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Abstract—In-memory injection attacks are extremely challeng-
ing to reverse engineer because they operate stealthily without
leaving artifacts in the system or in any easily observable events
from outside of a virtual machine. Because these attacks perform
their actions in memory only, current malware analysis solutions
cannot expose their behavior. This paper introduces FAROS',
a reverse engineering tool for Windows malware analysis based
on dynamic information flow tracking (DIFT), which can flag
stealthy in-memory-only malware injection attacks by leveraging
the synergy of: (i) whole-system taint analysis; (ii) per security
policy-based handling of the challenge of indirect flows via the
application of tags of different types, and (iii) the use of tags
with fine-grained provenance information. We evaluated FAROS
with six advanced in-memory-injecting malware and it flagged
the attacks for all samples. We also analyzed FAROS’ false
positive rate with 90 non-injecting malware samples and 14
benign software from various categories. FAROS presented a
very low false positive rate of 2%, which shows its potential
towards practical solutions against advanced in-memory-only
anti-reverse-engineering attacks.

Index Terms—Dynamic Information Flow Tracking, In-
memory Injection, Malware Analysis.

I. INTRODUCTION

In-memory injection attacks are extremely challenging be-
cause they perform their malicious actions in memory only
without leaving artifacts in the file system or in any easily
observable event in the system or in a virtual machine (VM).
The hallmark of this stealthy type of attack is the hiding (or
injection) of malicious payloads inside a legitimate process
address space.

Current malware analysis solutions (e.g., reverse engineer-
ing and memory snapshot forensic tools) are no match for such
attacks because of the inability of these solutions to expose the
attack in-memory-only behavior. Memory injection is a com-
mon benign behavior in Windows (e.g., used for debugging),
and such techniques are easily evaded via the Windows OS
API [1]. More specifically, event-based monitoring techniques
do not look into system memory, where the obfuscation attack
occurs.

Reverse engineering tools, such as the sandbox-based Cuck-
oobox [2], cannot expose in-memory-only attacks because

'FAROS means lighthouse in Greek. In this paper, FAROS helps illumi-
nate in-memory-only attacks.

these tools rely on easily observable VM events, such as
system or library calls [3], file system activity, or specific
library function calls. Memory snapshot forensics tools, such
as Volatility [4] with the malfind plugin [5], assume that the
Portable Executable format of a binary file will be intact and
that important memory artifacts will not be destroyed. These
solutions look at a snapshot of memory at one single point in
time. In-memory injection attacks are typically transient, i.e.,
once the malicious payload is injected and executed, there
is nothing stopping the attacker from cleaning up memory
before the VM is stopped for a memory snapshot. Thus, while
Volatility can give visibility into memory, it does so up to a
certain point in time. An analyst needs visibility into memory
throughout the execution of the sandboxed VM environment to
flag transient in-memory attacks in a way that can be adapted
to emerging and future threats.

In this paper, we propose FAROS, a reverse engineering tool
for Windows malware analysis based on dynamic information
flow tracking (DIFT), which can flag stealthy in-memory-
only malware injection attacks. The key novelty of FAROS
is the synergy of: (i) whole-system DIFT; (ii) a per security
policy-based strategy to overcome the challenge of handling
indirect flows via the application of tags of different types
and using their unique confluence on a memory location as
attack invariant, and (iii) the use of tags with fine-grained
provenance information. In this context, the term fine-grained
provenance means aggregate information about how netflow,
process, and/or file activities are associated with a particular
byte in memory, for example, whether and when a process
accessed a particular byte or a byte was read/written into a
file.

The first key feature of FAROS is the application of whole
system DIFT [6] (also known as dynamic taint analysis), a
promising technology for making systems transparent. DIFT
tags certain inputs or data with meta information and then
propagates tags as the program or system runs, usually at
the instruction level, to achieve information flow transparency.
FAROS taints objects at the byte level and performs DIFT at
the instruction level.

The second key feature of FAROS is overcoming the
challenge of handling indirect flows, inspired by the concept



of data-flow tomography [7]. Capturing indirect flows is one of
the major challenges and impedances for the widespread usage
of DIFT in security applications. To have a principled way for
making decisions about whether or not to propagate tags for
address or control dependencies, one would need to do a full
analysis of a target program/system to consider, for example,
code paths that do not happen, which moves away from the
main attraction of DIFT: operation without access to source
code. To address this challenge, FAROS addresses indirect
flows in a per security policy fashion, via the application
of tags of different types (e.g., netflow, file, process/memory)
and using their unique confluence on a memory location as
attack invariants. In particular, the hallmark of in-memory-
only injection attacks is when a byte is associated with tags of
type netflow (indicating that the byte originated in a particular
network connection) and export-table (indicating that the byte
is part of the OS kernel region where linking and loading
operations occur).

The third key feature of FAROS is using tags containing
rich provenance information. In contrast with current DIFT
systems, FAROS’ tags convey detailed information about the
byte’s lifetime in the system (e.g., chronology of all memory,
file system, and network activities associated with the byte).

The synergy of these three features represents the novelty of
our work and allows FAROS to flag stealthy in-memory-only
injection attacks in a general way, that makes no assumptions
about the format of data structures or the injected code’s
persistence in memory.

