vy). It
was suggested that the combination of these could produce a
signature with a good false positive and false negative rate.
Protocol framing describes a valid part of a protocol, such as
“HTTP GET” in HTTP. Also, v permits too much polymor-
phism according to our analysis of exploits caught by Minos
honeypots [14], due to register springs.

Register springs are a technique whereby the bogus func-
tion pointer or return pointer overwritten by a buffer over-
flow points to an instruction in a library (or the static pro-
gram) that is a jump or call to a register pointing into
the buffer containing 7. Newsome et. al. [28] correctly
states that for register springs to be stable the address
must be common across multiple Windows versions and cites
Code Red as an example, but Code Red and Code Red II
used an address which was only effective for Windows 2000
with Service Pack 1 or no service packs (the instruction at
0x7801cbd3 disassembles to “CALL EBX” only for msvcrt.dll
version 6.10.8637 [33]). Even with this limitation Code Red
and Code Red II were successful by worm standards, so the
hundreds or sometimes thousands of possible register springs
typical of Windows exploits cannot be ignored.

One current limitation of DACODA is performance. Our
Bochs-based implementation of DACODA achieves on the
order of hundreds of thousands of instructions per second
on a 3.0 GHz Pentium 4 with an 800 MHz front side bus.
Memory bandwidth is the limiting factor, and DACODA
barely achieves good enough performance to be infected by
a worm on a 2.8 GHz Pentium 4 with a 533 MHz front side
bus. All that really is required to detect the attack is Minos
[13], which would have virtually no overhead in a hardware
implementation and could possibly have performance within
an order of magnitude of native execution if implemented on
a higher performance emulator such as QEMU [51]. After
Minos detected an attack DACODA could be invoked by
replaying either the TCP traffic [19,20] or the entire attack
trace [16].

1.3.2 Modeling Polymorphism

Ideas similar to our PD-Requires-Provides model for ex-
ploit polymorphism and metamorphism are presented in Ru-
bin et. al. [34,35]. The PD-Requires-Provides model is at
a much lower level of abstraction. Rubin et. al. [34,35] do
not distinguish between what the exploit looks like on the
network and what it looks like when it is processed on the
host, as our Epsilon-Gamma-Pi model does. These works
were also intended for generating exploits based on known
vulnerabilities and not for analyzing zero-day exploits to de-
rive protection for unknown vulnerabilities. A more recent
work [44] generates vulnerability-specific signatures for un-
known exploits but requires a detailed specification of the
protocol that the exploit uses (such as SMB or HTTP). DA-
CODA needs no specification because of symbolic execution,
at the cost of not having a full specification against which
to model check signatures.

In Dreger et. al. [15] host-based context was used to en-
hance the accuracy of network-based intrusion detection but
this was done from within the Apache HTTP server appli-
cation. Ptacek and Newsham [32] cover some of the same
ideas as we do but within the context of network evasion
of network intrusion detection systems. Christodorescu and
Jha [7] looked at polymorphism of viruses with examples
from real viruses, but polymorphic virus detection and poly-
morphic worm detection are two different problems; a worm
needs to be able to hijack control flow of remote hosts be-
cause worms use the network as their main medium of in-
fection.

1.3.3 Polymorphic Worm Detection

Many researchers have studied polymorphic techniques
and detection mechanisms in 7 [1,6,8, 23,25, 31,40]. Sev-
eral of the mechanisms which have been proposed are based
on the existence of a NOP sled which simply is not appli-
cable to Windows exploits, nearly all of which use regis-
ter springs [14]. The executable code itself could be made
polymorphic and metamorphic with respect to probably any
signature scheme if we are to consider the relatively long
history of polymorphic computer viruses [38]. Other works
have focused exclusively on «y [30] which can be polymorphic
because there are usually hundreds or even thousands of dif-
ferent register springs an attacker might use [14]. We have
argued in another paper [14] that = and v permit too much
polymorphism, motivating a closer look at e instead. The
focus of this paper is on polymorphism and metamorphism
of e. Other papers have focused on € [10,28,34,35,43,44], all

Attack
Attacker’s Network Trace
Packets
Exploit Vector

4_
sury,

Bogus Control Flow Transfer

Payload

Figure 1: The Epsilon-Gamma-Pi Model.

of which have already been discussed in this section except
for Shield [43]. Shields are a host-based solution which are
an alternative to patches. They are vulnerability-specific
but only for known vulnerabilities.

1.3.4 Our Main Contributions

The main distinction of our work is that we focus on un-
known vulnerabilities and use models based on our experi-
ence with analyzing 14 real exploits to give a detailed and
quantitative analysis of polymorphism and metamorphism
for the exploit vector mapped by €. Our main contributions
are 1) a tool for whole-system symbolic execution of remote
exploits, 2) quantitative data on the amount of polymor-
phism available in ¢ for 14 actual exploits, which also shows
the importance of whole-system analysis, and 3) a model for
understanding polymorphism and metamorphism of €. Ac-
tual generation of vulnerability-specific signatures with low
false positive and false negative rates is left for future work.

1.4 Structure of the Paper

The rest of the paper is structured as follows. Section 2
summarizes the Epsilon-Gamma-Pi model for control flow
hijacking attacks from past work [14], followed by Section 3,
which details how DACODA generated the results from ana-
lyzing real exploits that are in Section 4. The PD-Requires-
Provides model is described in Section 5 to help understand
polymorphism and metamorphism. After discussing future
work in Section 6, we give our conclusions about byte string
signature schemes and host-based semantic analysis.

2. THE EPSILON-GAMMA-PI MODEL

The Epsilon-Gamma-Pi model [14] is a model of control
flow hijacking attacks based on projecting the attacker’s net-
work packets onto the trace of the machine being attacked.
The row space of a projection is the network data that is
relevant to that projection, while the range of a projection
is the physical data used by the attacked machine for con-
trol flow decisions. The Epsilon-Gamma-Pi model can avoid
confusion when, for example, the row space of v for Code
Red II is UNICODE encoded as “0x25 0x75 0x62 0x63
0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31” coming over
the network but stored in little-endian format in the range
of v as the actual bogus Structured Exception Handling

(SEH) pointer “0xd3 Oxcb 0x01 0x78”. These encodings
of 0x7801cbd3 are captured by ~.

The mappings of a particular exploit are chosen by the
attacker but constrained by the protocol as implemented
on the attacked machine. A single projection is specific to
an exploit, not to a vulnerability. A vulnerability can be
thought of as a set of projections for e that will lead to
control flow hijacking, but the term vulnerability may be
too subjective to define formally. Sometimes vulnerabilities
are a combination of program errors, such as the ASN.1
Library Length Heap Overflow vulnerability [52, bid 9633]
which was a combination of two different integer overflows.
We can say that a system is vulnerable to a remote control
flow hijacking attack if there exists any combination of IP
packets that cause bogus control flow transfer to occur.

The projection € maps network data onto control flow de-
cisions before control flow hijacking takes place, while ~
maps the bogus control data itself during control flow hi-
jacking and 7 typically maps the attacker’s payload code
that is directly executed after control flow is hijacked. In
simple terms, € maps the exploit vector, ¥ maps the bogus
control data, and m maps the payload code as illustrated by
Figure 1.

2.1 Polymorphism and Metamorphism

The Epsilon-Gamma-Pi model also provides useful ab-
stractions for understanding polymorphism and metamor-
phism. Worm signature generation with any particular tech-
nique can be seen as a characterization of one or more of the
three mappings possibly combined with information about
the attack trace on the infected host. Polymorphism and
metamorphism seek to prevent this characterization from
enabling the worm defense to distinguish the worm from
other traffic as it moves over the network. In the extreme
the attacker must, for different infections, change these three
mappings and the attack trace on the infected machine
enough so that knowledge about the attack trace and char-
acterizations of the three mappings cannot permit identi-
fication of the worm with a low enough error rate to stop
the worm from attaining its objective. In practice, however,
the benefit of surprise goes to the attacker, and polymor-
phism and metamorphism will be with respect to some spe-
cific detection mechanism that has actually been deployed.
Polymorphism changes bytes in the row spaces of the three
projections without changing the mappings, while metamor-
phism uses different mappings each time. Unless otherwise
stated, in this paper a signature is a set of byte strings (pos-
sibly ordered) that identify the worm, and polymorphism
and metamorphism are with respect to this set of strings.
The Epsilon-Gamma-Pi model is more general than byte
string signatures, however. One of the main results of this
paper is that simple byte string matching, even for sets of
small strings or regular expressions, can be inadequate for
worm content filtering for realistic vulnerabilities.

