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ABSTRACT
Vulnerabilities that allow worms to hija
k the 
ontrol 
ow
of ea
h host that they spread to are typi
ally dis
overed
months before the worm outbreak, but are also typi
ally dis-

overed by third party resear
hers. A determined atta
ker

ould dis
over vulnerabilities as easily and 
reate zero-day
worms for vulnerabilities unknown to network defenses. It
is important for an analysis tool to be able to generalize
from a new exploit observed and derive prote
tion for the
vulnerability.
Many resear
hers have observed that 
ertain predi
ates

of the exploit ve
tor must be present for the exploit to
work and that therefore these predi
ates pla
e a limit on
the amount of polymorphism and metamorphism available
to the atta
ker. We formalize this idea and subje
t it to
quantitative analysis with a symboli
 exe
ution tool 
alled
DACODA. Using DACODA we provide an empiri
al anal-
ysis of 14 exploits (seven of them a
tual worms or atta
ks
from the Internet, 
aught by Minos with no prior knowledge
of the vulnerabilities and no false positives observed over a
period of six months) for four operating systems.
Evaluation of our results in the light of these two models

leads us to 
on
lude that 1) single 
ontiguous byte string
signatures are not e�e
tive for 
ontent �ltering, and token-
based byte string signatures 
omposed of smaller substrings
are only semanti
ally ri
h enough to be e�e
tive for 
ontent
�ltering if the vulnerability lies in a part of a proto
ol that
is not 
ommonly used, and that 2) pra
ti
al exploit analysis
must a

ount for multiple pro
esses, multithreading, and
kernel pro
essing of network data ne
essitating a fo
us on
primitives instead of vulnerabilities.
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1. INTRODUCTION
Zero-day worms that exploit unknown vulnerabilities are

a very real threat. Typi
ally vulnerabilities are dis
overed
by \white hat" ha
kers using fuzz testing [26, 27℄, reverse
engineering, or sour
e 
ode analysis and then the software
vendors are noti�ed. The same te
hniques for dis
overing
these vulnerabilities 
ould be as easily employed by \bla
k
hat" ha
kers, espe
ially now that 
omputer 
riminals are
in
reasingly seeking pro�t rather than mis
hief. None of
the 14 exploits analyzed in this paper are for vulnerabilities
dis
overed by the vendors of the software being atta
ked.
A vulnerability gives the atta
ker an important primitive (a
primitive is an ability the atta
ker has, su
h as the ability to
write an arbitrary value to an arbitrary lo
ation in a pro
ess'
address spa
e), and then the atta
ker 
an build di�erent
exploits using this primitive.
The host 
ontains information about the vulnerability and

primitive that 
annot be determined from network traÆ

alone. It is impossible to generalize how the atta
k might
morph in the future without this information. In order to
respond e�e
tively during an in
ipient worm outbreak, an
automated analysis tool must be able to generalize one in-
stan
e of an exploit and derive prote
tion for the exploited
vulnerability, sin
e a worm 
an build multiple exploits for
the same vulnerability from primitives.

1.1 The Need to Be Vulnerability-Specific
If a honeypot or network te
hnology generated an

exploit-spe
i�
 signature for every exploit, the worm author




ould trivially subvert 
ontent �ltering by generating a
new exploit for ea
h infe
tion attempt. One approa
h to
ameliorate this is to 
ompare multiple exploits and �nd

ommon substrings. This 
an be done in the network [21,37℄
or from TCP dumps of di�erent honeypots [24℄. Our results
in Se
tion 4 show that 
ontiguous byte string signatures are
not semanti
ally ri
h enough for e�e
tive 
ontent �ltering
of polymorphi
 and metamorphi
 worms. The same 
on-

lusion was rea
hed by Newsome et. al. [28℄, in whi
h three
new kinds of byte-string signatures were proposed that are
sets 
omposed of tokens (substrings). For more information
see Se
tion 1.3.1. In this paper we generate these tokens for
14 remote exploits using DACODA and 
on
lude that even
token-based byte strings are only semanti
ally ri
h enough
to distinguish between worms and valid traÆ
 if the worm
exploits a vulnerability that is not found in a 
ommonly
used part of a proto
ol. For example, the signature token
\nx0dnnTransfer-En
oding:nx20
hunkednx0dnnnx0dnn"
would have stopped the S
alper worm but also would have
dropped valid traÆ
 if valid traÆ
 
ommonly used 
hunked
en
odings. This is the only token for this parti
ular exploit
that distinguishes it from ordinary HTTP traÆ
.

1.2 DACODA: The Davis Malcode Analyzer

Compli
ating the problem of deriving the vulnerability
from a single exploit is the fa
t that many exploits 
an in-
volve more than one network 
onne
tion, multiple pro
esses,
multithreading, and a signi�
ant amount of pro
essing of
network data in the kernel. Su
h experien
es with real
exploits have motivated us to develop two di�erent mod-
els in order to be more perspi
uous in dis
ussing polymor-
phism and metamorphism: the Epsilon-Gamma-Pi (�, 
,
�) model [14℄ for 
ontrol 
ow hija
king atta
ks and the PD-
Requires-Provides model for exploits. Both of these mod-
els take a \from-the-ar
hite
ture-up" view of the system in
whi
h 
ontext swit
hes and interpro
ess 
ommuni
ation are
simply physi
al transfers of data in registers and memory.
We have developed a tool 
alled DACODA that analyzes

atta
ks using full-system symboli
 exe
ution [22℄ on every
ma
hine instru
tion. In this paper, we use DACODA for a
detailed, quantitative analysis of 14 real exploits. DACODA
tra
ks data from the atta
ker's network pa
kets to the hi-
ja
king of 
ontrol 
ow and dis
overs strong, expli
it equality
predi
ates about the exploit ve
tor; strong, expli
it equality
predi
ates are predi
ates that show equality between labeled
data and an integer that are due to an expli
it equality 
he
k
by the proto
ol implementation on the atta
ked ma
hine
using a 
omparison instru
tion followed by a 
onditional in-
stru
tion (typi
ally a 
onditional jump). Using Minos [13℄
as an ora
le for 
at
hing atta
ks, DACODA honeypots have
been analyzing atta
ks exploiting vulnerabilities unknown
to Minos or DACODA with zero observed false positives for
the past six months. More details on DACODA's operation
are in Se
tion 3.

1.3 Related Work
The details of the Epsilon-Gamma-Pi model are in an-

other paper [14℄ and will be summarized in Se
tion 2. For

ategorizing related work in this se
tion we will only state
here that, in simple terms, � maps the exploit ve
tor from
the atta
ker's network pa
kets onto the tra
e of the ma
hine
being atta
ked before 
ontrol 
ow hija
king o

urs, 
 maps
the bogus 
ontrol data used for hija
king 
ontrol 
ow (su
h

as the bogus return pointer in a sta
k-based bu�er over
ow
atta
k), and � maps the payload exe
uted after 
ontrol 
ow
has been hija
ked.

1.3.1 Vulnerability Specificity
Vigilante [10,11℄ 
aptures worms with a me
hanism simi-

lar to Minos [13℄, but based on binary rewriting of a single
pro
ess, and uses dynami
 data
ow analysis to generate a
vulnerability signature. The basi
 idea proposed in Costa
et al. [10℄ is to replay the exe
ution with an in
reasingly
larger suÆx of the log and 
he
k for the error 
ondition.
Binary rewriting of a single pro
ess does not 
apture in-
terpro
ess 
ommuni
ation, inter-thread 
ommuni
ation, or
any data pro
essing that o

urs in kernel spa
e. It also
modi�es the address spa
e of the pro
ess being analyzed,
whi
h has the potential of breaking the exploit in its early
stages [3℄. DACODA is a full-system implementation and
does not modify the system being analyzed. Another im-
portant distin
tion of DACODA is that, be
ause it is based
on the Epsilon-Gamma-Pi model, DACODA's symboli
 exe-

ution helps distinguish between what data looks like on the
network and what it looks like at various stages of pro
ess-
ing on the host. En
odings su
h as UNICODE en
odings or
string to integer 
onversion 
annot be 
aptured by simply

omparing I/O logs to TCP dumps.
TaintChe
k [29℄ is also based on binary rewriting of a sin-

gle pro
ess and proposed dynami
 sli
ing te
hniques as fu-
ture work to generate vulnerability-spe
i�
 signatures. DA-
CODA is based on symboli
 exe
ution of every ma
hine in-
stru
tion in the entire system. For RIFLE [41℄ an Itanium
ar
hite
ture simulator was augmented with data
ow analy-
sis 
apabilities similar to DACODA, without predi
ate dis-

overy, but the aim was to enfor
e 
on�dentiality poli
ies
while DACODA's aim is to analyze worm exploits.
Newsome et. al. [28℄ proposed three types of signatures

based on tokens. These tokens 
an be ordered or asso
i-
ated with s
ores. Polygraph, unlike EarlyBird [37℄, Auto-
graph [21℄, or Honey
omb [24℄, does not automati
ally 
ap-
ture worms but instead relies on a 
ow 
lassi�er to sort
worm traÆ
 from benign traÆ
 with reasonable a

ura
y.
The invariant bytes used for tokens were typi
ally from ei-
ther proto
ol framing (�) or the bogus 
ontrol data (
). It
was suggested that the 
ombination of these 
ould produ
e a
signature with a good false positive and false negative rate.
Proto
ol framing des
ribes a valid part of a proto
ol, su
h as
\HTTP GET" in HTTP. Also, 
 permits too mu
h polymor-
phism a

ording to our analysis of exploits 
aught by Minos
honeypots [14℄, due to register springs.
Register springs are a te
hnique whereby the bogus fun
-

tion pointer or return pointer overwritten by a bu�er over-

ow points to an instru
tion in a library (or the stati
 pro-
gram) that is a jump or 
all to a register pointing into
the bu�er 
ontaining �. Newsome et. al. [28℄ 
orre
tly
states that for register springs to be stable the address
must be 
ommon a
ross multiple Windows versions and 
ites
Code Red as an example, but Code Red and Code Red II
used an address whi
h was only e�e
tive for Windows 2000
with Servi
e Pa
k 1 or no servi
e pa
ks (the instru
tion at
0x7801
bd3 disassembles to \CALL EBX" only for msv
rt.dll
version 6.10.8637 [33℄). Even with this limitation Code Red
and Code Red II were su

essful by worm standards, so the
hundreds or sometimes thousands of possible register springs
typi
al of Windows exploits 
annot be ignored.



