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a b s t r a c t

Hidden services are anonymously hosted services that can be accessed over an anonymity

network, such as Tor. While most hidden services are legitimate, some host illegal content.

There has been a fair amount of research on locating hidden services, but an open problem

is to develop a general method to prove that a physical machine, once confiscated, was in

fact the machine that had been hosting the illegal content. In this paper we assume that

the hidden service logs requests with some timestamp, and give experimental results for

leaving an identifiable fingerprint in this log file as a timing channel that can be recovered

from the timestamps. In 60 min, we are able to leave a 36-bit fingerprint that can be reliably

recovered. The main challenges are the packet delays caused by the anonymity network

that requests are sent over and the existing traffic in the log from the actual clients

accessing the service. We give data to characterize these noise sources and then describe

an implementation of timing-channel fingerprinting for an Apache web server based

hidden service on the Tor network, where the fingerprint is an additive channel that is

superencoded with a ReedeSolomon code for reliable recovery. Finally, we discuss the

inherent tradeoffs and possible approaches to making the fingerprint more stealthy.

ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the problem of leaving fingerprints

in the log files of hidden services so that if the machine

hosting the service is recovered by law enforcement the

fingerprint can be recovered as proof that that particular

machine was hosting the service. Our threat model is the

following. Illegal content is being hosted on a hidden service

of an anonymity network such as Tor (Dingledine et al., 2004).

Hidden services allow clients on the anonymity network to

access the service while preserving the anonymity of both the

client and server. The server’s IP address is not revealed to

clients, instead clients request the service using a pseudodo-

main, e.g., http://gaddbiwdftapglkq.onion/. There are many

ways that the hidden service can be identified, both technical

(e.g., the methods (Murdoch, 2006; Overlier and Syverson,

2006; Bauer et al., 2007; Murdoch and Danezis, 2005;

Murdoch and Zieli�nski, 2007) that we describe in Section 6

where we discuss related works) and non-technical (e.g., the

crime is reported). In this paper we consider the following

problem: given a hidden service that is believed to be hosted

by a machine that will be confiscated by law enforcement,

how can we leave a fingerprint on the machine through the

hidden service that can be recovered and identified on the

physical machine at a later time?1

The threat model we assume in this paper is a passive

observer that does not suspect this form of fingerprinting but

does observe bursts in the log file. A stronger threat model

where the hidden service host suspects that fingerprinting

will be employed is left for future work. The approach we take

* Corresponding author.
E-mail addresses: bshebaro@cs.unm.edu (B. Shebaro), fperez@gts.tsc.uvigo.es (F. Perez-Gonzalez), crandall@cs.unm.edu (J.R. Crandall).

1 In practice, more than one fingerprint will typically be left to ensure sufficient evidence for conviction.
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in this paper is to assume that the underlying service that is

being offered as a hidden service has a log file of client

requests that contains a timestamp. Logging can be disabled

for hidden services, but the client information and informa-

tion about traffic can be valuable to those offering the service

for many reasons. Furthermore, the fact that suspects can

erase their fingerprints in the physical world does not change

the fact that dusting for fingerprints is a standard practice for

non-digital crimes. For our implementation, we use an

Apache web server. By making requests to the service from

a client on the anonymity network that will be logged, we can

create an additive timing channel to leave the fingerprint in

the log. The main challenge for this type of channel is the

tradeoff between stealth and the amount of time it takes to

leave the fingerprint. Because IP addresses are hidden by

anonymity technologies, we assume that during the process

of recovering the fingerprint no distinction can be made

between the added requests and requests from real clients.

The two main sources of noise that must be accounted for

through redundancy in the fingerprint, then, are the delays of

requests that are added by the anonymity network and bursts

in the actual traffic from real clients for that particular service.

We present results that characterize both of these sources of

noise, and describe an implementation that can leave an

easily recoverable 36-bit fingerprint in an Apache log file over

the Tor network in 60 min. There are three main reasons

why, among the many information channels various log files

afford, we focus on only timing channels using the

timestamps:

� For legal reasons, standardized methods are preferable to

ad-hoc methods, because precedents can be established for

well-analyzed algorithms for recovering a footprint. This

requires that a single method be used for many services,

and, while various services log different data that is appli-

cation-specific, most contain some sort of timestamp.