2.2 Motivation for the Model

The Epsilon-Gamma-Pi model is general enough to han-
dle realistic attacks that do not follow the usual procession
of opening a TCP connection, adhering to some protocol
through the exploit vector phase until control flow is hi-
jacked, and then executing the payload in the thread that
was exploited. IP packets in the Epsilon-Gamma-Pi model
and in the DACODA implementation are raw data subject

to interpretation by the host, since “information only has
meaning in that it is subject to interpretation” [9], a fact
that is at the heart of understanding viruses and worms.
An attacker might use an arbitrary write primitive in one
thread to hijack the control flow of another, or hijack the
control flow of the thread of a legitimate user.

Using symbolic execution, DACODA is able to discover
strong, explicit equality predicates about e. Specifically,
DACODA discovers the mapping e¢ and also can use con-
trol flow decisions predicated explicitly on values from the
range of € to discover predicates about the bytes of network
traffic from which the values were projected (the row space
of €). These predicates can be used for signature generation,
but in this paper we use DACODA to characterize ¢ quan-
titatively for a wide variety of exploits. This quantitative
analysis plus our experiences with analyzing actual exploit
vectors serve as a guide towards future work in this area.

For all three projections, DACODA tracks the data flow
of individual bytes from the network packets to any point of
interest. Thus it also is helpful in answering queries about
where the payload code comes from or how the bogus control
data is encoded within the network traffic.

2.3 The Need for an Oracle

To distinguish €, v, and 7, and also to provide the anal-
ysis in a timely manner, DACODA needs an oracle to raise
an alert when bogus control flow transfer has occurred. For
the current implementation we use Minos [13] as an ora-
cle to catch low-level control data attacks. Minos is basi-
cally based on taintchecking to detect when data from the
network is used as control data. Thus it does not catch
attacks that hijack control flow at a higher level abstrac-
tion than low-level execution, such as the Santy worm or
the attacks described in Chen et. al. [5], but DACODA is
equally applicable to any control flow hijacking attack. For
example, in an attack where the filename of a file to be ex-
ecuted, such as “/usr/bin/counterscript”, is overwritten
with “/bin/sh” then executed yielding a shell, € would map
the exploit vector leading to the overwrite, v would map the
string “/bin/sh”, and m would map the commands executed
once the shell was obtained. Minos will not catch this attack
but DACODA will still provide an analysis given the proper
oracle. Any worm that spreads from host to host must hi-
jack control flow of each host at one level of abstraction or
another.

3. HOW DACODA WORKS

DACODA is currently being emulated in a full-system
Pentium environment based on the Bochs emulator [46].
When a network packet is read from the Ethernet device
every byte of the packet is labeled with a unique integer.
Reading the packet off the Ethernet is the last chance to
see all bytes of the packet intact and in order, because the
NE2000 driver often reads parts of packets out of order.

During its lifetime this labeled data will be stored in
the NE2000 device’s memory pages, read into the processor
through port I/0, and moved and used in computation by
various kernel- and user-space threads and processes. DA-
CODA will track the data through all of this and discover
equality predicates every time the labeled data or a sym-
bolic expression is explicitly used in a conditional control
flow transfer. Symbolic execution occurs in real-time so that
when an oracle (Minos [13] in the current implementation)

Explanation

[C++-like Pseudo-code

MakeNewQuadMem() is used
for reading four bytes of
memory and making a
QuadExpression from them,
unless we find that the
memory word already
contains a QuadExpression.

Expression *MakeNewQuadMem(Addr)
FirstByte = ReadMemByteExpr(Addr);
if (FirstByte—IsAQuadExpr()) return FirstByte;
else return new QuadExpr(
ReadMemByteExpr(Addr + 0)
, ReadMemByteExpr(Addr + 1)
, ReadMemByteExpr(Addr + 2)
, ReadMemByteExpr(Addr + 3));

MakeNewQuadRegister() is the
same as MakeNewQuadMemy()
but for 32-bit register reads.

Expression *MakeNewQuadRegister(Index)
FirstByte = ReadRegisterByteExpr(Index, 0);
if (FirstByte—IsAQuadExpr()) return FirstByte;
else return new QuadExpr(
ReadRegisterByteExpr(Index, 0)
, ReadRegisterByteExpr(Index, 1)
, ReadRegisterByteExpr(Index, 2)
, ReadRegisterByteExpr(Index, 3));

WriteQuadMem() stores a
QuadExpression in a way

that MakeNewQuadMem()
can find it.

void WriteQuadMem (Addr, Expr)
WriteMemByteExpr(Addr + 0, Expr);
WriteMemByteExpr(Addr + 1, NULL);
WriteMemByteExpr(Addr + 2, NULL);
WriteMemByteExpr(Addr 4+ 3, NULL);

WriteQuadRegister() is the
same as WriteQuadMem() but
for 32-bit register writes.

void WriteQuadRegister(Index, Expr)
WriteRegisterByteExpr(Index, 0, Expr);
WriteRegisterByteExpr(Index, 1, NULL);
WriteRegisterByteExpr(Index, 2, NULL);
WriteRegisterByteExpr(Index, 3, NULL);

MakeNewQuadConstant()
simply uses bit masks and
shifts to split the 32-bit
constant into 4 8-bit
constants.

Expression *MakeNewQuadConstant(0xAABBCCDD)
return new QuadExpression(
new Constant(0xAA)
, new Constant(0xBB)
, new Constant(0xCC)
, new Constant(0xDD));

Table 1: How QuadExpressions are Handled.

determines that control flow has been hijacked, DACODA
simply summarizes the results of its analysis.

As an example, suppose a byte of network traffic is labeled
with “Label 1832” when it is read from the Ethernet card.
This label will follow the byte through the NE2000 device
into the processor where the kernel reads it into a buffer.
Suppose the kernel copies this byte into user space and a
user process moves it into the AL register, adds the integer
4 to it, and makes a control flow transfer predicated on the
result being equal to 10.

mov al, [AddressWithLabel1832]
; AL.expr <- (Label 1832)
add al,4

; AL.expr <- (ADD AL.expr 4)
/% AL.expr == (ADD (LABEL 1832) 4) */
cmp al, 10
ZFLAG.left <- AL.expr
/* ZFLAG.left == (ADD (Label 1832) 4) */
; ZFLAG.right <- 10
je JumpTargetIfEqualToTen
; P <- new Predicate(EQUAL ZFLAG.left ZFLAG.right)
; /* P == (EQUAL (ADD (Label 1832) 4) 10) x/
; if (ZF == 1) AddToSetOfKnownPredicates(P);
; /* Discover predicate if equality branch taken */

This illustrates how DACODA will discover the predicate
(in prefix notation), “(EQUAL (ADD (Label 1832) 4) 10)”.
This predicate from the range of € can be used to infer a
predicate about the row space of e: that the byte that was
labeled with “Label 1832” is equal to 6.

For 16- or 32-bit operations DACODA concatenates the
labels for two or four bytes into a DoubleExpression or a
QuadFExpression, respectively. We define a strong, explicit
equality predicate to be an equality predicate that is exposed
because of an explicit check for equality. Thus a comparison

of an unsigned integer that yields the predicate that the
integer is less than 1 is not explicit and will not be discovered
by DACODA (though it implies that this integer is equal to
0).
DACODA also discovers equality predicates when a la-
beled byte or symbolic expression is used as a jump or call
target, which is common in code compiled for C switch state-
ments and is how DACODA is able to detect important
predicates such as the first data byte in the UDP packet
of the Slammer worm, “0x04”, the only real signature this
attack has. When a symbolic expression is used in an ad-
dress for an 8- or 16-bit load or store operation the address
becomes part of the symbolic expression of the value loaded
or stored (a Lookup expression is created which encapsu-
lates both the value and the address used to load or store
it). This type of information flow is important for tracking
operations such as the ASCII to UNICODE conversion of
Code Red II.