One 
urrent limitation of DACODA is performan
e. Our
Bo
hs-based implementation of DACODA a
hieves on the
order of hundreds of thousands of instru
tions per se
ond
on a 3.0 GHz Pentium 4 with an 800 MHz front side bus.
Memory bandwidth is the limiting fa
tor, and DACODA
barely a
hieves good enough performan
e to be infe
ted by
a worm on a 2.8 GHz Pentium 4 with a 533 MHz front side
bus. All that really is required to dete
t the atta
k is Minos
[13℄, whi
h would have virtually no overhead in a hardware
implementation and 
ould possibly have performan
e within
an order of magnitude of native exe
ution if implemented on
a higher performan
e emulator su
h as QEMU [51℄. After
Minos dete
ted an atta
k DACODA 
ould be invoked by
replaying either the TCP traÆ
 [19,20℄ or the entire atta
k
tra
e [16℄.

1.3.2 Modeling Polymorphism
Ideas similar to our PD-Requires-Provides model for ex-

ploit polymorphism and metamorphism are presented in Ru-
bin et. al. [34, 35℄. The PD-Requires-Provides model is at
a mu
h lower level of abstra
tion. Rubin et. al. [34, 35℄ do
not distinguish between what the exploit looks like on the
network and what it looks like when it is pro
essed on the
host, as our Epsilon-Gamma-Pi model does. These works
were also intended for generating exploits based on known
vulnerabilities and not for analyzing zero-day exploits to de-
rive prote
tion for unknown vulnerabilities. A more re
ent
work [44℄ generates vulnerability-spe
i�
 signatures for un-
known exploits but requires a detailed spe
i�
ation of the
proto
ol that the exploit uses (su
h as SMB or HTTP). DA-
CODA needs no spe
i�
ation be
ause of symboli
 exe
ution,
at the 
ost of not having a full spe
i�
ation against whi
h
to model 
he
k signatures.
In Dreger et. al. [15℄ host-based 
ontext was used to en-

han
e the a

ura
y of network-based intrusion dete
tion but
this was done from within the Apa
he HTTP server appli-

ation. Pta
ek and Newsham [32℄ 
over some of the same
ideas as we do but within the 
ontext of network evasion
of network intrusion dete
tion systems. Christodores
u and
Jha [7℄ looked at polymorphism of viruses with examples
from real viruses, but polymorphi
 virus dete
tion and poly-
morphi
 worm dete
tion are two di�erent problems; a worm
needs to be able to hija
k 
ontrol 
ow of remote hosts be-

ause worms use the network as their main medium of in-
fe
tion.

1.3.3 Polymorphic Worm Detection
Many resear
hers have studied polymorphi
 te
hniques

and dete
tion me
hanisms in � [1, 6, 8, 23, 25, 31, 40℄. Sev-
eral of the me
hanisms whi
h have been proposed are based
on the existen
e of a NOP sled whi
h simply is not appli-

able to Windows exploits, nearly all of whi
h use regis-
ter springs [14℄. The exe
utable 
ode itself 
ould be made
polymorphi
 and metamorphi
 with respe
t to probably any
signature s
heme if we are to 
onsider the relatively long
history of polymorphi
 
omputer viruses [38℄. Other works
have fo
used ex
lusively on 
 [30℄ whi
h 
an be polymorphi

be
ause there are usually hundreds or even thousands of dif-
ferent register springs an atta
ker might use [14℄. We have
argued in another paper [14℄ that � and 
 permit too mu
h
polymorphism, motivating a 
loser look at � instead. The
fo
us of this paper is on polymorphism and metamorphism
of �. Other papers have fo
used on � [10,28,34,35,43,44℄, all

Figure 1: The Epsilon-Gamma-Pi Model.

of whi
h have already been dis
ussed in this se
tion ex
ept
for Shield [43℄. Shields are a host-based solution whi
h are
an alternative to pat
hes. They are vulnerability-spe
i�

but only for known vulnerabilities.

1.3.4 Our Main Contributions
The main distin
tion of our work is that we fo
us on un-

known vulnerabilities and use models based on our experi-
en
e with analyzing 14 real exploits to give a detailed and
quantitative analysis of polymorphism and metamorphism
for the exploit ve
tor mapped by �. Our main 
ontributions
are 1) a tool for whole-system symboli
 exe
ution of remote
exploits, 2) quantitative data on the amount of polymor-
phism available in � for 14 a
tual exploits, whi
h also shows
the importan
e of whole-system analysis, and 3) a model for
understanding polymorphism and metamorphism of �. A
-
tual generation of vulnerability-spe
i�
 signatures with low
false positive and false negative rates is left for future work.

1.4 Structure of the Paper
The rest of the paper is stru
tured as follows. Se
tion 2

summarizes the Epsilon-Gamma-Pi model for 
ontrol 
ow
hija
king atta
ks from past work [14℄, followed by Se
tion 3,
whi
h details how DACODA generated the results from ana-
lyzing real exploits that are in Se
tion 4. The PD-Requires-
Provides model is des
ribed in Se
tion 5 to help understand
polymorphism and metamorphism. After dis
ussing future
work in Se
tion 6, we give our 
on
lusions about byte string
signature s
hemes and host-based semanti
 analysis.

2. THE EPSILON-GAMMA-PI MODEL
The Epsilon-Gamma-Pi model [14℄ is a model of 
ontrol


ow hija
king atta
ks based on proje
ting the atta
ker's net-
work pa
kets onto the tra
e of the ma
hine being atta
ked.
The row spa
e of a proje
tion is the network data that is
relevant to that proje
tion, while the range of a proje
tion
is the physi
al data used by the atta
ked ma
hine for 
on-
trol 
ow de
isions. The Epsilon-Gamma-Pi model 
an avoid

onfusion when, for example, the row spa
e of 
 for Code
Red II is UNICODE en
oded as \0x25 0x75 0x62 0x63
0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31" 
oming over
the network but stored in little-endian format in the range
of 
 as the a
tual bogus Stru
tured Ex
eption Handling



(SEH) pointer \0xd3 0x
b 0x01 0x78". These en
odings
of 0x7801
bd3 are 
aptured by 
.
The mappings of a parti
ular exploit are 
hosen by the

atta
ker but 
onstrained by the proto
ol as implemented
on the atta
ked ma
hine. A single proje
tion is spe
i�
 to
an exploit, not to a vulnerability. A vulnerability 
an be
thought of as a set of proje
tions for � that will lead to

ontrol 
ow hija
king, but the term vulnerability may be
too subje
tive to de�ne formally. Sometimes vulnerabilities
are a 
ombination of program errors, su
h as the ASN.1
Library Length Heap Over
ow vulnerability [52, bid 9633℄
whi
h was a 
ombination of two di�erent integer over
ows.
We 
an say that a system is vulnerable to a remote 
ontrol

ow hija
king atta
k if there exists any 
ombination of IP
pa
kets that 
ause bogus 
ontrol 
ow transfer to o

ur.
The proje
tion � maps network data onto 
ontrol 
ow de-


isions before 
ontrol 
ow hija
king takes pla
e, while 

maps the bogus 
ontrol data itself during 
ontrol 
ow hi-
ja
king and � typi
ally maps the atta
ker's payload 
ode
that is dire
tly exe
uted after 
ontrol 
ow is hija
ked. In
simple terms, � maps the exploit ve
tor, 
 maps the bogus

ontrol data, and � maps the payload 
ode as illustrated by
Figure 1.

2.1 Polymorphism and Metamorphism
The Epsilon-Gamma-Pi model also provides useful ab-

stra
tions for understanding polymorphism and metamor-
phism. Worm signature generation with any parti
ular te
h-
nique 
an be seen as a 
hara
terization of one or more of the
three mappings possibly 
ombined with information about
the atta
k tra
e on the infe
ted host. Polymorphism and
metamorphism seek to prevent this 
hara
terization from
enabling the worm defense to distinguish the worm from
other traÆ
 as it moves over the network. In the extreme
the atta
ker must, for di�erent infe
tions, 
hange these three
mappings and the atta
k tra
e on the infe
ted ma
hine
enough so that knowledge about the atta
k tra
e and 
har-
a
terizations of the three mappings 
annot permit identi-
�
ation of the worm with a low enough error rate to stop
the worm from attaining its obje
tive. In pra
ti
e, however,
the bene�t of surprise goes to the atta
ker, and polymor-
phism and metamorphism will be with respe
t to some spe-

i�
 dete
tion me
hanism that has a
tually been deployed.
Polymorphism 
hanges bytes in the row spa
es of the three
proje
tions without 
hanging the mappings, while metamor-
phism uses di�erent mappings ea
h time. Unless otherwise
stated, in this paper a signature is a set of byte strings (pos-
sibly ordered) that identify the worm, and polymorphism
and metamorphism are with respe
t to this set of strings.
The Epsilon-Gamma-Pi model is more general than byte
string signatures, however. One of the main results of this
paper is that simple byte string mat
hing, even for sets of
small strings or regular expressions, 
an be inadequate for
worm 
ontent �ltering for realisti
 vulnerabilities.