� Anonymization technologies sometimes hide IP addresses,

URLs, and other objects in the log file. For example, when

Apache is set up as a Tor hidden service using Privoxy, the IP

address for all logged GET requests is 127.0.0.1 due to local

proxying. Timing information, on the other hand, is typi-

cally preserved.

� By using exclusively timing and timestamps for leaving the

fingerprint, the other channels of information (e.g., the URL

of the document being requested) can be reserved for other

information that the fingerprinter may want to preserve in

the log (e.g., proof of the existence of a file on the server at

a given time).

An important property that a forensic technique should

have is generality. For Tor hidden services, a unique private

key on the confiscated machine will easily identify that

machine as the host of the hidden service. Other anonymity

networks or future versions of Tor may not have this,

however. A technique that can be established and used for

a wide variety of cases is preferable to application-specific

forensic techniques applied on a case-by-case basis. The

suspect might uninstall Tor or disable the hidden service,

which will make it harder to recover the unique private key

they used to offer the hidden service. Suppose the log files are

disabled on the hidden server or the attacker uses an

encrypted file system. Depending on the noisemodel, a timing

channel may appear in statistical packet capture logs of the

suspect’s local network or Internet Service Provider (e.g.,

Cisco’s IOSNetflow). Thus, for this paperwe acknowledge that

there are many ways to prove that a confiscated machine was

hosting a hidden service but our focus is on timing channels.

The rest of this paper is structured as follows. First, we

describe our measurement methodology for characterizing

the two main sources of noise in Section 2, followed by the

results from these measurements in Section 3. Then, we

describe our implementation of hidden service fingerprinting

in Section 4. A discussion of stealth techniques and possibil-

ities for future work is in Section 5. Related works are

discussed in Section 6, followed by the conclusion.

2. Measurement methodology

In this section we describe our methodology for two sets of

measurements: delays of HTTP GET requests in the Tor

network, and the traffic characteristics of existing GET

requests for a web service. Because our fingerprinting method

uses an additive code where GET requests are added to

existing traffic in the log file, Tor network delays and existing

GET requests are the two main sources of noise that must be

accounted for to reliably recover the fingerprint.

2.1. Tor network delays

To measure the delays of (and potentially also dropping of)

GET requests that the fingerprinter as a client will send to the

hidden web service, we set up two Linux machines. One hosts

the Apache web server version 2.2.12 as a Tor hidden service

and is configured using Privoxy, which acts as a local web

proxy interface to the Tor network. Thus, all GET requests

appear to come from the IP address 127.0.0.1, which is the

loopback interface. The Apache log file logs GET requests

when they are received, with a granularity of 1 s. For these

experiments, the other machine acts as a web client, also

configured with privoxy, with wget as the web client which

makes requests for the hidden service. The server and client

were located in the same place geographically, but the Tor

onion routing default configuration is to set up a new circuit

between the server and client every 10 min2 where the client

chooses different entry, exit, and intermediate relays which

are geographically distributed across the globe. For measure-

ment purposes only, each GET request was taggedwith a unique

integer identifier so that we could easily detect dropping and

reordering of packets. For our fingerprinting implementation

in Section 4, we assume that no such identifier can be put in

the GET request and use only the timing channel. We sent

a GET request from the client to the server every 5 s for 55 h, to

ascertain the distribution of delays introduced by onion

routing and the connection loss rate. Because different

circuits being built on a global scale every 10 min (after their

2 The countdown of these 10 min starts after the first use of
each circuit, and will not cutoff an existing session even if it
exceeds this time limit.
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first use) accounts for most of the variance in Tor delays,

diurnal patternswere not evident in this data sowe consider it

as a single distribution independent of the time of day.