There are six kinds of expressions: Labels, Constants,
DoubleFExpressions, QuadFExpressions, Lookups, and Opera-
tions. Every byte of the main physical memory, the general
purpose registers, and the NE2000 card’s memory are asso-
ciated with an expression, which can be NULL. The Zero
Flag (ZF) is used by the Pentium for indicating equality or
inequality. We associate two expressions with ZF, left and
right, to store the expressions for the last two data that were
compared. ZF can also be set by various arithmetic instruc-
tions but only explicit comparison instructions set the left
and right pointers in our implementation. These pointers
become an equality predicate if any instruction subsequently
checks ZF and finds it to be set.

Table 2 summarizes all of the various rules about how
DACODA propagates expressions and discovers predicates.

Explanation

[Assembly Example

[What DACODA Does in C+-+-like Pseudo-code

Moves from register mov edx,[ECX] WriteRegisterByteExpr(INDEXOFEDX, 0, ReadMemByteExpr(ecx+0));
to memory, memory to WriteRegisterByteExpr(INDEXOFEDX, 1, ReadMemByteExpr(ecx+1));
register, or register WriteRegisterByteExpr(INDEXOFEDX, 2, ReadMemByteExpr(ecx+2));
to register just copy WriteRegisterByteExpr(INDEXOFEDX, 3, ReadMemByteExpr(ecx+3));
the expressions for
the bytes moved. The mov al,bh WriteRegisterByteExpr(INDEXOFEAX, 0,
same applies to ReadRegisterByteExpr(INDEXOFEBX, 1));
PUSHEs and POPs.

mov [EBP+10],cl WriteMemByteExpr(ebp+10, ReadRegisterByteExpr(INDEXOFECX, 0));
8- and 16-bit lookups mov dx,[ECX] DoubleExprFromMem = MakeNewDoubleMem (ecx);
carry their addresses AddrResolved = MakeNewDoubleRegister(INDEXOFECX);
with them. Without ExprForDX = new Lookup(AddrResolved, DoubleExprFromMem);
this the 0x7801cbd3 WriteDoubleRegister(INDEXOFEDX, ExprForDX);
bogus SEH pointer of
Code Red II would
have no expression.
Jumps or calls to mov edx,[EBP+fIfbf4] ExprForEDX = MakeNewQuadMem (ebp+O0x{Tfffbf4);

addresses that have
non-NULL expressions
imply an equality
predicate on that
expression; needed

for Slammer.

jmp [42cfa23b+EDX<<2]

AddrResolved = new Operation(“ADD”,
MakeNewQuadConstant(0x42cfa23b),
new Operation(“SHR”, MakeNewQuadRegister(INDEXOFEDX),

new Constant(2)));

AddToListOfKnownPredicates(“EQUAL”, AddrResolved,
MakeNewQuadConstant(0x42cfa23b+edx<<2));

WriteQuadRegister(INDEXOFEDX, ExprForEDX);

Strong, explicit equality cmp edx,[ESI] ZFLAG left = MakeNewQuadRegister(INDEXOFEDX);
predicates are discovered ZFLAG.right = MakeNewQuadMem(esi);

when a CMP, CMPS, if ((ZFLAG.right != NULL) &&

SCAS, or TEST instruction (ZFLAG.left == NULL)) ZFLAG.left = new Constant(edx);
is followed by any if ((ZFLAG.left != NULL) &&

instruction that checks (ZFLAG.right == NULL)) ZFLAG.right = new Constant([esi]);
the Zero Flag (ZF) and

ZF indicates equality. je T123abcd P = new Predicate(“EQUAL”, ZFLAG.Left, ZFLAG.Right);
Examples are conditional if (ZF == 1 && ((ZFLAG.Left !|= NULL) || (ZFLAG.Right != NULL)))
equality jumps such as AddToListOfKnownPredicates(P);

JE, conditional moves,

or “REP SCAS”.

Operations such as ADDs, add eax,[EBX] WriteQuadRegister(INDEXOFEAX, new Operation(

other arithmetic operations, “ADD”, MakeNewQuadRegister(INDEXOFEAX),

bit shifts, or logical bit MakeNewQuadMem (ebx));

operations simply create

a new Operation expression shr eax,3 WriteQuadRegister(INDEXOFEAX, new Operation(

which can be written into “SHR”, MakeNewQuadRegister(INDEXOFEAX),

the slot for QuadExpressions new Constant(3));

and will be encapsulated as

a QuadExpression the next mov [ECX],eax WriteQuadMem (ecx,

time it is read. The same
applies to DoubleExpressions,
and 8-bit operations are

MakeNewQuadRegister(INDEXOFEAX));

straightforward.
Table 2: Special Rules and Example Instructions.
[Exploit [oS [Port(s) Class [bid [52] [Vulnerability Discovery
LSASS (Sasser) Windows XP 445 TCP Buffer Overflow 10108 ceEye
DCOM RPC (Blaster) Windows XP 135 TCP Buffer Overflow 8205 Last Stage of Delirium
Workstation Service Windows XP 445 TCP Buffer Overflow 9011 eEye
RPCSS Windows Whistler | 135 TCP Buffer Overflow 8459 eEye
SQL Name Resolution (Slammer) Windows Whistler | 1434 UDP Buffer Overflow 5311 David Litchfield
SQL Authentication Windows Whistler | 1433 TCP Buffer Overflow 5411 Dave Aitel
Zotob ‘Windows 2000 445 TCP Buffer Overflow 14513 Neel Mehta
1IS (Code Red II) Windows Whistler [80 TCP Buffer Overflow [2880 eEye
wu-ftpd Format String RedHat Linux 6.2 21 TCP Format String 1387 t£8
rpc.statd (Ramen) RedHat Linux 6.2 111 & 918 TCP | Format String 1480 Daniel Jacobiwitz
innd RedHat Linux 6.2 119 TCP Buffer Overflow 1316 Michael Zalewski
Apache Chunk Handling (Scalper) | OpenBSD 3.1 80 TCP Integer Overflow | 5033 N. Mehta, M. Litchfield
ntpd FreeBSD 4.2 123 TCP Buffer Overflow 2540 Przemyslaw Frasunek
Turkey ftpd FreeBSD 4.2 21 TCP Off-by-one B.O. 2124 Scrippie

Table 3: Exploits Analyzed by DACODA.

Table 1 shows how QuadExpressions are handled. A more
straightforward way to handle QuadExpressions would be to
place a pointer to the QuadExpression into all four bytes’
expressions for that 32-bit word and let the index of each
byte determine which of the four bytes in the QuadExpres-
sion it should reference, which is how DoubleExpressions are
handled. For QuadExpressions, however, this causes numer-
ous performance and memory consumption problems. The
scheme in Table 1 is more efficient but may drop some in-
formation if, for example, a QuadExpression is written to a
register, then a labeled byte is written into a higher order
byte of that register, and then the QuadExpression is read
from the register. From our experience such cases should be
extremely rare, and it would be relatively straightforward to
fix but Table 1 is the implementation used to generate the
results in Section 4.

4. EXPLOITS ANALYZED BY DACODA

This section will summarize the results produced by DA-
CODA, detail Code Red II as a concrete example, and then
enumerate complexities, challenges, and facts worth noting
about the exploits analyzed. We adopt the idea of tokens
from Polygraph [28] and consider a byte to be tokenizable if
DACODA discovers some strong, explicit equality predicate
about it.

4.1 Summary

Table 3 summarizes the exploits that DACODA has an-
alyzed. All of the Windows exploits except one (SQL Au-
thentication) were actual attacks or worms from the Internet
to DACODA honeypots, while all others were performed by
the authors. Identifying the packets involved in each attack
was done manually by inspection of the dumped network
traffic. Since all packets for each attack were either UDP or
TCP we used a summary algorithm that used knowledge of
these protocols so that the results could remain more intu-
itive by not including predicates about the transport layer
protocol header, unless they also include labeled bytes from
a data field (such as what happens in reverse DNS lookups).

When DACODA discovers a predicate, the Current Priv-
ilege Level (CPL) of the processor is checked to determine
whether the predicate is discovered while running kernel-
space code or while running user-space code. These results
are presented in Table 4. The CR3 register in the Pentium
is used to index the base of the page table of the current
task and is therefore a satisfactory replacement for a pro-
cess ID (PID). Table 4 also shows the results generated by
DACODA as to how many different processes are involved
in predicate discovery and are therefore an integral part of
understanding the attack. This table includes not only con-
ventional processes but also processes that run only in kernel
space such as the Windows SYSTEM process.