2.2 Motivation for the Model
The Epsilon-Gamma-Pi model is general enough to han-

dle realisti
 atta
ks that do not follow the usual pro
ession
of opening a TCP 
onne
tion, adhering to some proto
ol
through the exploit ve
tor phase until 
ontrol 
ow is hi-
ja
ked, and then exe
uting the payload in the thread that
was exploited. IP pa
kets in the Epsilon-Gamma-Pi model
and in the DACODA implementation are raw data subje
t

to interpretation by the host, sin
e \information only has
meaning in that it is subje
t to interpretation" [9℄, a fa
t
that is at the heart of understanding viruses and worms.
An atta
ker might use an arbitrary write primitive in one
thread to hija
k the 
ontrol 
ow of another, or hija
k the

ontrol 
ow of the thread of a legitimate user.
Using symboli
 exe
ution, DACODA is able to dis
over

strong, expli
it equality predi
ates about �. Spe
i�
ally,
DACODA dis
overs the mapping � and also 
an use 
on-
trol 
ow de
isions predi
ated expli
itly on values from the
range of � to dis
over predi
ates about the bytes of network
traÆ
 from whi
h the values were proje
ted (the row spa
e
of �). These predi
ates 
an be used for signature generation,
but in this paper we use DACODA to 
hara
terize � quan-
titatively for a wide variety of exploits. This quantitative
analysis plus our experien
es with analyzing a
tual exploit
ve
tors serve as a guide towards future work in this area.
For all three proje
tions, DACODA tra
ks the data 
ow

of individual bytes from the network pa
kets to any point of
interest. Thus it also is helpful in answering queries about
where the payload 
ode 
omes from or how the bogus 
ontrol
data is en
oded within the network traÆ
.

2.3 The Need for an Oracle
To distinguish �, 
, and �, and also to provide the anal-

ysis in a timely manner, DACODA needs an ora
le to raise
an alert when bogus 
ontrol 
ow transfer has o

urred. For
the 
urrent implementation we use Minos [13℄ as an ora-

le to 
at
h low-level 
ontrol data atta
ks. Minos is basi-

ally based on taint
he
king to dete
t when data from the
network is used as 
ontrol data. Thus it does not 
at
h
atta
ks that hija
k 
ontrol 
ow at a higher level abstra
-
tion than low-level exe
ution, su
h as the Santy worm or
the atta
ks des
ribed in Chen et. al. [5℄, but DACODA is
equally appli
able to any 
ontrol 
ow hija
king atta
k. For
example, in an atta
k where the �lename of a �le to be ex-
e
uted, su
h as \/usr/bin/
ounters
ript", is overwritten
with \/bin/sh" then exe
uted yielding a shell, � would map
the exploit ve
tor leading to the overwrite, 
 would map the
string \/bin/sh", and � would map the 
ommands exe
uted
on
e the shell was obtained. Minos will not 
at
h this atta
k
but DACODA will still provide an analysis given the proper
ora
le. Any worm that spreads from host to host must hi-
ja
k 
ontrol 
ow of ea
h host at one level of abstra
tion or
another.

3. HOW DACODA WORKS
DACODA is 
urrently being emulated in a full-system

Pentium environment based on the Bo
hs emulator [46℄.
When a network pa
ket is read from the Ethernet devi
e
every byte of the pa
ket is labeled with a unique integer.
Reading the pa
ket o� the Ethernet is the last 
han
e to
see all bytes of the pa
ket inta
t and in order, be
ause the
NE2000 driver often reads parts of pa
kets out of order.
During its lifetime this labeled data will be stored in

the NE2000 devi
e's memory pages, read into the pro
essor
through port I/O, and moved and used in 
omputation by
various kernel- and user-spa
e threads and pro
esses. DA-
CODA will tra
k the data through all of this and dis
over
equality predi
ates every time the labeled data or a sym-
boli
 expression is expli
itly used in a 
onditional 
ontrol

ow transfer. Symboli
 exe
ution o

urs in real-time so that
when an ora
le (Minos [13℄ in the 
urrent implementation)



Explanation C++-like Pseudo-
ode
MakeNewQuadMem() is used Expression *MakeNewQuadMem(Addr)
for reading four bytes of FirstByte = ReadMemByteExpr(Addr);
memory and making a if (FirstByte!IsAQuadExpr()) return FirstByte;
QuadExpression from them, else return new QuadExpr(
unless we �nd that the ReadMemByteExpr(Addr + 0)
memory word already , ReadMemByteExpr(Addr + 1)

ontains a QuadExpression. , ReadMemByteExpr(Addr + 2)

, ReadMemByteExpr(Addr + 3));
MakeNewQuadRegister() is the Expression *MakeNewQuadRegister(Index)
same as MakeNewQuadMem() FirstByte = ReadRegisterByteExpr(Index, 0);
but for 32-bit register reads. if (FirstByte!IsAQuadExpr()) return FirstByte;

else return new QuadExpr(
ReadRegisterByteExpr(Index, 0)
, ReadRegisterByteExpr(Index, 1)
, ReadRegisterByteExpr(Index, 2)
, ReadRegisterByteExpr(Index, 3));

WriteQuadMem() stores a void WriteQuadMem(Addr, Expr)
QuadExpression in a way WriteMemByteExpr(Addr + 0, Expr);
that MakeNewQuadMem() WriteMemByteExpr(Addr + 1, NULL);

an �nd it. WriteMemByteExpr(Addr + 2, NULL);

WriteMemByteExpr(Addr + 3, NULL);
WriteQuadRegister() is the void WriteQuadRegister(Index, Expr)
same as WriteQuadMem() but WriteRegisterByteExpr(Index, 0, Expr);
for 32-bit register writes. WriteRegisterByteExpr(Index, 1, NULL);

WriteRegisterByteExpr(Index, 2, NULL);
WriteRegisterByteExpr(Index, 3, NULL);

MakeNewQuadConstant() Expression *MakeNewQuadConstant(0xAABBCCDD)
simply uses bit masks and return new QuadExpression(
shifts to split the 32-bit new Constant(0xAA)

onstant into 4 8-bit , new Constant(0xBB)

onstants. , new Constant(0xCC)

, new Constant(0xDD));

Table 1: How QuadExpressions are Handled.

determines that 
ontrol 
ow has been hija
ked, DACODA
simply summarizes the results of its analysis.
As an example, suppose a byte of network traÆ
 is labeled

with \Label 1832" when it is read from the Ethernet 
ard.
This label will follow the byte through the NE2000 devi
e
into the pro
essor where the kernel reads it into a bu�er.
Suppose the kernel 
opies this byte into user spa
e and a
user pro
ess moves it into the AL register, adds the integer
4 to it, and makes a 
ontrol 
ow transfer predi
ated on the
result being equal to 10.

mov al,[AddressWithLabel1832℄
; AL.expr <- (Label 1832)

add al,4
; AL.expr <- (ADD AL.expr 4)
; /* AL.expr == (ADD (LABEL 1832) 4) */


mp al,10
; ZFLAG.left <- AL.expr
; /* ZFLAG.left == (ADD (Label 1832) 4) */
; ZFLAG.right <- 10

je JumpTargetIfEqualToTen
; P <- new Predi
ate(EQUAL ZFLAG.left ZFLAG.right)
; /* P == (EQUAL (ADD (Label 1832) 4) 10) */
; if (ZF == 1) AddToSetOfKnownPredi
ates(P);
; /* Dis
over predi
ate if equality bran
h taken */

This illustrates how DACODA will dis
over the predi
ate
(in pre�x notation), \(EQUAL (ADD (Label 1832) 4) 10)".
This predi
ate from the range of � 
an be used to infer a
predi
ate about the row spa
e of �: that the byte that was
labeled with \Label 1832" is equal to 6.
For 16- or 32-bit operations DACODA 
on
atenates the

labels for two or four bytes into a DoubleExpression or a
QuadExpression, respe
tively. We de�ne a strong, expli
it
equality predi
ate to be an equality predi
ate that is exposed
be
ause of an expli
it 
he
k for equality. Thus a 
omparison

of an unsigned integer that yields the predi
ate that the
integer is less than 1 is not expli
it and will not be dis
overed
by DACODA (though it implies that this integer is equal to
0).
DACODA also dis
overs equality predi
ates when a la-

beled byte or symboli
 expression is used as a jump or 
all
target, whi
h is 
ommon in 
ode 
ompiled for C swit
h state-
ments and is how DACODA is able to dete
t important
predi
ates su
h as the �rst data byte in the UDP pa
ket
of the Slammer worm, \0x04", the only real signature this
atta
k has. When a symboli
 expression is used in an ad-
dress for an 8- or 16-bit load or store operation the address
be
omes part of the symboli
 expression of the value loaded
or stored (a Lookup expression is 
reated whi
h en
apsu-
lates both the value and the address used to load or store
it). This type of information 
ow is important for tra
king
operations su
h as the ASCII to UNICODE 
onversion of
Code Red II.
There are six kinds of expressions: Labels, Constants,

DoubleExpressions, QuadExpressions, Lookups, and Opera-
tions. Every byte of the main physi
al memory, the general
purpose registers, and the NE2000 
ard's memory are asso-

iated with an expression, whi
h 
an be NULL. The Zero
Flag (ZF) is used by the Pentium for indi
ating equality or
inequality. We asso
iate two expressions with ZF, left and
right, to store the expressions for the last two data that were

ompared. ZF 
an also be set by various arithmeti
 instru
-
tions but only expli
it 
omparison instru
tions set the left
and right pointers in our implementation. These pointers
be
ome an equality predi
ate if any instru
tion subsequently

he
ks ZF and �nds it to be set.
Table 2 summarizes all of the various rules about how

DACODA propagates expressions and dis
overs predi
ates.