2.2. Existing HTTP GET requests

The other major source of noise in our fingerprint timing

channel is existing traffic in the log file. For our implementa-

tion, we assume that the fingerprinter, when recovering the

fingerprint, cannot distinguish their requests from existing

requests (from real clients that are accessing the service). The

additive channel is thus prone to errors due to bursts of traffic

in the web server, so we sought to characterize existing traffic

for a real web server. We obtained the log file for a university

department that runs Apache 2.2.3 and receives approxi-

mately 35e40 K requests per day. The log file we obtained

covers a 36-h time period.

We calculated the distribution of GET requests per minute

for a normal web service using this log file. We assert that this

distribution shape is representative of typical web services,

but the mean of the distribution depends on how popular the

web service is. Our fingerprinting technique assumes that the

fingerprinter has some estimate of this mean for a given web

service that they want to fingerprint.3 It is an open research

question to know the mean of a given web service but one

possible solution is for law enforcement to obtain this

information from the ISP of the suspect.

Fig. 1 shows the number of requests over time for this

department web log file. There is a spike in traffic at about

midnight MDT (Mountain Daylight Time), which corresponds

to late afternoon local time. We designed our fingerprinting

algorithm to be robust for any hour of the day, but since the

fingerprinter can choose when to leave the fingerprint they

can also choose a time of day when the traffic for the web

service is known to be lower.

3. Measurement results

The purpose of our measurements was to characterize the

two main sources of noise for our fingerprinting technique:

delays or connection drops by the Tor network and existing

traffic in the web service log file. The main tradeoff we

consider in this paper is the amount of time it takes to leave

the fingerprint vs. the number of requests we need to make

per minute. The faster fingerprinting is performed, the more

requests per minute will be necessary to reliably recover

the fingerprint. Our main consideration in this paper is

this tradeoff, we do not make any claims regarding the

stealthiness of our current implemention. Other stealth

techniques besides reducing the rate of requests are discussed

in Section 5.

The main questions regarding the speed vs. request rate

tradeoff that we sought to answer are:

1. When the fingerprinter sends a request, what is the loss

rate and distribution of delays for when the server actually

sees and logs the request? This is one of the two major

sources of noise in our timing-channel fingerprinting. Note

that anonymity networks such as Tor deliberately route

packets in unpredictable ways, meaning that the delays

will also bemuchmore unpredictable than normal Internet

traffic.

2. What is the distribution of existing traffic in a web service

log file? In particular, the relationship between the number

of requests we add per minute and bit error rate when

recovering the fingerprint is determined by this

distribution.
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Fig. 1 e Web server traffic for a 24-h period.

3 This estimate can be a conservative estimate, at the cost of
fingerprinting taking a longer time if the mean is overestimated,
due to the redundant bits necessary for the error correction code.
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3.1. Tor delays

Fig. 2 shows the histogram for the delays added to requests by

the Tor network from our measurements. The mean delay is

21.1. Not pictured are the 2975 requests that were dropped.

Based on the measured probability density, 83.6% of sent

requests will be logged by the server within a minute of being

sent, 8.9% will arrive after more than a minute, and 7.5% will

be dropped. Based on these results, for our additive timing

channel we chose to send all requests for a 60-s period in

a burst at the beginning of the 60-s period. They will arrive

with roughly the same distribution shown in Fig. 2. Because of

these delays, the server will not see the packets in a burst as

the client had sent them. This is important so that conspic-

uous bursts of traffic do not appear in the log file.

3.2. Existing HTTP GET requests

Fig. 3 shows the distribution of requests per minute for the

university department log file. This distribution helps us to

predict the rate of errors due to existing requests that we can

expect for different numbers of requests per minute added.

This is illustrated in Fig. 4, which shows this error rate for the

parameters we chose for our implementation as the shaded

area under the intersection between the two curves (the bold

line is the same distribution with 35 added to each value). For

this chosen parameter of adding 35 requests in a minute for

our additive channel, the error rate for errors that are due to

existing requests is approximately 11.5% and the optimal

cutoff to determine whether requests were added to a given

minute is 40. Lowering the parameter of 35 to make the

fingerprint less conspicuous will move the bold curve to the

left and increase the error rate, meaning that longer error

correction codewords are needed and therefore more time is

required to leave a fingerprint that can be reliably recovered.