Table 5 summarizes the results from preliminary, naive
signature generation using DACODA. Note that we make
no strong claims as to DACODA’s completeness because it
is possible that a byte may have a strong equality predicate
that is not due to an explicit check for equality. It is also
possible that tokens discovered by DACODA are not really
invariant for various reasons described later in this section.
Also, multiple bytes may be involved with a single predicate
and a single byte may be involved with multiple predicates,
so there is not a one-to-one relationship between bytes and
predicates. Surprisingly, some predicates are repeated such

as the “GET” token from Code Red II which is checked four
times in four different places by the IIS web server. The
numbers for predicates and tokens are provided here as an
approximation to get a sense of the design space and may
vary slightly from the true invariant signatures for these
exploits. The format for Table 5 is such that “3(18)” means
that there are three tokens that are 18 bytes in length.

Validation of the results was done, to the extent possible,
by comparing the results to our knowledge of the exploits
and the protocols involved.

4.2 Code Red Il as a Concrete Example

The UNICODE encoding of the bogus Structured Excep-
tion Handling pointer and payload are captured by DA-
CODA’s symbolic expressions, as is the fact that the row
spaces and ranges of ¢, v, and 7 are not disjoint sets of
bytes. DACODA also shows that the exploit vector permits
a great deal of polymorphism.

The exploit vector for Code Red II is a GET request:

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXX XXX XX XXX XXX XX XXX XX XXX XX XXX XXX XXX XXXXXXX
XXX XXX XXX XXX XXX XXX X XXX XXX XX XXX XXX XXX XXX XXXXXX
XXX XXX XXX XXX XX XXX XXX XX XX XXX XX XXX XXX XXX XX XXXXX
XXX XXX XXX XX XXX XXX XX XXX XX XXX XX XXX XXX XXX XXXXXXX
XXXXXXXXXXXXXXXX%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3
%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00
%u531b%ub3£f£%u0078%u0000%u00=a HTTP/1.0\x0d\n.

DACODA discovers strong equality predicates
for the tokens “GET\x20/”, “.ida?”, the UNI-
CODE tokens “%u”, spaces, new line characters, and
“%u00=a\x20,HTTP/1.0\x0d\n”. Only a single “%u” is
necessary to cause ASCII to UNICODE conversion and
overflow the buffer. The “.ida” file can have any filename,
real or not, and can also end with “.idq”. Thus the
following is a valid exploit vector for the same vulnerability:

GET /notarealfile.idq?UOIRJVFJWPOIVNBUNIVUWIF
0JIVNNZCIVIVIGJBMOMKRNVEWIFUVNVGFWERIOUNVUNWI
UNFOWIFGITTOOWENVJSNVSFDVIRJGOGTNGTOWGTFGPGLK
JFGOIRWTPOIREPTOEIGPOEWKFVVNKFVVSDNVFDSFNKVFK
GTRPOPOGOPIRWOIRNNMSKVFPOSVODIOREOITIGTNJGTBN
VNFDFKLVSPOERFROGDFGKDFGGOTDNKPRJINJIDH%u1234D
SPPOITEBFBWEJFBHREWJFHFRG=bla HTTP/1.0\x0d\n.

Though it contains no real bogus control data or payload,
it will cause the bogus control flow transfer to occur (from
the return pointer, not the SEH pointer in this case). The
current DACODA implementation treats all operations as
uninterpreted functions so there is one spurious tokeniza-
tion for this exploit, the one that includes “00=a”, which
should be just “=”. This is because the “=” character is
located by bit shifts instead of direct addressing, and DA-
CODA cannot determine that the other three characters are
dropped before the explicit equality check without semantic
information about the bit shifts. This is the only example of
such a problem with uninterpreted functions we discovered.

4.3 Complexities and Challenges

This section discusses some of the facts that must be taken
into account when designing an automated worm analysis
technique for deriving protection for an unknown vulnera-
bility from a zero-day polymorphic and metamorphic worm
exploit.

Exploit Name Total Kernel-space | User-space | Processes Multiple

Predicates | Predicates Predicates | Involved ‘ Threads
LSASS 305 223 82 SYSTEM and lsass.exe Yes
DCOM RPC 120 0 120 svchost.exe Yes
Workstation Service 286 181 105 SYSTEM, svchost.exe, Yes

77, 77, and lsass.exe

RPCSS 38 2 36 SYSTEM and svchost.exe Yes
SQL Name Res. (Slammer) | 1 0 1 SQL Server Yes
SQL Authentication 7 0 7 SQL Server Yes
Zotob 271 177 94 SYSTEM, services.exe, and 77 | Yes
1IS (Code Red II) 107 0 107 IIS Web Server No
wu-ftpd Format String 2288 0 2288 wu-ftpd No
rpc.statd 44 0 44 portmap and rpc.statd No
innd 329 41 288 innd and nnrpd No
Apache Chunk Handling 3499 4 3495 httpd No
ntpd 17 0 17 ntpd No
Turkey 347 98 249 ftpd No

Table 4: Where exploits are discovered.

Exploit Name

[Longest Token |

Token length histogram as “Number(Size in bytes)”

LSASS 36 1(36),1(34),3(18),2(14),1(12),5(9),5(8),2(5),15(4),2(3),39(2),19(1)
DCOM RPC 92 1(92),1(40),1(20),2(18),1(14),5(8),15(4),2(3),13(2),8(1)
Workstation Service 23 1(23),5(18),1(16),2(14),1(12),4(10),8(8),1(6),5(5),8(4),1(3),42(2),22(1)
RPCSS 18 2(18),2(8),5(4),9(2),8(1)

SQL Name Res. (Slammer) | 1 1(1)

SQL Authentication 4 3(4),3(1)

Zotob 36 1(36),1(34),2(18),1(16),1(14),1(12),2(8),3(5),11(4),2(3),32(2),6(1)
IIS (Code Red II) 17 1(17),3(5),23(2),1(1)

wu-Ttpd Format String 283 1(283),4(119),4(11),1(10),1(9),1(6),4(5),3(4),4(3),10(2),41(1)
rpc.statd 16 2(16),1(8),2(4),10(2),13(1)

innd 27 1(27),1(21),1(13),1(11),2(10),2(9),2(6),6(5),9(4),12(3)

Apache Chunk Handling 32 1(32),24(13),23(11),1(8),1(6),2(5),1(3),3(2),3(1)

ntpd 3 1(8),2(4),2(2)

Turkey 21 2(21),1(12),2(6),6(5),16(4),23(2),14(1)

Table 5: Signature Tokens.

4.3.1 Processing of Network Data in the Kernel

The most salient feature of the LSASS exploit is the
amount of protocol that the attack must traverse through
in the kernel itself before it even is able to reach the
vulnerable process, Isass.exe, through the named pipe
“\\PIPE\lsarpc”. For a step-by-step explanation of the
LSASS exploit see the eEye advisory [48]. The Windows ker-
nel space contains a great deal of executable code that han-
dles network traffic including Transport Device Interfaces
(TDIs), Remote Procedure Calls (RPC), Ancillary Function
Driver File System Drivers (AFD FSDs), Named Pipe FSDs,
Mailslot FSDs, NetBIOS emulation drivers, and more [36].
Today, even HT'TP requests are being processed in the ker-
nel space with a network driver contained in IIS 6.0 [2]. Thus
attack analysis must include the kernel.

Furthermore, it is not necessary for a remote exploit to
ever involve a user-space process. A remote memory cor-
ruption vulnerability in the kernel may allow an attacker
to execute arbitrary code directly in “CPL==0” (the kernel
space). Such an exploit is described by Barnaby Jack [2] that
exploits a kernel-space buffer overflow in a popular firewall
program. Microsoft recently released an advisory describ-
ing a heap corruption vulnerability in the kernel-space SMB
driver that could allow remote code execution [50, MS05-
027]. Linux and BSD do much less processing of network
data in kernel space but are nonetheless susceptible to the
same problem [52, bid 11695].

4.3.2 Multiple Processes Involved

The rpc.statd exploit is interesting because it is possi-
ble that the vulnerable service, rpc.statd, may be listening
on a different port for every vulnerable host. This is only
probable if the different vulnerable hosts are running differ-
ent operating system distributions. Nonetheless, the initial
connection to portmap to find the rpc.statd service is an
important part of the exploit to analyze.