Explanation Assembly Example What DACODA Does in C++-like Pseudo-
ode
Moves from register mov edx,[ECX℄ WriteRegisterByteExpr(INDEXOFEDX, 0, ReadMemByteExpr(e
x+0));
to memory, memory to WriteRegisterByteExpr(INDEXOFEDX, 1, ReadMemByteExpr(e
x+1));
register, or register WriteRegisterByteExpr(INDEXOFEDX, 2, ReadMemByteExpr(e
x+2));
to register just 
opy WriteRegisterByteExpr(INDEXOFEDX, 3, ReadMemByteExpr(e
x+3));
the expressions for
the bytes moved. The mov al,bh WriteRegisterByteExpr(INDEXOFEAX, 0,
same applies to ReadRegisterByteExpr(INDEXOFEBX, 1));
PUSHEs and POPs.

mov [EBP+10℄,
l WriteMemByteExpr(ebp+10, ReadRegisterByteExpr(INDEXOFECX, 0));
8- and 16-bit lookups mov dx,[ECX℄ DoubleExprFromMem = MakeNewDoubleMem(e
x);

arry their addresses AddrResolved = MakeNewDoubleRegister(INDEXOFECX);
with them. Without ExprForDX = new Lookup(AddrResolved, DoubleExprFromMem);
this the 0x7801
bd3 WriteDoubleRegister(INDEXOFEDX, ExprForDX);
bogus SEH pointer of
Code Red II would
have no expression.
Jumps or 
alls to mov edx,[EBP+��fbf4℄ ExprForEDX = MakeNewQuadMem(ebp+0x��fbf4);
addresses that have WriteQuadRegister(INDEXOFEDX, ExprForEDX);
non-NULL expressions
imply an equality jmp [42
fa23b+EDX<<2℄ AddrResolved = new Operation(\ADD",
predi
ate on that MakeNewQuadConstant(0x42
fa23b),
expression; needed new Operation(\SHR", MakeNewQuadRegister(INDEXOFEDX),

new Constant(2)));
for Slammer. AddToListOfKnownPredi
ates(\EQUAL", AddrResolved,

MakeNewQuadConstant(0x42
fa23b+edx<<2));
Strong, expli
it equality 
mp edx,[ESI℄ ZFLAG.left = MakeNewQuadRegister(INDEXOFEDX);
predi
ates are dis
overed ZFLAG.right = MakeNewQuadMem(esi);
when a CMP, CMPS, if ((ZFLAG.right != NULL) &&
SCAS, or TEST instru
tion (ZFLAG.left == NULL)) ZFLAG.left = new Constant(edx);
is followed by any if ((ZFLAG.left != NULL) &&
instru
tion that 
he
ks (ZFLAG.right == NULL)) ZFLAG.right = new Constant([esi℄);
the Zero Flag (ZF) and
ZF indi
ates equality. je 7123ab
d P = new Predi
ate(\EQUAL", ZFLAG.Left, ZFLAG.Right);
Examples are 
onditional if (ZF == 1 && ((ZFLAG.Left != NULL) jj (ZFLAG.Right != NULL)))
equality jumps su
h as AddToListOfKnownPredi
ates(P);
JE, 
onditional moves,
or \REP SCAS".
Operations su
h as ADDs, add eax,[EBX℄ WriteQuadRegister(INDEXOFEAX, new Operation(
other arithmeti
 operations, \ADD", MakeNewQuadRegister(INDEXOFEAX),
bit shifts, or logi
al bit MakeNewQuadMem(ebx));
operations simply 
reate
a new Operation expression shr eax,3 WriteQuadRegister(INDEXOFEAX, new Operation(
whi
h 
an be written into \SHR", MakeNewQuadRegister(INDEXOFEAX),
the slot for QuadExpressions new Constant(3));
and will be en
apsulated as
a QuadExpression the next mov [ECX℄,eax WriteQuadMem(e
x,
time it is read. The same MakeNewQuadRegister(INDEXOFEAX));
applies to DoubleExpressions,
and 8-bit operations are
straightforward.

Table 2: Spe
ial Rules and Example Instru
tions.

Exploit OS Port(s) Class bid [52℄ Vulnerability Dis
overy
LSASS (Sasser) Windows XP 445 TCP Bu�er Over
ow 10108 eEye
DCOM RPC (Blaster) Windows XP 135 TCP Bu�er Over
ow 8205 Last Stage of Delirium
Workstation Servi
e Windows XP 445 TCP Bu�er Over
ow 9011 eEye
RPCSS Windows Whistler 135 TCP Bu�er Over
ow 8459 eEye
SQL Name Resolution (Slammer) Windows Whistler 1434 UDP Bu�er Over
ow 5311 David Lit
h�eld
SQL Authenti
ation Windows Whistler 1433 TCP Bu�er Over
ow 5411 Dave Aitel
Zotob Windows 2000 445 TCP Bu�er Over
ow 14513 Neel Mehta
IIS (Code Red II) Windows Whistler 80 TCP Bu�er Over
ow 2880 eEye
wu-ftpd Format String RedHat Linux 6.2 21 TCP Format String 1387 tf8
rp
.statd (Ramen) RedHat Linux 6.2 111 & 918 TCP Format String 1480 Daniel Ja
obiwitz
innd RedHat Linux 6.2 119 TCP Bu�er Over
ow 1316 Mi
hael Zalewski
Apa
he Chunk Handling (S
alper) OpenBSD 3.1 80 TCP Integer Over
ow 5033 N. Mehta, M. Lit
h�eld
ntpd FreeBSD 4.2 123 TCP Bu�er Over
ow 2540 Przemyslaw Frasunek
Turkey ftpd FreeBSD 4.2 21 TCP O�-by-one B.O. 2124 S
rippie

Table 3: Exploits Analyzed by DACODA.



Table 1 shows how QuadExpressions are handled. A more
straightforward way to handle QuadExpressions would be to
pla
e a pointer to the QuadExpression into all four bytes'
expressions for that 32-bit word and let the index of ea
h
byte determine whi
h of the four bytes in the QuadExpres-
sion it should referen
e, whi
h is how DoubleExpressions are
handled. For QuadExpressions, however, this 
auses numer-
ous performan
e and memory 
onsumption problems. The
s
heme in Table 1 is more eÆ
ient but may drop some in-
formation if, for example, a QuadExpression is written to a
register, then a labeled byte is written into a higher order
byte of that register, and then the QuadExpression is read
from the register. From our experien
e su
h 
ases should be
extremely rare, and it would be relatively straightforward to
�x but Table 1 is the implementation used to generate the
results in Se
tion 4.

4. EXPLOITS ANALYZED BY DACODA
This se
tion will summarize the results produ
ed by DA-

CODA, detail Code Red II as a 
on
rete example, and then
enumerate 
omplexities, 
hallenges, and fa
ts worth noting
about the exploits analyzed. We adopt the idea of tokens
from Polygraph [28℄ and 
onsider a byte to be tokenizable if
DACODA dis
overs some strong, expli
it equality predi
ate
about it.

4.1 Summary
Table 3 summarizes the exploits that DACODA has an-

alyzed. All of the Windows exploits ex
ept one (SQL Au-
thenti
ation) were a
tual atta
ks or worms from the Internet
to DACODA honeypots, while all others were performed by
the authors. Identifying the pa
kets involved in ea
h atta
k
was done manually by inspe
tion of the dumped network
traÆ
. Sin
e all pa
kets for ea
h atta
k were either UDP or
TCP we used a summary algorithm that used knowledge of
these proto
ols so that the results 
ould remain more intu-
itive by not in
luding predi
ates about the transport layer
proto
ol header, unless they also in
lude labeled bytes from
a data �eld (su
h as what happens in reverse DNS lookups).
When DACODA dis
overs a predi
ate, the Current Priv-

ilege Level (CPL) of the pro
essor is 
he
ked to determine
whether the predi
ate is dis
overed while running kernel-
spa
e 
ode or while running user-spa
e 
ode. These results
are presented in Table 4. The CR3 register in the Pentium
is used to index the base of the page table of the 
urrent
task and is therefore a satisfa
tory repla
ement for a pro-

ess ID (PID). Table 4 also shows the results generated by
DACODA as to how many di�erent pro
esses are involved
in predi
ate dis
overy and are therefore an integral part of
understanding the atta
k. This table in
ludes not only 
on-
ventional pro
esses but also pro
esses that run only in kernel
spa
e su
h as the Windows SYSTEM pro
ess.
Table 5 summarizes the results from preliminary, naive

signature generation using DACODA. Note that we make
no strong 
laims as to DACODA's 
ompleteness be
ause it
is possible that a byte may have a strong equality predi
ate
that is not due to an expli
it 
he
k for equality. It is also
possible that tokens dis
overed by DACODA are not really
invariant for various reasons des
ribed later in this se
tion.
Also, multiple bytes may be involved with a single predi
ate
and a single byte may be involved with multiple predi
ates,
so there is not a one-to-one relationship between bytes and
predi
ates. Surprisingly, some predi
ates are repeated su
h

as the \GET" token from Code Red II whi
h is 
he
ked four
times in four di�erent pla
es by the IIS web server. The
numbers for predi
ates and tokens are provided here as an
approximation to get a sense of the design spa
e and may
vary slightly from the true invariant signatures for these
exploits. The format for Table 5 is su
h that \3(18)" means
that there are three tokens that are 18 bytes in length.
Validation of the results was done, to the extent possible,

by 
omparing the results to our knowledge of the exploits
and the proto
ols involved.