Increasing this parameter moves the bold curve to the right

which decreases the error rate and makes fingerprinting

quicker, but creates a more conspicuous burstiness in the

log file.

Fig. 3 shows the same shape for the histogram as previous

work on measuring Tor network delays (Loesing et al., 2008),

but the mean of our histogram is different. One possible

reason for this is that the Tor network has grown considerably

in the past several years. Another possible reason is that in

that work changes were made to the Tor client to choose the

first introduction point from the hidden service descriptor,

whereas our measurements are end-to-end application-layer

measurements fromwhen the request wasmade by the client

to when the server logged the incoming GET request. In

general, we found the Tor network delays to have a large

amount of variance between different circuits. In our additive

channel, we can account for this variance, but in future work

to improve the stealthiness of fingerprinting a more detailed

and up-to-date model of Tor network delays will be needed.

4. Implementation

Based on the results in Section 3, we developed a prototype

implementation of timing channel log file fingerprinting that

is based on an additive channel that is superencoded with

a ReedeSolomon code (Wicker, 1994). In this section we

describe the implementation and present results to demon-

strate that it is robust to Tor delays and existing requests in

terms of the ability to reliably recover the fingerprint.

Our implementation starts with a random 36-bit bitstring

that will serve as the fingerprint. In this way, the probability of

recovering a matching fingerprint by chance is approximately

(1/236) z 1.46 � 10�11. Before being sent over the Tor network

to appear in the server log file, this fingerprint is superencoded

as a ReedeSolomon codeword, which is 60 bits in length.

ReedeSolomon coding is an error correction code that uses

redundancy of the original word in a codeword that is based

on an oversampled polynomial to recover from errors
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Fig. 2 e Histogram for Tor delays in seconds.
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automatically (in contrast to an error detection code, in which

errors could be detected, but not corrected).

We then transmit this 60-bit codeword, at a rate of 1 bit per

minute, to the server’s log file as follows. To transmit a 0 in

a given minute, we do nothing. To transmit a 1 we make 35

requests for the hidden service over the Tor network at

the beginning of the minute. These requests will arrive at the

server and be logged with the distribution shown in Fig. 2. The

overall shape of the distribution of requests that will be seen

in the log is not conspicuous, as is shown in Fig. 8 where light

bars show the histogram before fingerprinting and dark bars

show the histogram after fingerprinting. Note that Fig. 8 is

normalized, the difference in magnitude between the

distributions can be noticeable to the attacker but our threat

model assumes a passive attacker who is not suspicious that

fingerprinting is taking place (stronger threat models are left

as future work).

To recover the fingerprint once the log file is obtained, we

scan the log file near the time when the fingerprint was

transmitted and attempt to recover the codeword as follows.

Within aminute, we read a 0 if less than 40 requests appear in

the log file within that minute, and a 1 for 40 or more requests.

The cutoff value of 40 was chosen because this is the

approximate intersection point for the two graphs in Fig. 4,

which minimizes errors. We then apply ReedeSolomon error

correction and compare the word that is recovered from the
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Fig. 3 e Histogram for existing HTTP GET requests per minute.

Fig. 4 e Histogram of existing HTTP GET requests per minute before (thin line) and after adding additional requests for

fingerprinting purposes (bold line).
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measured codeword to the fingerprint. When a match is

found, thenwe are highly confident that the log file provided is

the log file for the hidden web service that was fingerprinted.

Bit errors can occur in two differentways, which are discussed

in Section 4.1.

We tested our fingerprinting implementation for different

hours of the day for the department log file as follows. First,

we do the fingerprinting for a Tor hidden service and record

the requests as they are received by our hidden service. Then

we superimpose this onto an hour of the log file. This is

equivalent to doing the fingerprint live, since we are using an

additive channel, but allows for repeatability of our results

and does not require access to a hidden service that receives

a lot of traffic. We tested the fingerprinting 24 times (once for

each hour of the day) and were able to recover the fingerprint

22 times. This includes three tests that were performed for the

three highest-traffic hours of Fig. 1. We did this to test the

robustness of the fingerprinting implementation in the limit.