The innd exploit works by posting a news message to a
newsgroup, in this case “test”, and then canceling that mes-
sage by posting a cancellation message to the group called
“control”. The buffer overflow occurs when a log message is
generated by the nnrpd service, which is invoked by the innd
process, because the e-mail address of the original posting
is longer than the buffer reserved for it. In this particu-
lar exploit the entire exploit is carried out through a single
TCP connection, but it is possible that the attacker could
upload the payload and bogus return pointer onto the vul-
nerable host’s hard drive using one TCP connection from
one remote host and then invoke the buffer overflow via a
different TCP connection coming from a different remote
host.

4.3.3 Multithreading and Multiple Ports

In addition to multi-stage attacks like the innd exploit,
many Windows services are multithreaded and listen on
multiple ports. The SQL Server is multithreaded and listens
on ports 1434 UDP and 1433 TCP. The DCOM RPC, Work-
station Service, RPCSS, and Zotob exploits have the same
property. The Windows Security Bulletin for the LSASS
buffer overflow [50, MS04-011] recommends blocking UDP
ports 135, 137, 138, and 445, and TCP ports 135, 139, 445,
and 593; plus, the lsass.eze process is multithreaded mean-
ing that, for example, the payload and the exploit could be
introduced into the process’ address space simultaneously

through two different connections on two different ports.
Most exploits allow some form of arbitrary memory cor-
ruption such as writing an arbitrary value to an arbitrary
location or writing a predictable value to an arbitrary lo-
cation. Even simple stack-based buffer overflows can have
this property, like the RPC DCOM exploit or the Slammer
exploit. In Slammer, a certain word just beyond the bogus
return pointer can point to any writable address where the
value 0 is written just before the bogus control flow transfer
occurs.

Any open TCP port 1433 connection can be turned into
what appears to be a port 1433 buffer overflow by exploit-
ing the name resolution vulnerability (used by Slammer) on
UDP port 1434 and using the “write the value zero to any
writable location” primitive. Such an attack would open
enough port 1433 TCP connections to tie up all but one
thread of the SQL server, load a bogus stack frame com-
plete with executable payload on one connection, and load
fake junk to all of the others. The stacks for these threads
could be held in a suspended state by not closing the TCP
connections.

Then through UDP port 1434 the attacker would send
SQL name resolution exploits that only overwrote the re-
turn pointer with its original value but, more importantly,
changed the address where the value 0 is written to point
to each successive stack. A well placed zero that overwrites
the least significant byte of a base pointer on a stack en-
ables linking in a bogus stack frame (this is how the Turkey
exploit works). Then by closing the port 1433 TCP connec-
tion with the exploit code in it, the stack is unwound until
the bogus stack frame hijacks control flow. Because the in-
coming 0 would not be labeled, and because the row spaces
of v and 7 would have been mapped from packets for TCP
port 1433, it would be easy for DACODA-based analysis to
assume that there had been a buffer overflow on port 1433.
Fortunately, DACODA records when labeled data is used as
addresses so the connection with UDP port 1434 could be
identified.

4.3.4 Side Channels

The innd exploit shares something in common with both
of the ftp exploits presented here in that the process being
attacked does a reverse DNS entry lookup on the IP address
of the attacker. It is not clear whether DACODA should
include this in the analysis of the attack or not because the
attacker could use their DNS name to inject part of the
attack into the address space of the vulnerable process but
typically will not do so. For all results presented in this
paper the DNS traffic is included in the analysis.

Also, parts of the UDP header for Slammer, the source
IP address and port, are present in the address space when
the bogus control flow transfer occurs. Thus not all of the
various parts of an attack can be found in the data fields
of TCP and UDP packets; they may come from the packet
headers as well.

4.3.5 Encodings and Encryption

The various ASN.1 vulnerabilities found in Microsoft Win-
dows over the past two years [52, bids 9633, 9635, 9743,
10118, 13300], none of which were tested with DACODA,
are exposed through several services. They can be exploited
through Kerberos on UDP port 88, SSL on TCP port 443,
or NTLMv2 authentication on TCP ports 135, 139, or 445.

The malicious exploit and code can be encoded or encrypted
with Kerberos, SSL, IPSec, or Base64 encoding (on top of
the malicious ASN.1 encoding) [52, bid 9635]. A more ad-
vanced exploit for this vulnerability could encrypt most of e,
and all of v and 7, and the decryption would be performed
by the vulnerable host. The fact that not many vulnerabil-
ities have this property should not be taken to mean that
it will be a rare property for zero-day vulnerabilities. Zero-
day vulnerabilities will be found in the places that attackers
look for them.

Encodings or encryptions of € and ~ that are decoded
or decrypted by protocol implemented on the machine be-
ing attacked are only a challenge for DACODA if the sym-
bolic expressions become too large to handle efficiently or
too complex to be useful. In either case DACODA reports
this fact, so that a different response than content filtering
can be mounted. When symbolic expressions exceed a cer-
tain size they become idempotent expressions that denote
that a large symbolic expression has been dropped.

4.3.6 Undesirable Predicates

The wu-ftpd format string attack helps illustrate what fu-
ture work is needed before DACODA can consistently an-
alyze real attacks with a high degree of assurance. We
used the Hannibal attack from Crandall and Chong [12]
where the major portion of the format string is of the form,
“%Of%h9f%9£%9£%9f . . .”. DACODA should, and does, dis-
cover predicates for “%” and “f” but should not discover a
strong equality predicate for “9” because the format string
attack could take the form “%11£%4£%132f...".

The _I0_default_zsputn() function from glibc sets a vari-
able to 0 and increments that variable for every character
printed. When it is done printing the floating point num-
ber it subtracts this count from the value 9 calculated by
taking the ASCII value 0x39 for “9” and subtracting 0x30
(basically, although, as is often the case, reverse engineer-
ing by DACODA reveals the actual decoding implementa-
tion to be much more convoluted). If this value is equal
to zero a strong, explicit equality predicate is discovered
by DACODA and the _IO_default_zsputn() function moves
on (The __printf_fp() function does a similar check on the
same byte so two predicates are actually discovered). Oth-
erwise the difference is used as the number of trailing zeroes
to print and DACODA discovers no predicate. This causes
DACODA to discover strong equality predicates for that in-
dividual “9” if and only if the value on the stack being eaten,
which for all practical purposes is random, consumes 9 char-
acters when interpreted as a floating point number without
trailing zeroes. The long tokens discovered for the wu-ftpd
format string attack in Table 5 are not a good signature but
rather represent the fact that a long sequence of data words
on the stack require 9 characters to be printed as floating
points (including the leading space).

In the Apache exploit the chunked encoding tokens can
use any character allowed by the chunked encoding portion
of the HTTP protocol, but DACODA discovers predicates
because whatever character is used is converted to lower
case and compared with a whole array of characters until it
is found.

For the innd exploit DACODA generates a token “test”
as these letters are individually checked against a d_entry
in the directory containing the various newsgroups on that
news server. This token is discovered in the kernel space in

the function d_lookup(). The “test” newsgroup is guaran-
teed to be there but there is no requirement that the attacker
post the original message to this group. The attacker might
first log into the news server to request a list of newsgroups
on that server and choose a different group every time. Thus
the token “test” generated by DACODA is not guaranteed
to be in every exploit for this vulnerability.

One interesting behavior of the Turkey exploit is that it
creates several files or directories with long filenames and
then uses these files or directories in some way. This would
cause DACODA to discover very long tokens for these file-
names (equality between the file name used for creation and
the file name used for accessing), except that we added a
heuristic that DACODA does not include strong, explicit
equality predicates between two labeled symbolic expres-
sions that are both from the attacker.

4.3.7 Lack of a Good Signature for Some Exploits

It is difficult to generalize to a signature for a vulnerability
when there is not even a good signature for the exploit.
For Slammer the only byte string signature not susceptible
to simple polymorphic techniques is the first byte in the
UDP packet, “0x04”. This byte is common to all SQL name
resolution requests. The bogus return pointer also has to
be a valid register spring and another pointer must point
to any writable memory location, but these are not strong
predicates. The SQL authentication exploit does not offer
much in terms of a signature, either.