4.2 Code Red II as a Concrete Example
The UNICODE en
oding of the bogus Stru
tured Ex
ep-

tion Handling pointer and payload are 
aptured by DA-
CODA's symboli
 expressions, as is the fa
t that the row
spa
es and ranges of �, 
, and � are not disjoint sets of
bytes. DACODA also shows that the exploit ve
tor permits
a great deal of polymorphism.
The exploit ve
tor for Code Red II is a GET request:

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX%u9090%u6858%u
bd3%u7801
%u9090%u6858%u
bd3%u7801%u9090%u6858%u
bd3
%u7801%u9090%u9090%u8190%u00
3%u0003%u8b00
%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0\x0d\n.

DACODA dis
overs strong equality predi
ates
for the tokens \GETnx20/", \.ida?", the UNI-
CODE tokens \%u", spa
es, new line 
hara
ters, and
\%u00=anx20,HTTP/1.0nx0dnn". Only a single \%u" is
ne
essary to 
ause ASCII to UNICODE 
onversion and
over
ow the bu�er. The \.ida" �le 
an have any �lename,
real or not, and 
an also end with \.idq". Thus the
following is a valid exploit ve
tor for the same vulnerability:

GET /notarealfile.idq?UOIRJVFJWPOIVNBUNIVUWIF
OJIVNNZCIVIVIGJBMOMKRNVEWIFUVNVGFWERIOUNVUNWI
UNFOWIFGITTOOWENVJSNVSFDVIRJGOGTNGTOWGTFGPGLK
JFGOIRWTPOIREPTOEIGPOEWKFVVNKFVVSDNVFDSFNKVFK
GTRPOPOGOPIRWOIRNNMSKVFPOSVODIOREOITIGTNJGTBN
VNFDFKLVSPOERFROGDFGKDFGGOTDNKPRJNJIDH%u1234D
SPPOITEBFBWEJFBHREWJFHFRG=bla HTTP/1.0\x0d\n.

Though it 
ontains no real bogus 
ontrol data or payload,
it will 
ause the bogus 
ontrol 
ow transfer to o

ur (from
the return pointer, not the SEH pointer in this 
ase). The

urrent DACODA implementation treats all operations as
uninterpreted fun
tions so there is one spurious tokeniza-
tion for this exploit, the one that in
ludes \00=a", whi
h
should be just \=". This is be
ause the \=" 
hara
ter is
lo
ated by bit shifts instead of dire
t addressing, and DA-
CODA 
annot determine that the other three 
hara
ters are
dropped before the expli
it equality 
he
k without semanti

information about the bit shifts. This is the only example of
su
h a problem with uninterpreted fun
tions we dis
overed.

4.3 Complexities and Challenges
This se
tion dis
usses some of the fa
ts that must be taken

into a

ount when designing an automated worm analysis
te
hnique for deriving prote
tion for an unknown vulnera-
bility from a zero-day polymorphi
 and metamorphi
 worm
exploit.



Exploit Name Total Kernel-spa
e User-spa
e Pro
esses Multiple
Predi
ates Predi
ates Predi
ates Involved Threads

LSASS 305 223 82 SYSTEM and lsass.exe Yes
DCOM RPC 120 0 120 sv
host.exe Yes
Workstation Servi
e 286 181 105 SYSTEM, sv
host.exe, Yes

??, ??, and lsass.exe
RPCSS 38 2 36 SYSTEM and sv
host.exe Yes
SQL Name Res. (Slammer) 1 0 1 SQL Server Yes
SQL Authenti
ation 7 0 7 SQL Server Yes
Zotob 271 177 94 SYSTEM, servi
es.exe, and ?? Yes
IIS (Code Red II) 107 0 107 IIS Web Server No
wu-ftpd Format String 2288 0 2288 wu-ftpd No
rp
.statd 44 0 44 portmap and rp
.statd No
innd 329 41 288 innd and nnrpd No
Apa
he Chunk Handling 3499 4 3495 httpd No
ntpd 17 0 17 ntpd No
Turkey 347 98 249 ftpd No

Table 4: Where exploits are dis
overed.

Exploit Name Longest Token Token length histogram as \Number(Size in bytes)"
LSASS 36 1(36),1(34),3(18),2(14),1(12),5(9),5(8),2(5),15(4),2(3),39(2),19(1)
DCOM RPC 92 1(92),1(40),1(20),2(18),1(14),5(8),15(4),2(3),13(2),8(1)
Workstation Servi
e 23 1(23),5(18),1(16),2(14),1(12),4(10),8(8),1(6),5(5),8(4),1(3),42(2),22(1)
RPCSS 18 2(18),2(8),5(4),9(2),8(1)
SQL Name Res. (Slammer) 1 1(1)
SQL Authenti
ation 4 3(4),3(1)
Zotob 36 1(36),1(34),2(18),1(16),1(14),1(12),2(8),3(5),11(4),2(3),32(2),6(1)
IIS (Code Red II) 17 1(17),3(5),23(2),1(1)
wu-ftpd Format String 283 4(283),4(119),4(11),1(10),1(9),1(6),4(5),3(4),4(3),10(2),41(1)
rp
.statd 16 2(16),1(8),2(4),10(2),13(1)
innd 27 1(27),1(21),1(13),1(11),2(10),2(9),2(6),6(5),9(4),12(3)
Apa
he Chunk Handling 32 1(32),24(13),23(11),1(8),1(6),2(5),1(3),3(2),3(1)
ntpd 8 1(8),2(4),2(2)
Turkey 21 2(21),1(12),2(6),6(5),16(4),23(2),14(1)

Table 5: Signature Tokens.



4.3.1 Processing of Network Data in the Kernel
The most salient feature of the LSASS exploit is the

amount of proto
ol that the atta
k must traverse through
in the kernel itself before it even is able to rea
h the
vulnerable pro
ess, lsass.exe, through the named pipe
\nnPIPEnlsarp
". For a step-by-step explanation of the
LSASS exploit see the eEye advisory [48℄. The Windows ker-
nel spa
e 
ontains a great deal of exe
utable 
ode that han-
dles network traÆ
 in
luding Transport Devi
e Interfa
es
(TDIs), Remote Pro
edure Calls (RPC), An
illary Fun
tion
Driver File System Drivers (AFD FSDs), Named Pipe FSDs,
Mailslot FSDs, NetBIOS emulation drivers, and more [36℄.
Today, even HTTP requests are being pro
essed in the ker-
nel spa
e with a network driver 
ontained in IIS 6.0 [2℄. Thus
atta
k analysis must in
lude the kernel.
Furthermore, it is not ne
essary for a remote exploit to

ever involve a user-spa
e pro
ess. A remote memory 
or-
ruption vulnerability in the kernel may allow an atta
ker
to exe
ute arbitrary 
ode dire
tly in \CPL==0" (the kernel
spa
e). Su
h an exploit is des
ribed by Barnaby Ja
k [2℄ that
exploits a kernel-spa
e bu�er over
ow in a popular �rewall
program. Mi
rosoft re
ently released an advisory des
rib-
ing a heap 
orruption vulnerability in the kernel-spa
e SMB
driver that 
ould allow remote 
ode exe
ution [50, MS05-
027℄. Linux and BSD do mu
h less pro
essing of network
data in kernel spa
e but are nonetheless sus
eptible to the
same problem [52, bid 11695℄.

4.3.2 Multiple Processes Involved
The rp
.statd exploit is interesting be
ause it is possi-

ble that the vulnerable servi
e, rp
.statd, may be listening
on a di�erent port for every vulnerable host. This is only
probable if the di�erent vulnerable hosts are running di�er-
ent operating system distributions. Nonetheless, the initial

onne
tion to portmap to �nd the rp
.statd servi
e is an
important part of the exploit to analyze.
The innd exploit works by posting a news message to a

newsgroup, in this 
ase \test", and then 
an
eling that mes-
sage by posting a 
an
ellation message to the group 
alled
\
ontrol". The bu�er over
ow o

urs when a log message is
generated by the nnrpd servi
e, whi
h is invoked by the innd
pro
ess, be
ause the e-mail address of the original posting
is longer than the bu�er reserved for it. In this parti
u-
lar exploit the entire exploit is 
arried out through a single
TCP 
onne
tion, but it is possible that the atta
ker 
ould
upload the payload and bogus return pointer onto the vul-
nerable host's hard drive using one TCP 
onne
tion from
one remote host and then invoke the bu�er over
ow via a
di�erent TCP 
onne
tion 
oming from a di�erent remote
host.