The fingerprints recovered in the two cases that failed had

a low Hamming distance with the original fingerprint, but our

results suggest that leaving multiple fingerprints at different

times of day is important in practice.

Note that ReedeSolomon codes performwell for correlated

bit errors, which is why they are used in scenarios such as

compact disc encoding where bit errors can be due to

scratches. Thus, the small correlations between bit errors in

our scheme (such as delayed requests showing up in the next

minute) are easily handled by the superencoding.

4.1. Example

Herewe give an example of one iteration of fingerprinting. The

process is shown in Fig. 7. The process can be repeated to

leave multiple fingerprints at different hours of the day for

added robustness, but here we describe only one iteration,

which takes 60min. The first step is to choose a random 36-bit

word as the fingerprint. In our example we choose “1101 1000

1111 0011 1100 0101 1010 0010 1101”. The second step is to

apply ReedeSolomon encoding to produce a 60-bit codeword:

“1001 1101 0110 0101 1001 1010 1101 1000 1111 0011 1100 0101

1010 0010 1101”. For each minute in the 60-min process, if the

corresponding sequential bit in the codeword is a 0, we do

nothing, if it is a 1wemake 35 requests from a Tor client to the

hidden service at the beginning of the minute.

After the fingerprinting process is complete, we assume

that the machine that hosted the hidden service has been

physically recovered (e.g., by law enforcement) and then the

second half of the process is to recover the 36-bit fingerprint.

To account for inaccuracies in the hidden server’s system

time, the process of attempting to recover the fingerprint can

be repeated for some number of seconds into the past or

future. For a given start time alignment, the 60-bit codeword

that is received in the log file is generated as follows. For each

sequential minute, we record a 0 if less than 40 total requests

Fig. 5 e How a 60-bit codeword appears in the log file.
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Fig. 6 e Details on a bit error from the example.
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appear in the log during that minute, and a 1 if 40 or more

appear. If there are 12 bit errors or less in the recovered 60-bit

codeword then applying ReedeSolomon decoding to this

codeword will produce the original 36-bit fingerprint. There

are two types of bit flips. One is that the number of requests

fromactual clients during thatminute is very low and thus the

number of requests we add to the log file for a 1 (which can be

less than 35 if Tor drops some connections or delays them for

more than 60 s) is not sufficient to put the total above the

threshold of 40. This will flip a bit in the codeword from 1 to 0.

The more common type of bit flip is from 0 to 1. This happens

when either the number of existing requests from actual

clients already exceeds the threshold, or it is near the

threshold and a few delayed requests from a previous bit in

the codeword show up during that minute instead of the

earlier minute they were intended for. Fig. 5 shows how the

codeword “1001 1101 0110 0101 1001 1010 1101 1000 1111 0011

1100 0101 1010 0010 1101” is added to a log file. The lighter bars

are the existing requests from actual clients and the darker

bars are the requests added by fingerprinting. This figure has

8 bit flips, one of which is highlighted and shown in more

detail in Fig. 6. Note that there are 7 bit flips from 0 to 1 and

only 1 from 1 to 0. The received codeword in the log file will be:

“1001 1111 0110 0001 1001 1010 1111 1101 1111 1011 1100 0101

1110 0010 1111”. By applying ReedeSolomon decoding, we

then recover the original fingerprint of “1101 1000 1111 0011

1100 0101 1010 0010 1101”.

5. Discussion and future work

In this paper we have explored the tradeoff in terms of how

long it takes to leave a fingerprint in a hidden service log file vs.

howmuch trafficmust be added perminute. The threatmodel

we assumed was a passive observer that does not suspect this

form of fingerprinting but does observe bursts in the log file.

For future work, we plan to explore the tradeoffs in a stronger

threat model where the hiddenweb service host suspects that

fingerprinting will be employed so that an extra degree of

stealth in leaving the fingerprint is required.

In our work under progress we are modelling the proba-

bility distribution of the network delays, which is required for

a closed-form expression of the uncoded bit error probability.