The Apache chunk handling exploit, like the wu-ftpd
format string exploit, has erroneous predicates in Table 5.
This means that all of the tokens with four bytes or
more, except the chunked encoding token, are actually
not invariant, leaving mostly dots, slashes, dashes, and
the new line character, all of which are not uncommon
in HTTP traffic. This does not offer a very good in-
variant signature for content filtering; only the token
“\x0d\nTransfer-Encoding:\x20chunked\x0d\n\x0d\n”
which would block a valid portion of the HTTP pro-
tocol. In the ntpd exploit both 4-byte tokens are
“\x00\x00\x00\x00” which is not uncommon content on
any port. The longest token, 8 bytes long, is “stratum="
which probably is not uncommon for traffic on UDP port
123.

We did not test any ASN.1 vulnerabilities, but these serve
as good examples of just how polymorphic € could be. The
ASN.1 library length integer overflow [52, bid 9633] basically
has a signature of “\x04\x84\xFF\xFF\xFF”. The rest of €
in this case is identical to any NTLM request over SMB
carrying an ASN.1 encoded security token. In fact, the first
445 bytes of all ASN.1 exploits through NTLM [52, bids
9633, 9635, 9743, 10118, 13300] and the Workstation Service
[52, bid 9011] exploit are identical. This initial part of the
exploit vector is not a good signature unless it is desired
that all NTLM requests carrying ASN.1 security tokens be
prevented. Furthermore, the Workstation Service results
from Table 5 show that the longest string of invariant bytes
in this 445-byte sequence is only 23 bytes long. Two other
ASN.1 vulnerabilities [52, bids 9635, 13300] have no byte
string signature at all to describe them.

As far as purely network-based signature generation meth-
ods with no host context, which lack vulnerability informa-
tion for generalizing observed exploits and predicting future
exploits, not a lot of polymorphism is required for a worm

not to be detected. Discounting the very long wu-ftpd for-
mat string and Turkey tokens which are errors, only one of
the 14 exploits has a token of more than 40 bytes. The num-
ber 40 is significant since it is the minimum signature size
that the first implementation of EarlyBird [37] can discover.
A similar result is shown in Section 4.2 of Kim and Karp [21]
where the ability to generate signatures falls dramatically
when less than 32 bytes of contiguous invariant content are
present, which is true for 10 of the 14 exploits in Table 5.
Thus EarlyBird and Autograph, in their current implemen-
tations, would not be effective against polymorphic versions
of between 10 and 13 of the 14 exploits analyzed in this
paper.

5. POLY/METAMORPHISM

Based on the results in the previous section, we would
now like to formalize polymorphism and metamorphism in
e. To be more perspicuous in doing so, and also to guide
future work, we describe a model to encompass complexi-
ties such as multiple processes, multithreading, and kernel
processing of network data by viewing control flow hijacking
attacks “from-the-architecture-up.” In this way interprocess
communication and context switches are viewed simply as
physical data transfers in registers and memory. The Physi-
cal Data Requires-Provides model, or PD-Requires-Provides
model, is a requires-provides model [39] for physical data
transfers where the focus is on primitives, not vulnerabili-
ties, for reasons that will be discussed in this section.

First we wish to confute the idea that there is a single
user-space process that is vulnerable and the attacker opens
a TCP connection directly to this process to carry out the
exploit. Of the 14 exploits analyzed in Section 4, six in-
volve multiple processes, five involve a significant number
of predicates discovered in kernel space, and seven exploit
processes that contain multiple threads and are accessible
through multiple ports.

The purpose of an exploit is to move the system being
attacked from its initial state to a state where control flow
hijacking occurs. The series of states the attacker causes the
system to traverse from the initial state to control flow hi-
jacking is the attack trace. The attacker causes this traversal
of states by sending some set of IP packets that are projected
onto the trace of the vulnerable machine as they are inter-
preted by the protocol implementation on that machine.

The attacker must prevent a satisfactory characterization
of the worm traffic by varying bytes in the row spaces of the
three projections that do not have a strong equality predi-
cate required of them (polymorphism) or changing the map-
pings for each infection (metamorphism). In past work [14]
we showed that there is a high degree of polymorphism and
metamorphism available to the attacker for both v and =,
so we will focus here only on the subject of this paper: e.

5.1 What are Poly- and Metamorphism?

What do we mean when we say polymorphism and meta-
morphism in €?

5.1.1 Polymorphism of

Some bytes mapped by e by definition are not actually
what one might think of when discussing e but should be
mentioned for completeness. Filler bytes that serve no other
purpose than to take up space, such as the “XXXXXXX...”
string of bytes in Code Red II, are usually in € but have

no strong equality predicate required of them. Usually their
placement in € is only because it is required that they are
not equal to a NULL terminator or an end of line character,
or that they must be printable ASCII characters.

5.1.2 Metamorphism af

We will discuss two kinds of metamorphism: without mul-
tithreading and with multithreading. Metamorphism is the
more fundamental challenge for DACODA since DACODA
is based on symbolic execution of one attack trace and meta-
morphism in € changes the attack trace.

Without multithreading, there are multiple ways to tra-
verse from the initial state to the control flow hijacking. The
three ways of changing this trace are:

1. Take an equivalent path: In format string attacks “%x”
and “%u” take different paths but converge so for prac-
tical purposes the traces are the same. A couple of ex-
amples from the Code Red II exploit are “.ida” versus
“.idq” or the fact that the UNICODE encoding es-
cape sequence “%u” can appear anywhere in the GET
request between “?” and “=".

2. Add paths that are unnecessary: In the Hannibal attack
for the wu-ftpd format string vulnerability the attacker
can, after logging in but before carrying out the actual
attack, use valid FTP commands that are not useful
except that DACODA will discover predicates for them
as they are parsed. Pipelining in HTTP 1.1 allows
for similar behavior as was pointed out in Vigna et.
al. [42].

3. Changing the order: In addition to adding paths that
are not relevant to the exploit, sometimes paths rele-
vant to the exploit can be arranged in a different order.

What we need to understand metamorphism is a partial
ordering on the bytes from the range of €. This partial order-
ing could help us determine that, for example, the Code Red
IT buffer overflow is not reachable except through a path in
which the token “%u” is discovered, and that “.ida?” must
come before this token and “=” must come after. It would
also show that “GET” must be “GET” and not “GTE” or “TEG”.
For generating a signature the partial ordering will reveal
which tokens are not necessary for control flow hijacking to
occur, which tokens can be replaced with other tokens (this
will require further analysis such as model checking), and
will identify any ordering constraints on those tokens that
must occur.

The requires-provides model for control flow hijacking at-
tacks could be as simple as a control flow graph for the whole
system. The problem with this is that an attacker with the
ability to corrupt arbitrary memory with two threads in the
same process can subvert the most basic assumptions (for
example, that if a thread sets a local variable to a value it
will have the same value until the thread modifies it again).
We need a model that can handle multithreading, but first
we need to try to understand what a vulnerability-specific
signature would need to encompass. To do this we have to
discuss what a vulnerability is.

5.2 What is a vulnerability?

What causes a sequence of network packets to be a control
flow hijacking attack, the vulnerability, is very subjective.

For buffer overflow exploits it is the fact that a particular
field exceeds a certain length; in the case of Slammer it
is the length of the UDP packet itself, and for the Turkey
exploit the allowable length is exceeded by only one byte.
For double free() and dangling pointer exploits the exploit is
usually caused because a certain token appears twice when
it should appear once or is nested such as the constructed
bit strings of the ASN.1 dangling pointer vulnerability [52,
bid 13300]. Format string write attacks are caused by the
presence of a token “/n”. Integer overflows occur because a
particular integer is negative.

One last example puts this problem in perspective. The
Code Red II buffer overflow only occurs when at least one
“%u” token is present which expands all of the ASCII char-
acters to 2 bytes, and the “u” character as well as numbers
are certainly acceptable in a normal URI. Changing a single
bit in the ASCII sequence “eu1234” creates “%u1234”, so the
Hamming distance between a valid ASCII GET request of
acceptable length and one with a single UNICODE-encoded
character that causes a buffer overflow is only one bit! Fur-
thermore, UNICODE encodings in GET requests of normal
length are certainly valid within the HTTP protocol or else
they would not have been implemented.