4.3.3 Multithreading and Multiple Ports
In addition to multi-stage atta
ks like the innd exploit,

many Windows servi
es are multithreaded and listen on
multiple ports. The SQL Server is multithreaded and listens
on ports 1434 UDP and 1433 TCP. The DCOM RPC, Work-
station Servi
e, RPCSS, and Zotob exploits have the same
property. The Windows Se
urity Bulletin for the LSASS
bu�er over
ow [50, MS04-011℄ re
ommends blo
king UDP
ports 135, 137, 138, and 445, and TCP ports 135, 139, 445,
and 593; plus, the lsass.exe pro
ess is multithreaded mean-
ing that, for example, the payload and the exploit 
ould be
introdu
ed into the pro
ess' address spa
e simultaneously

through two di�erent 
onne
tions on two di�erent ports.
Most exploits allow some form of arbitrary memory 
or-
ruption su
h as writing an arbitrary value to an arbitrary
lo
ation or writing a predi
table value to an arbitrary lo-

ation. Even simple sta
k-based bu�er over
ows 
an have
this property, like the RPC DCOM exploit or the Slammer
exploit. In Slammer, a 
ertain word just beyond the bogus
return pointer 
an point to any writable address where the
value 0 is written just before the bogus 
ontrol 
ow transfer
o

urs.
Any open TCP port 1433 
onne
tion 
an be turned into

what appears to be a port 1433 bu�er over
ow by exploit-
ing the name resolution vulnerability (used by Slammer) on
UDP port 1434 and using the \write the value zero to any
writable lo
ation" primitive. Su
h an atta
k would open
enough port 1433 TCP 
onne
tions to tie up all but one
thread of the SQL server, load a bogus sta
k frame 
om-
plete with exe
utable payload on one 
onne
tion, and load
fake junk to all of the others. The sta
ks for these threads

ould be held in a suspended state by not 
losing the TCP

onne
tions.
Then through UDP port 1434 the atta
ker would send

SQL name resolution exploits that only overwrote the re-
turn pointer with its original value but, more importantly,

hanged the address where the value 0 is written to point
to ea
h su

essive sta
k. A well pla
ed zero that overwrites
the least signi�
ant byte of a base pointer on a sta
k en-
ables linking in a bogus sta
k frame (this is how the Turkey
exploit works). Then by 
losing the port 1433 TCP 
onne
-
tion with the exploit 
ode in it, the sta
k is unwound until
the bogus sta
k frame hija
ks 
ontrol 
ow. Be
ause the in-

oming 0 would not be labeled, and be
ause the row spa
es
of 
 and � would have been mapped from pa
kets for TCP
port 1433, it would be easy for DACODA-based analysis to
assume that there had been a bu�er over
ow on port 1433.
Fortunately, DACODA re
ords when labeled data is used as
addresses so the 
onne
tion with UDP port 1434 
ould be
identi�ed.

4.3.4 Side Channels
The innd exploit shares something in 
ommon with both

of the ftp exploits presented here in that the pro
ess being
atta
ked does a reverse DNS entry lookup on the IP address
of the atta
ker. It is not 
lear whether DACODA should
in
lude this in the analysis of the atta
k or not be
ause the
atta
ker 
ould use their DNS name to inje
t part of the
atta
k into the address spa
e of the vulnerable pro
ess but
typi
ally will not do so. For all results presented in this
paper the DNS traÆ
 is in
luded in the analysis.
Also, parts of the UDP header for Slammer, the sour
e

IP address and port, are present in the address spa
e when
the bogus 
ontrol 
ow transfer o

urs. Thus not all of the
various parts of an atta
k 
an be found in the data �elds
of TCP and UDP pa
kets; they may 
ome from the pa
ket
headers as well.

4.3.5 Encodings and Encryption
The various ASN.1 vulnerabilities found in Mi
rosoft Win-

dows over the past two years [52, bids 9633, 9635, 9743,
10118, 13300℄, none of whi
h were tested with DACODA,
are exposed through several servi
es. They 
an be exploited
through Kerberos on UDP port 88, SSL on TCP port 443,
or NTLMv2 authenti
ation on TCP ports 135, 139, or 445.



The mali
ious exploit and 
ode 
an be en
oded or en
rypted
with Kerberos, SSL, IPSe
, or Base64 en
oding (on top of
the mali
ious ASN.1 en
oding) [52, bid 9635℄. A more ad-
van
ed exploit for this vulnerability 
ould en
rypt most of �,
and all of 
 and �, and the de
ryption would be performed
by the vulnerable host. The fa
t that not many vulnerabil-
ities have this property should not be taken to mean that
it will be a rare property for zero-day vulnerabilities. Zero-
day vulnerabilities will be found in the pla
es that atta
kers
look for them.
En
odings or en
ryptions of � and 
 that are de
oded

or de
rypted by proto
ol implemented on the ma
hine be-
ing atta
ked are only a 
hallenge for DACODA if the sym-
boli
 expressions be
ome too large to handle eÆ
iently or
too 
omplex to be useful. In either 
ase DACODA reports
this fa
t, so that a di�erent response than 
ontent �ltering

an be mounted. When symboli
 expressions ex
eed a 
er-
tain size they be
ome idempotent expressions that denote
that a large symboli
 expression has been dropped.

4.3.6 Undesirable Predicates
The wu-ftpd format string atta
k helps illustrate what fu-

ture work is needed before DACODA 
an 
onsistently an-
alyze real atta
ks with a high degree of assuran
e. We
used the Hannibal atta
k from Crandall and Chong [12℄
where the major portion of the format string is of the form,
\%9f%9f%9f%9f%9f...". DACODA should, and does, dis-

over predi
ates for \%" and \f" but should not dis
over a
strong equality predi
ate for \9" be
ause the format string
atta
k 
ould take the form \%11f%4f%132f...".
The IO default xsputn() fun
tion from glib
 sets a vari-

able to 0 and in
rements that variable for every 
hara
ter
printed. When it is done printing the 
oating point num-
ber it subtra
ts this 
ount from the value 9 
al
ulated by
taking the ASCII value 0x39 for \9" and subtra
ting 0x30
(basi
ally, although, as is often the 
ase, reverse engineer-
ing by DACODA reveals the a
tual de
oding implementa-
tion to be mu
h more 
onvoluted). If this value is equal
to zero a strong, expli
it equality predi
ate is dis
overed
by DACODA and the IO default xsputn() fun
tion moves
on (The printf fp() fun
tion does a similar 
he
k on the
same byte so two predi
ates are a
tually dis
overed). Oth-
erwise the di�eren
e is used as the number of trailing zeroes
to print and DACODA dis
overs no predi
ate. This 
auses
DACODA to dis
over strong equality predi
ates for that in-
dividual \9" if and only if the value on the sta
k being eaten,
whi
h for all pra
ti
al purposes is random, 
onsumes 9 
har-
a
ters when interpreted as a 
oating point number without
trailing zeroes. The long tokens dis
overed for the wu-ftpd
format string atta
k in Table 5 are not a good signature but
rather represent the fa
t that a long sequen
e of data words
on the sta
k require 9 
hara
ters to be printed as 
oating
points (in
luding the leading spa
e).
In the Apa
he exploit the 
hunked en
oding tokens 
an

use any 
hara
ter allowed by the 
hunked en
oding portion
of the HTTP proto
ol, but DACODA dis
overs predi
ates
be
ause whatever 
hara
ter is used is 
onverted to lower

ase and 
ompared with a whole array of 
hara
ters until it
is found.
For the innd exploit DACODA generates a token \test"

as these letters are individually 
he
ked against a d entry
in the dire
tory 
ontaining the various newsgroups on that
news server. This token is dis
overed in the kernel spa
e in

the fun
tion d lookup(). The \test" newsgroup is guaran-
teed to be there but there is no requirement that the atta
ker
post the original message to this group. The atta
ker might
�rst log into the news server to request a list of newsgroups
on that server and 
hoose a di�erent group every time. Thus
the token \test" generated by DACODA is not guaranteed
to be in every exploit for this vulnerability.
One interesting behavior of the Turkey exploit is that it


reates several �les or dire
tories with long �lenames and
then uses these �les or dire
tories in some way. This would

ause DACODA to dis
over very long tokens for these �le-
names (equality between the �le name used for 
reation and
the �le name used for a

essing), ex
ept that we added a
heuristi
 that DACODA does not in
lude strong, expli
it
equality predi
ates between two labeled symboli
 expres-
sions that are both from the atta
ker.

4.3.7 Lack of a Good Signature for Some Exploits
It is diÆ
ult to generalize to a signature for a vulnerability

when there is not even a good signature for the exploit.
For Slammer the only byte string signature not sus
eptible
to simple polymorphi
 te
hniques is the �rst byte in the
UDP pa
ket, \0x04". This byte is 
ommon to all SQL name
resolution requests. The bogus return pointer also has to
be a valid register spring and another pointer must point
to any writable memory lo
ation, but these are not strong
predi
ates. The SQL authenti
ation exploit does not o�er
mu
h in terms of a signature, either.
The Apa
he 
hunk handling exploit, like the wu-ftpd

format string exploit, has erroneous predi
ates in Table 5.
This means that all of the tokens with four bytes or
more, ex
ept the 
hunked en
oding token, are a
tually
not invariant, leaving mostly dots, slashes, dashes, and
the new line 
hara
ter, all of whi
h are not un
ommon
in HTTP traÆ
. This does not o�er a very good in-
variant signature for 
ontent �ltering; only the token
\nx0dnnTransfer-En
oding:nx20
hunkednx0dnnnx0dnn"
whi
h would blo
k a valid portion of the HTTP pro-
to
ol. In the ntpd exploit both 4-byte tokens are
\nx00nx00nx00nx00" whi
h is not un
ommon 
ontent on
any port. The longest token, 8 bytes long, is \stratum="
whi
h probably is not un
ommon for traÆ
 on UDP port
123.
We did not test any ASN.1 vulnerabilities, but these serve

as good examples of just how polymorphi
 � 
ould be. The
ASN.1 library length integer over
ow [52, bid 9633℄ basi
ally
has a signature of \nx04nx84nxFFnxFFnxFF". The rest of �
in this 
ase is identi
al to any NTLM request over SMB