This expression will in turn constitute the basis for predicting

the probability of correct detection when superencoding is

used. Furthermore, a time domain analysis of the gathered

data will provide useful elements for the design of channel

coding mechanisms, as they will depend among other factors

on the coherence time. For instance, preliminary results show

that the autocorrelation of the observed data can be reason-

ably modelled by an autoregressive process. The fact that the

delays corresponding to consecutive requests are strongly

60 min

process
Analyze log fileFingerprint log file

Encode by RS Decode by RS

Choose a new
36 bit word

60 bit codeword 60 bit codeword

Recover original

36 bit word

Start

Fig. 7 e Our fingerprinting algorithm cycle.
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correlated suggests that a differential encoding schemewould

be beneficial.

A good model for both the distribution and the second

order statistics of the request delay is also crucial for an

information-theoretic approach to the problem, which will

reveal what the fundamental limits of this delay-based

communication scheme are. In addition, this approach will

give insights for the design of better channel codes.

An underlying assumption of our current fingerprinting

technique is that the fingerprinter has a good estimate of the

mean of traffic requests per minute for the hidden service.

This estimate can be an overestimate, which will cause the

fingerprinter to use more redundant bits than necessary for

superencoding and take longer than necessary to do the

fingerprint. Overestimation also makes the fingerprinting

more conspicuous. For future work, we plan to explore

methods for estimating the traffic rate of a hidden service

indirectly and accurately. For example, infrequent observa-

tions of the last access/modification time have been shown to

be useful in estimating the access/modification rate (Matloff,

2005). A more general way to estimate the traffic load of

a hidden service is still an open problem, however. What is

needed is a way to exhaust a resource on the hidden server

without first exhausting some resource within the anonymity

network, and then a way to infer traffic load from the scarcity

of that resource in a non-conspicuous way.

6. Related work

The work most related to ours is efforts to locate hidden

servers. Overlier and Syverson (2006) describe several

different methods for locating hidden services in Tor and

provide recommendations to prevent them, which were

adopted by the Tor project. Murdoch and Danezis (2005)

consider the problem of traffic analysis, and Murdoch and

Zieli�nski (2007) considers Internet Exchange-level adver-

saries. Bauer et al. (2007) describe attacks on Tor anonymity

based on nodesmisrepresenting the amount of resources they

have. Murdoch (2006) demonstrates that it is possible to

determine whether a given IP address is hosting a particular

hidden service or not based on clock skew. The basic idea is to

send some amount of traffic to the hidden service, and query

for TCP timestamps from the IP address suspected of hosting

the service. As the server becomes busier, it will heat up

causing a timing skew in the quartz crystal that maintains the

system time, which will be seen in the timestamps. Murdoch

also shows some results suggesting that geolocation is

possible based on diurnal patterns associated with heat. In

contrast to these works, our work assumes that the hidden

server has been located and we describe a way to prove that

a physical machine (once confiscated) was the one that had

been hosting the service.

Our work falls in the general domain of covert timing

channels (Wray, 1991; Lampson, 1973; Lipner, 1975; Kang and

Moskowitz, 1993; Gianvecchio and Wang, 2007). There has

been a considerable amount of work on creating and detecting

covert timing channels based on TCP/IP (Cabuk et al., 2004;

Giffin et al., 2002; Murdoch and Lewis, 2005). To the best of

our knowledge, ours is the first work to consider timing

channels as a method for leaving fingerprints in hidden

service log files.

The relationship of ourmeasurement results for Tor delays

to the results of Loesing et al. (2008) was described in Section 3.

Other works have considered the timing characteristics of Tor

and other anonymity networks in the context of timing

attacks on anonymity (Danezis, 2004; Diaz et al., 2004;

Shmatikov and Wang, 2006; Murdoch and Watson, 2008).

7. Conclusion

We demonstrated a technique for leaving timing-channel

fingerprints in hidden service log files. The technique

presented in this paper is robust, even for the random delays

introduced by the Tor network and realistic, bursty traffic

from existing clients for the web service. We were able to

reliably recover a 36-bit fingerprint with a 60-min finger-

printing process.
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