There are two ways to create a signature that covers
a wide enough set of exploits to be called “vulnerability-
specific.” One is to add more precision to the signature
and use heuristics within the signature generator to look at
not only tokens but, for example, also the lengths of fields.
Slammer could be stopped by dropping all UDP packets to
port 1434 that exceed a certain length. Code Red II could
be stopped by dropping all HT'TP requests with UNICODE
encodings that exceed a certain length. The problem with
the Code Red II example is that it requires a lot of parsing
of HTTP commands by the network content filter. This is
even worse in the case of Scalper because the Apache chunk
handling exploit only occurs when a particular integer is
negative.

The second way to generate signatures is to relax the
requirement that no portion of a valid protocol be dropped.
In the Code Red II example above, we could simply
drop all HTTP requests with UNICODE encodings since
normal HTTP traffic typically will not use them. For
Scalper we could drop all HTTP traffic with the token
“\x0d\nTransfer-Encoding:\x20chunked\x0d\n\x0d\n”
which will not allow any chunked encodings, and is in fact
the rule that Snort [53] uses. In other words, it may be
acceptable to block a valid portion of a protocol (or even
an entire protocol by blocking its ports) if that portion is
not often used by legitimate traffic. Most vulnerabilities
are discovered in code that is not frequently used. These
coarse responses may sometimes be the most effective, but
the challenge is knowing, upon capturing an exploit for an
unknown vulnerability, that the protocol involved or the
specific part of it where the vulnerability lies is rarely used,
something that would need to be profiled over a long period
of time.

The first of these alternatives leaves us “on the horns of
a dilemma” [49] in terms of false positives and false nega-
tives without a detailed semantic understanding of how the
exploit works. It also is not amenable to byte string signa-
tures, even those based on small sets of tokens, so something
more semantically rich will have to be devised. This is the
challenge that we hope to address in future work.

The second alternative will create a great number of false
positives if the worm exploits a vulnerability that is in a part
of a protocol that is used often. This is because nearly all
of the tokens in Table 5 are protocol framing and not related
to the actual vulnerability. Buffer overflows have been found
in Microsoft libraries for both JPEG parsing [50, MS04-028]
and JPEG rendering [50, MS05-038]. If a worm exploited
such vulnerabilities, it would create many false positives if
the worm content filtering mechanism blocked all HTTP
responses containing JPEGs.

5.3 The PD-Requires-Provides Model

Metamorphic techniques that use arbitrary memory cor-
ruption primitives in multithreaded applications to build
complex exploits require a model that views the system from
the same perspective as the attacker will: the raw machine.
This “from-the-architecture-up” view of the system will al-
low us to abstract away system details that lead to assump-
tions that the attacker can invalidate. This is the motivation
behind the PD-Requires-Provides model.

5.3.1 Requirements and What They Provide

An attacker can only cause a state transition along the
attack trace through the execution of a machine instruction
that uses data from the range of e. We will assume a Pen-
tium processor and a sequential consistency memory model.
Although the Pentium uses a processor consistency model
and multiprocessing is becoming more and more common,
it may be too pessimistic at this time to assume that the
attacker could exploit a race condition between the mem-
ory and the write buffers of two high speed processors.
It should be noted, however, that race conditions between
threads have been demonstrated to permit remote code ex-
ecution [47].

Treating each machine instruction that is executed as an
atomic event, we can say that to provide a side effect needed
by the exploit there is something required of the inputs. A
side effect the attacker would like to provide could be a write
to memory, a write to a register, a write to a control flag, or
a branch predicated on a control flag. It could be required
that an input to the instruction be a certain value from the
range of ¢, that the address used to load an input be from
the range of ¢, or that a control flag have been predicated
on a comparison of data from the range of ¢ (providing a
write to the program counter EIP).

5.3.2 Slammer Example

Suppose we want to exploit the vulnerability used by
Slammer to write the value 0 to the virtual address
0x0102aabb in the SQL server process. It is required that
we get the value 0x0102aabb into the EAX register before
the instruction “MOV [EAX],0” is executed. This requires
that we send a long UDP packet to port 1434. Specifically,
when the Ethernet packet is received it is required that the
“IN DX” instructions that read the packet read a carefully
crafted UDP packet two bytes at a time to provide that the
packet be stored in a buffer and interpreted by the Windows
kernel in a certain way. When the Windows kernel checks
the 24th byte of the packet it is required that this memory
location hold the value 0x11 so that when it is loaded into
a register and compared to 0x11 the branch will be taken
where the kernel interprets it as a UDP packet. Similar
requirements on the port number and destination address

will provide the state transitions of the kernel recognizing a
packet for the SQL server process and then context switch-
ing into that process providing us with the ability to read
and write the physical memory of that process.

The SQL thread chosen to handle the request will then
context switch to the kernel and back twice to obtain the
source address and port number information and then to
read the packet into its own memory space. Then it is
required of each byte that it not be equal to “0x00” or
“0xFF” in order to reach the buffer overflow condition. It
is also required of the first data byte of the UDP packet
to be equal to “0x04” so that the vulnerable function is
reached through the sequence “MOV EDX, [EBP+fffffbf4];
JMP [42cfa23b+EDX<<2]”. Then before “MOV [EAX],0”
the EAX register must hold the attacker’s desired arbitrary
address (0x0102aabb), provided by the instruction, “MOV
EAX, [EBP+10]” which requires the value 0x0102aabb to be
at “[EBP+10]”. Finally, all of this will provide the primitive
that the value 0 is written to the virtual address 0x0102aabb
of the SQL server process which may be required for some
exploit such as the one suggested in Subsection 4.3.3.

5.3.3 Should Focus on Primitives, not Vulnerabilities

The goal of a signature generation algorithm based on
DACODA, then, should be to, given the partial ordering
constructed for a single exploit as analyzed by DACODA,
identify the primitive most valuable to the attacker in gen-
erating new exploits and generate a signature that prevents
that primitive. This will most likely have to be done with
heuristics. A good heuristic is that arbitrary write primi-
tives are valuable to an attacker, which will be revealed by
a write provided by a requirement that the address used for
the write was data from the range of e. That requirement
was provided by some other requirement, which in turn was
provided by another requirement, giving us a way to work
backwards and generate a primitive-specific signature from
the partial ordering. Another good heuristic is that saved
base pointers and return pointers on the stack should not be
overwritten by long fields, but this requires knowing which
field is too long which in turn requires knowing what the de-
limiters between fields are for that particular protocol (in-
formation that will have to be extracted from the partial
ordering). Similar heuristics could be made for any sort of
primitive that an attacker might find valuable in building
exploits. The point is that an attacker who searches for a
zero-day vulnerability is not so much searching for a vulner-
ability as for a useful primitive for generating exploits.

6. FUTURE WORK

DACODA can be useful toward a variety of objectives,
several of which we will now discuss. In this paper we have
used DACODA to analyze known exploits as a quantitative,
empirical analysis of the amount of polymorphism available
to an attacker within the exploit vector. DACODA may also
be used as a honeypot technology to perform the same analy-
sis on zero-day worms exploiting unknown vulnerabilities for
signature generation. This same idea was employed in Vig-
ilante [10] and suggested as future work for Polygraph [28]
and TaintCheck [29].

Other possible future work for DACODA is to use pred-
icates discovered by DACODA and heuristics about differ-
ent memory corruption errors to narrow the search space
of a random “fuzz tester” [26,27]. It would be possible to

find buffer overflows and other remote vulnerabilities in both
user-space and the kernel this way. This system would be
similar to two recent papers on automatically generating test
cases [4,18] but would operate on a full system without the
source code and find remote vulnerabilities.

Full system symbolic execution has many other security
applications, but it was pointed out in Cohen’s seminal pa-
per on computer viruses [9] that the general problem of pre-
cisely marking information flow within a system was shown
to be NP-complete by Fenton [17]. DACODA is able to an-
alyze the exploit vector part of an attack because the code
being executed is code chosen by the owner of the host such
as the operating system and software she chooses to install.
After control flow is hijacked the computational complexity
of information flow tracking is more than a theoretic problem
because the attacker can use techniques such as phi-hiding
to obfuscate information flow in a cryptographically strong
manner [45].