arrying an ASN.1 en
oded se
urity token. In fa
t, the �rst
445 bytes of all ASN.1 exploits through NTLM [52, bids
9633, 9635, 9743, 10118, 13300℄ and the Workstation Servi
e
[52, bid 9011℄ exploit are identi
al. This initial part of the
exploit ve
tor is not a good signature unless it is desired
that all NTLM requests 
arrying ASN.1 se
urity tokens be
prevented. Furthermore, the Workstation Servi
e results
from Table 5 show that the longest string of invariant bytes
in this 445-byte sequen
e is only 23 bytes long. Two other
ASN.1 vulnerabilities [52, bids 9635, 13300℄ have no byte
string signature at all to des
ribe them.
As far as purely network-based signature generation meth-

ods with no host 
ontext, whi
h la
k vulnerability informa-
tion for generalizing observed exploits and predi
ting future
exploits, not a lot of polymorphism is required for a worm



not to be dete
ted. Dis
ounting the very long wu-ftpd for-
mat string and Turkey tokens whi
h are errors, only one of
the 14 exploits has a token of more than 40 bytes. The num-
ber 40 is signi�
ant sin
e it is the minimum signature size
that the �rst implementation of EarlyBird [37℄ 
an dis
over.
A similar result is shown in Se
tion 4.2 of Kim and Karp [21℄
where the ability to generate signatures falls dramati
ally
when less than 32 bytes of 
ontiguous invariant 
ontent are
present, whi
h is true for 10 of the 14 exploits in Table 5.
Thus EarlyBird and Autograph, in their 
urrent implemen-
tations, would not be e�e
tive against polymorphi
 versions
of between 10 and 13 of the 14 exploits analyzed in this
paper.

5. POLY/METAMORPHISM
Based on the results in the previous se
tion, we would

now like to formalize polymorphism and metamorphism in
�. To be more perspi
uous in doing so, and also to guide
future work, we des
ribe a model to en
ompass 
omplexi-
ties su
h as multiple pro
esses, multithreading, and kernel
pro
essing of network data by viewing 
ontrol 
ow hija
king
atta
ks \from-the-ar
hite
ture-up." In this way interpro
ess

ommuni
ation and 
ontext swit
hes are viewed simply as
physi
al data transfers in registers and memory. The Physi-

al Data Requires-Provides model, or PD-Requires-Provides
model, is a requires-provides model [39℄ for physi
al data
transfers where the fo
us is on primitives, not vulnerabili-
ties, for reasons that will be dis
ussed in this se
tion.
First we wish to 
onfute the idea that there is a single

user-spa
e pro
ess that is vulnerable and the atta
ker opens
a TCP 
onne
tion dire
tly to this pro
ess to 
arry out the
exploit. Of the 14 exploits analyzed in Se
tion 4, six in-
volve multiple pro
esses, �ve involve a signi�
ant number
of predi
ates dis
overed in kernel spa
e, and seven exploit
pro
esses that 
ontain multiple threads and are a

essible
through multiple ports.
The purpose of an exploit is to move the system being

atta
ked from its initial state to a state where 
ontrol 
ow
hija
king o

urs. The series of states the atta
ker 
auses the
system to traverse from the initial state to 
ontrol 
ow hi-
ja
king is the atta
k tra
e. The atta
ker 
auses this traversal
of states by sending some set of IP pa
kets that are proje
ted
onto the tra
e of the vulnerable ma
hine as they are inter-
preted by the proto
ol implementation on that ma
hine.
The atta
ker must prevent a satisfa
tory 
hara
terization

of the worm traÆ
 by varying bytes in the row spa
es of the
three proje
tions that do not have a strong equality predi-

ate required of them (polymorphism) or 
hanging the map-
pings for ea
h infe
tion (metamorphism). In past work [14℄
we showed that there is a high degree of polymorphism and
metamorphism available to the atta
ker for both 
 and �,
so we will fo
us here only on the subje
t of this paper: �.

5.1 What are Poly- and Metamorphism?
What do we mean when we say polymorphism and meta-

morphism in �?

5.1.1 Polymorphism of�
Some bytes mapped by � by de�nition are not a
tually

what one might think of when dis
ussing � but should be
mentioned for 
ompleteness. Filler bytes that serve no other
purpose than to take up spa
e, su
h as the \XXXXXXX..."
string of bytes in Code Red II, are usually in � but have

no strong equality predi
ate required of them. Usually their
pla
ement in � is only be
ause it is required that they are
not equal to a NULL terminator or an end of line 
hara
ter,
or that they must be printable ASCII 
hara
ters.

5.1.2 Metamorphism of�
We will dis
uss two kinds of metamorphism: without mul-

tithreading and with multithreading. Metamorphism is the
more fundamental 
hallenge for DACODA sin
e DACODA
is based on symboli
 exe
ution of one atta
k tra
e and meta-
morphism in � 
hanges the atta
k tra
e.
Without multithreading, there are multiple ways to tra-

verse from the initial state to the 
ontrol 
ow hija
king. The
three ways of 
hanging this tra
e are:

1. Take an equivalent path: In format string atta
ks \%x"
and \%u" take di�erent paths but 
onverge so for pra
-
ti
al purposes the tra
es are the same. A 
ouple of ex-
amples from the Code Red II exploit are \.ida" versus
\.idq" or the fa
t that the UNICODE en
oding es-

ape sequen
e \%u" 
an appear anywhere in the GET
request between \?" and \=".

2. Add paths that are unne
essary: In the Hannibal atta
k
for the wu-ftpd format string vulnerability the atta
ker

an, after logging in but before 
arrying out the a
tual
atta
k, use valid FTP 
ommands that are not useful
ex
ept that DACODA will dis
over predi
ates for them
as they are parsed. Pipelining in HTTP 1.1 allows
for similar behavior as was pointed out in Vigna et.
al. [42℄.

3. Changing the order: In addition to adding paths that
are not relevant to the exploit, sometimes paths rele-
vant to the exploit 
an be arranged in a di�erent order.

What we need to understand metamorphism is a partial
ordering on the bytes from the range of �. This partial order-
ing 
ould help us determine that, for example, the Code Red
II bu�er over
ow is not rea
hable ex
ept through a path in
whi
h the token \%u" is dis
overed, and that \.ida?" must

ome before this token and \=" must 
ome after. It would
also show that \GET" must be \GET" and not \GTE" or \TEG".
For generating a signature the partial ordering will reveal
whi
h tokens are not ne
essary for 
ontrol 
ow hija
king to
o

ur, whi
h tokens 
an be repla
ed with other tokens (this
will require further analysis su
h as model 
he
king), and
will identify any ordering 
onstraints on those tokens that
must o

ur.
The requires-provides model for 
ontrol 
ow hija
king at-

ta
ks 
ould be as simple as a 
ontrol 
ow graph for the whole
system. The problem with this is that an atta
ker with the
ability to 
orrupt arbitrary memory with two threads in the
same pro
ess 
an subvert the most basi
 assumptions (for
example, that if a thread sets a lo
al variable to a value it
will have the same value until the thread modi�es it again).
We need a model that 
an handle multithreading, but �rst
we need to try to understand what a vulnerability-spe
i�

signature would need to en
ompass. To do this we have to
dis
uss what a vulnerability is.

5.2 What is a vulnerability?
What 
auses a sequen
e of network pa
kets to be a 
ontrol


ow hija
king atta
k, the vulnerability, is very subje
tive.



For bu�er over
ow exploits it is the fa
t that a parti
ular
�eld ex
eeds a 
ertain length; in the 
ase of Slammer it
is the length of the UDP pa
ket itself, and for the Turkey
exploit the allowable length is ex
eeded by only one byte.
For double free() and dangling pointer exploits the exploit is
usually 
aused be
ause a 
ertain token appears twi
e when
it should appear on
e or is nested su
h as the 
onstru
ted
bit strings of the ASN.1 dangling pointer vulnerability [52,
bid 13300℄. Format string write atta
ks are 
aused by the
presen
e of a token \%n". Integer over
ows o

ur be
ause a
parti
ular integer is negative.
One last example puts this problem in perspe
tive. The

Code Red II bu�er over
ow only o

urs when at least one
\%u" token is present whi
h expands all of the ASCII 
har-
a
ters to 2 bytes, and the \u" 
hara
ter as well as numbers
are 
ertainly a

eptable in a normal URI. Changing a single
bit in the ASCII sequen
e \eu1234" 
reates \%u1234", so the
Hamming distan
e between a valid ASCII GET request of
a

eptable length and one with a single UNICODE-en
oded

hara
ter that 
auses a bu�er over
ow is only one bit! Fur-
thermore, UNICODE en
odings in GET requests of normal
length are 
ertainly valid within the HTTP proto
ol or else
they would not have been implemented.
There are two ways to 
reate a signature that 
overs

a wide enough set of exploits to be 
alled \vulnerability-
spe
i�
." One is to add more pre
ision to the signature
and use heuristi
s within the signature generator to look at
not only tokens but, for example, also the lengths of �elds.
Slammer 
ould be stopped by dropping all UDP pa
kets to
port 1434 that ex
eed a 
ertain length. Code Red II 
ould
be stopped by dropping all HTTP requests with UNICODE
en
odings that ex
eed a 
ertain length. The problem with
the Code Red II example is that it requires a lot of parsing
of HTTP 
ommands by the network 
ontent �lter. This is
even worse in the 
ase of S
alper be
ause the Apa
he 
hunk
handling exploit only o

urs when a parti
ular integer is
negative.
The se
ond way to generate signatures is to relax the

requirement that no portion of a valid proto
ol be dropped.
In the Code Red II example above, we 
ould simply
drop all HTTP requests with UNICODE en
odings sin
e
normal HTTP traÆ
 typi
ally will not use them. For
S
alper we 
ould drop all HTTP traÆ
 with the token
\nx0dnnTransfer-En
oding:nx20
hunkednx0dnnnx0dnn"
whi
h will not allow any 
hunked en
odings, and is in fa
t
the rule that Snort [53℄ uses. In other words, it may be
a

eptable to blo
k a valid portion of a proto
ol (or even
an entire proto
ol by blo
king its ports) if that portion is
not often used by legitimate traÆ
. Most vulnerabilities
are dis
overed in 
ode that is not frequently used. These

oarse responses may sometimes be the most e�e
tive, but
the 
hallenge is knowing, upon 
apturing an exploit for an
unknown vulnerability, that the proto
ol involved or the
spe
i�
 part of it where the vulnerability lies is rarely used,
something that would need to be pro�led over a long period
of time.
The �rst of these alternatives leaves us \on the horns of

a dilemma" [49℄ in terms of false positives and false nega-
tives without a detailed semanti
 understanding of how the
exploit works. It also is not amenable to byte string signa-
tures, even those based on small sets of tokens, so something
more semanti
ally ri
h will have to be devised. This is the

hallenge that we hope to address in future work.

The se
ond alternative will 
reate a great number of false
positives if the worm exploits a vulnerability that is in a part
of a proto
ol that is used often. This is be
ause nearly all
of the tokens in Table 5 are proto
ol framing and not related
to the a
tual vulnerability. Bu�er over
ows have been found
in Mi
rosoft libraries for both JPEG parsing [50, MS04-028℄
and JPEG rendering [50, MS05-038℄. If a worm exploited
su
h vulnerabilities, it would 
reate many false positives if
the worm 
ontent �ltering me
hanism blo
ked all HTTP
responses 
ontaining JPEGs.

5.3 The PD-Requires-Provides Model
Metamorphi
 te
hniques that use arbitrary memory 
or-

ruption primitives in multithreaded appli
ations to build

omplex exploits require a model that views the system from
the same perspe
tive as the atta
ker will: the raw ma
hine.
This \from-the-ar
hite
ture-up" view of the system will al-
low us to abstra
t away system details that lead to assump-
tions that the atta
ker 
an invalidate. This is the motivation
behind the PD-Requires-Provides model.

5.3.1 Requirements and What They Provide
An atta
ker 
an only 
ause a state transition along the

atta
k tra
e through the exe
ution of a ma
hine instru
tion
that uses data from the range of �. We will assume a Pen-
tium pro
essor and a sequential 
onsisten
y memory model.
Although the Pentium uses a pro
essor 
onsisten
y model
and multipro
essing is be
oming more and more 
ommon,
it may be too pessimisti
 at this time to assume that the
atta
ker 
ould exploit a ra
e 
ondition between the mem-
ory and the write bu�ers of two high speed pro
essors.
It should be noted, however, that ra
e 
onditions between
threads have been demonstrated to permit remote 
ode ex-
e
ution [47℄.
Treating ea
h ma
hine instru
tion that is exe
uted as an

atomi
 event, we 
an say that to provide a side e�e
t needed
by the exploit there is something required of the inputs. A
side e�e
t the atta
ker would like to provide 
ould be a write
to memory, a write to a register, a write to a 
ontrol 
ag, or
a bran
h predi
ated on a 
ontrol 
ag. It 
ould be required
that an input to the instru
tion be a 
ertain value from the
range of �, that the address used to load an input be from
the range of �, or that a 
ontrol 
ag have been predi
ated
on a 
omparison of data from the range of � (providing a
write to the program 
ounter EIP).

5.3.2 Slammer Example
Suppose we want to exploit the vulnerability used by

Slammer to write the value 0 to the virtual address
0x0102aabb in the SQL server pro
ess. It is required that
we get the value 0x0102aabb into the EAX register before
the instru
tion \MOV [EAX℄,0" is exe
uted. This requires
that we send a long UDP pa
ket to port 1434. Spe
i�
ally,
when the Ethernet pa
ket is re
eived it is required that the
\IN DX" instru
tions that read the pa
ket read a 
arefully

rafted UDP pa
ket two bytes at a time to provide that the
pa
ket be stored in a bu�er and interpreted by the Windows
kernel in a 
ertain way. When the Windows kernel 
he
ks
the 24th byte of the pa
ket it is required that this memory
lo
ation hold the value 0x11 so that when it is loaded into
a register and 
ompared to 0x11 the bran
h will be taken
where the kernel interprets it as a UDP pa
ket. Similar
requirements on the port number and destination address



will provide the state transitions of the kernel re
ognizing a
pa
ket for the SQL server pro
ess and then 
ontext swit
h-
ing into that pro
ess providing us with the ability to read
and write the physi
al memory of that pro
ess.
The SQL thread 
hosen to handle the request will then


ontext swit
h to the kernel and ba
k twi
e to obtain the
sour
e address and port number information and then to
read the pa
ket into its own memory spa
e. Then it is
required of ea
h byte that it not be equal to \0x00" or
\0xFF" in order to rea
h the bu�er over
ow 
ondition. It
is also required of the �rst data byte of the UDP pa
ket
to be equal to \0x04" so that the vulnerable fun
tion is
rea
hed through the sequen
e \MOV EDX,[EBP+fffffbf4℄;
JMP [42
fa23b+EDX<<2℄". Then before \MOV [EAX℄,0"
the EAX register must hold the atta
ker's desired arbitrary
address (0x0102aabb), provided by the instru
tion, \MOV
EAX, [EBP+10℄" whi
h requires the value 0x0102aabb to be
at \[EBP+10℄". Finally, all of this will provide the primitive
that the value 0 is written to the virtual address 0x0102aabb
of the SQL server pro
ess whi
h may be required for some
exploit su
h as the one suggested in Subse
tion 4.3.3.

5.3.3 Should Focus on Primitives, not Vulnerabilities
The goal of a signature generation algorithm based on

DACODA, then, should be to, given the partial ordering

onstru
ted for a single exploit as analyzed by DACODA,
identify the primitive most valuable to the atta
ker in gen-
erating new exploits and generate a signature that prevents
that primitive. This will most likely have to be done with
heuristi
s. A good heuristi
 is that arbitrary write primi-
tives are valuable to an atta
ker, whi
h will be revealed by
a write provided by a requirement that the address used for
the write was data from the range of �. That requirement
was provided by some other requirement, whi
h in turn was
provided by another requirement, giving us a way to work
ba
kwards and generate a primitive-spe
i�
 signature from
the partial ordering. Another good heuristi
 is that saved
base pointers and return pointers on the sta
k should not be
overwritten by long �elds, but this requires knowing whi
h
�eld is too long whi
h in turn requires knowing what the de-
limiters between �elds are for that parti
ular proto
ol (in-
formation that will have to be extra
ted from the partial
ordering). Similar heuristi
s 
ould be made for any sort of
primitive that an atta
ker might �nd valuable in building
exploits. The point is that an atta
ker who sear
hes for a
zero-day vulnerability is not so mu
h sear
hing for a vulner-
ability as for a useful primitive for generating exploits.

6. FUTURE WORK
DACODA 
an be useful toward a variety of obje
tives,

several of whi
h we will now dis
uss. In this paper we have
used DACODA to analyze known exploits as a quantitative,
empiri
al analysis of the amount of polymorphism available
to an atta
ker within the exploit ve
tor. DACODA may also
be used as a honeypot te
hnology to perform the same analy-
sis on zero-day worms exploiting unknown vulnerabilities for
signature generation. This same idea was employed in Vig-
ilante [10℄ and suggested as future work for Polygraph [28℄
and TaintChe
k [29℄.
Other possible future work for DACODA is to use pred-

i
ates dis
overed by DACODA and heuristi
s about di�er-
ent memory 
orruption errors to narrow the sear
h spa
e
of a random \fuzz tester" [26, 27℄. It would be possible to

�nd bu�er over
ows and other remote vulnerabilities in both
user-spa
e and the kernel this way. This system would be
similar to two re
ent papers on automati
ally generating test

ases [4,18℄ but would operate on a full system without the
sour
e 
ode and �nd remote vulnerabilities.
Full system symboli
 exe
ution has many other se
urity

appli
ations, but it was pointed out in Cohen's seminal pa-
per on 
omputer viruses [9℄ that the general problem of pre-

isely marking information 
ow within a system was shown
to be NP-
omplete by Fenton [17℄. DACODA is able to an-
alyze the exploit ve
tor part of an atta
k be
ause the 
ode
being exe
uted is 
ode 
hosen by the owner of the host su
h
as the operating system and software she 
hooses to install.
After 
ontrol 
ow is hija
ked the 
omputational 
omplexity
of information 
ow tra
king is more than a theoreti
 problem
be
ause the atta
ker 
an use te
hniques su
h as phi-hiding
to obfus
ate information 
ow in a 
ryptographi
ally strong
manner [45℄.

7. CONCLUSION
This paper presented DACODA and provided a quanti-

tative look at the exploit ve
tors mapped by � for 14 real
exploits. These results and our experien
es with DACODA
dis
ussed in this paper o�er pra
ti
al experien
e and sound
theory towards reliable, automati
, host-based worm signa-
ture generation. We have shown that 1) single 
ontiguous
byte string signatures are not e�e
tive for 
ontent �ltering,
and token-based byte string signatures 
omposed of smaller
substrings are only semanti
ally ri
h enough to be e�e
tive
for 
ontent �ltering if the vulnerability lies in a part of a pro-
to
ol that is not 
ommonly used, and that 2) whole-system
analysis is 
riti
al in understanding exploits. As a 
onse-
quen
e we 
on
lude that the fo
us of a signature generation
algorithm based on DACODA should be on primitives rather
than vulnerabilities.
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