7. CONCLUSION

This paper presented DACODA and provided a quanti-
tative look at the exploit vectors mapped by € for 14 real
exploits. These results and our experiences with DACODA
discussed in this paper offer practical experience and sound
theory towards reliable, automatic, host-based worm signa-
ture generation. We have shown that 1) single contiguous
byte string signatures are not effective for content filtering,
and token-based byte string signatures composed of smaller
substrings are only semantically rich enough to be effective
for content filtering if the vulnerability lies in a part of a pro-
tocol that is not commonly used, and that 2) whole-system
analysis is critical in understanding exploits. As a conse-
quence we conclude that the focus of a signature generation
algorithm based on DACODA should be on primitives rather
than vulnerabilities.

8. ACKNOWLEDGMENTS

This work was supported by NSF ITR grants CCR-
0113418 and ACI-0220147. We are also very grateful to
our shepherd, Dan Boneh, and many people who discussed
the Minos and DACODA projects with us or read earlier
versions of this paper, including Daniela Alvim Seabra de
Oliveira, Timothy Sherwood, Helen Wang, and everyone in
the U.C. Davis malware reading group and security lab sem-
inar. The anonymous reviewers also provided very insightful
comments. We would also like to thank the Bochs develop-
ers.

9. REFERENCES

[1] P. Akritidis, E. P. Markatos, M. Polychronakis, and
K. Anagnostakis. Stride: Polymorphic sled detection through
instruction sequence analysis. In 20th IFIP International
Information Security Conference.

[2] Barnaby Jack. Remote Windows Kernel Exploitation-Step Into
the Ring 0.

[3] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and
D. D. Zovi. Randomized instruction set emulation to disrupt
binary code injection attacks. In Proceedings of the 10th ACM
conference on Computer and communication security, pages
281-289. ACM Press, 2003.

[4] C. Cadar and D. Engler. Execution generated test cases: how
to make systems code crash itself. In SPIN, 2005.

[5] S. Chen, J. Xu, and E. C. Sezer. Non-control-hijacking attacks
are realistic threats. In USENIX Security Symposium 2005,
2005.

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]
(18]

(19]

(20]

[21]

(22]
(23]

[24]

(25]

(26]

(27]

(28]

[29]

[30]

R. Chinchani and E. van den Berg. A fast static analysis
approach to detect exploit code inside network flows. In RAID,
2005.

M. Christodorescu and S. Jha. Static analysis of executables to
detect malicious patterns, 2003.

M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-aware malware detection. In Proceedings of
the 2005 IEEE Symposium on Security and Privacy (Oakland
2005), Oakland, CA, USA, May 2005.

F. Cohen. Computer viruses: theory and experiments. In 7th
DoD/NBS Computer Security Conference Proceedings, pages
240-263, September 1984.

M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Can we
contain internet worms? In HotNets II1.

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,

L. Zhang, and P. Barham. Vigilante: End-to-end containment
of Internet worms. In SOSP ’05: Proceedings of the twentieth
ACM Symposium on Operating Systems Principles, New
York, NY, USA, 2005. ACM Press.

J. R. Crandall and F. T. Chong. A Security Assessment of the
Minos Architecture. In Workshop on Architectural Support for
Security and Anti- Virus, Oct. 2004.

J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In Proceedings of the
37th International Symposium on Microarchitecture
(MICRO), December 2004.

J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences using
Minos as a tool for capturing and analyzing novel worms for
unknown vulnerabilities. In Proceedings of GI SIG SIDAR
Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2005.

H. Dreger, C. Kreibich, V. Paxson, and R. Sommer. Enhancing
the accuracy of network-based intrusion detection with
host-based context. In Proceedings of GI SIG SIDAR
Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2005.

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper. Syst. Rew.,
36(SI):211 224, 2002.

J. Fenton. Information protection systems. In Ph.D. Thesis,
University of Cambridge, 1973.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In PLDI, 2005.

S.-S. Hong, F. Wong, S. F. Wu, B. Lilja, T. Y. Jansson,

H. Johnson, and A. Nelsson. TCPtransform: Property-oriented
TCP traffic transformation. In Proceedings of GI SIG SIDAR
Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2005.

S.-S. Hong and S. F. Wu. On interactive Internet traffic replay.
In RAID, 2005.

H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In USENIX Security
Symposium, pages 271-286, 2004.

J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385-394, 1976.

O. Kolesnikov and W. Lee. Advanced polymorphic worms:
Evading IDS by blending in with normal traffic.

C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion
detection signatures using honeypots. SIGCOMM Comput.
Commun. Rev., 34(1):51-56, 2004.

C. Kriigel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. In RAID, 2005.

B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,

A. Natarajan, and J. Steidl. Fuzz revisited: A re-examination
of the reliability of UNIX utilities and services. Technical
report, 1995.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of UNIX utilities. Communications of the
Association for Computing Machinery, 33(12):32-44, 1990.

J. Newsome, B. Karp, and D. Song. Polygraph: Automatically
generating signatures for polymorphic worms. In Proceedings of
the IEEE Symposium on Security and Privacy, May, 2005.

J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software. In Proceedings of the 12th Annual
Network and Distributed System Security Symposium (NDSS
05), Feb. 2005.

A. Pasupulati, J. Coit, K. Levitt, S. Wu, S. Li, R. Kuo, and

[31]

[32]

[33]
[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]
[50]
[51]
(52]

53]

K. Fan. Buttercup: On network-based detection of polymorphic
buffer overflow vulnerabilities. In 9th IEEE/IFIP Network
Operation and Management Symposium (NOMS’2004), 2004.
U. Payer, P. Teufl, and M. Lamberger. Hybrid engine for
polymorphic shellcode detection. In Proceedings of GI SIG
SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), 2005.

T. H. Ptacek and T. N. Newsham. Insertion, evasion, and
denial of service: Eluding network intrusion detection.
Technical report, Secure Networks, Inc., Suite 330, 1201 5th
Street S.W, Calgary, Alberta, Canada, T2R-0Y6, 1998.

C. Raiu. Holding the Bady. In Virus Bulletin, 2001.

S. Rubin, S. Jha, and B. P. Miller. Automatic generation and
analysis of NIDS attacks. In 20th Annual Computer Security
Applications Conference (ACSAC).

S. Rubin, S. Jha, and B. P. Miller. Language-based generation
and evaluation of NIDS signatures. In IJEEE Symposium on
Security and Privacy, Oakland, California, May, 2005.

M. E. Russinovich and D. A. Solomon. Microsoft Windows
Internals, Fourth Edition. 2004.

S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In OSDI, 2004.

P. Szor. The Art of Computer Virus Research and Defense.
2005.

S. J. Templeton and K. Levitt. A requires/provides model for
computer attacks. In NSPW ’00: Proceedings of the 2000
workshop on New security paradigms, pages 31-38, New York,
NY, USA, 2000. ACM Press.

T. Toth and C. Kriigel. Accurate buffer overflow detection via
abstract payload execution. In RAID, pages 274 291, 2002.
N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,

G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. I.
August. Rifle: An architectural framework for user-centric
information-flow security. In Proceedings of the 37th
International Symposium on Microarchitecture (MICRO),
December 2004.

G. Vigna, W. Robertson, and D. Balzarotti. Testing
Network-based Intrusion Detection Signatures Using Mutant
Exploits. In Proceedings of the ACM Conference on Computer
and Communication Security (ACM CCS), pages 21-30,
‘Washington, DC, October 2004.

H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
vulnerability-driven network filters for preventing known
vulnerability exploits. In SIGCOMM ’04: Proceedings of the
2004 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 193—204.
ACM Press, 2004.

V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An
architecture for generating semantics-aware signatures. In
USENIX Security Symposium, 2005.

A. Young and M. Yung. Malicious Cryptography: Exposing
Cryptovirology. 2004.

bochs: the Open Source IA-32 Emulation Project (Home Page),
http://bochs.sourceforge.net.

eEye advisory for the DCOM RPC Race Condition
(http://www.eeye.com/html/research/advisories/
AD20040413B.html).

eEye advisory for the LSASS buffer overflow
(http://www.eeye.com/html/research/advisories/
AD20040413C.html).

General William T. Sherman, as quoted in B. H. Liddell Hart,
Strategy, second revised edition.

Microsoft advisory MSXX-YYY
(http://www.microsoft.com/technet/security /bulletin/
MSXX-YYY.mspx).

QEMU (Home Page), http://fabrice.bellard.free.fr/qemu/.
Security Focus Vulnerability Notes,
(http://www.securityfocus.com), bid == Bugtraq ID.
SNORT: The open source network intrusion detection system
(http://www.snort.org). 2002.