We implemented FAROS as a PANDA/QEMU plugin [8],
with introspection for the Windows OS, and evaluated its
effectiveness in flagging malicious behavior with six sophisti-
cated malware, implementing the following types of stealthy
in-memory-only attacks: (i) reflective DLL injection; (ii) pro-
cess hollowing/replacement, and (iii) code/process injection.
FAROS flagged in-memory-only malicious behavior for all
samples. We also analyzed FAROS’ false positive rate with 90
non-injecting malware samples and 14 benign software for dif-
ferent behaviors (e.g. download, upload, and remote desktop).
FAROS produced a very low false positive rate of 2% for our
dataset. FAROS’ false positives can be dismissed/whitelisted
by an analyst in a straighforward fashion, because they always
involve well-known Just-In-Time compilers (e.g., Java).

FAROS is designed to operate as an off-line reverse en-
gineering tool for malware analysis. Our performance eval-
uation showed that FAROS introduced a 56x performance
slowdown compared to standard QEMU. FAROS is designed
to plug into a reverse engineer’s toolbox in the same way
as CuckooBox [2]: a VM that an analyst can run in parallel
with other tasks and that will report its findings back to him
automatically. Thus, while short response time is desirable,
it is not a priority. FAROS turns CPU cycles into actionable
information about in-memory injection attacks that may be
hiding important information from the reports generated by
other automated tools. Thus, FAROS’ goal is detecting a wide
variety of attacks with a low false positive rate, and providing
contextual information about processes, files, and network

activities, rather than performance. FAROS also provides the
reverse engineer with the full provenance of the injected code,
saving him valuable analysis time. Without this information,
finding where the injected code came from would be an
arduous, time-consuming, and error-prone manual effort. In
summary, this paper presents the following contributions:

1) FAROS, a DIFT-based reverse engineering tool for
malware analysis, which can flag malicious activities
that are happening in-memory-only, such as reflec-
tive DLL injection, process hollowing/replacement, and
code/process injection.

2) An exploration of the limits of DIFT systems by em-
powering them with the synergy of whole-system taint
analysis, per-security policy strategy for addressing the
challenge of indirect flows, and the use of tags with rich
provenance information.

3) FAROS’ source-code as a PANDA plugin for the Win-
dows 7 0S.?

4) FAROS evaluation, showing that it can effectively flag
in-memory-only malicious behaviors for all test samples,
while achieving a very low false positive rate, 2%.

The paper is organized as follows. Section II presents

FAROS’ threat model. Section III provides background infor-
mation on DIFT. Section IV explains how FAROS overcome
the challenges of handling indirect flows. Section V discusses
FAROS architectural design and implementation details. Sec-
tion VI presents FAROS’ experimental evaluation regarding
effectiveness in flagging in-memory injection attacks, analysis
of false positives, and performance overhead. Section VII
discusses related work and section VIII concludes this paper.

II. THREAT MODEL

FAROS is a whole-system DIFT-based reverse engineer-
ing tool for Windows malware analysis capable of flagging
stealthy in-memory injection attacks. In this paper, we focus
on three types of such attacks: (i) reflective DLL injection [9];
(i) process hollowing/replacement [10], and (iii) code/process
injection [11]. The purpose of these types of in-memory injec-
tion attacks is to write the malware directly into the memory
of the victim’s machine, instead of writing the malware into
the hard drive, where it can be detected by anti-viruses or
file-system monitoring tools.

Today’s malware analysis solutions, such as CuckooBox [2]
leverage system call information, file system activities, specific
library functions, and functionalities that are externally visible
in a VM to gather information about malware. However,
advanced in-memory injection attacks and APT (Advanced
Persistent Threats) techniques, such as reflective DLL injec-
tion, process hollowing/replacement, and code/process injec-
tion, operate in a stealthy mode and without leaving their
footprints, by performing their malicious actions in-memory
only, without invoking system calls, library calls or performing
file 1/0.

2 https://github.com/mnavaki/FAROS



In-memory injection attacks are usually implemented by
using a small loader that unpacks/downloads the in-memory
payload and injects it in the process memory. During
the attack, the loader usually has the appropriate level of
privilege on the system to be able to perform injection into
other programs’ memory. After the injection, the loader is
commonly deleted from the system to prevent its detection.
In contrast to traditional malware, which tends to leave
artifacts in the file system, these type of attacks have only
an in-memory fingerprint hiding themselves inside a benign
process. This stealthiness makes detection by traditional anti-
malware approaches (signature and machine learning-based)
extremely hard. FAROS can shed light on activities happening
in-memory only, thus allowing an analyst to better understand
and automatically flag such attacks. The advanced in-memory
injection attacks considered in this paper are detailed below.

Reflective DLL injection. In these attacks, the reflective
programming technique (which allows a program to examine
and modify its own structure and behavior at runtime) is
employed to load a malicious DLL from memory into the
target process. In this scenario, the DLL should be loaded
from memory rather than from disk. Since Windows does not
provide such loading function, a separate loader is required to
load the DLL into the target process. This leads to a bypass
in the procedure of registering the DLL with a process and
on the operation of DLL loading monitoring tools. The DLL
parses the host processes kernels export table to calculate the
addresses of three functions required by the loader, namely
LoadLibraryA, GetProcAddress and VirtualAlloc, to load
itself.

Process hollowing/replacement. In this technique, the malware
starts a benign process in a suspended state and replaces the
process address space contents with a malicious payload. The
process is then resumed and the entry point of the new image
is executed. More specifically, the malware forks a benign
child process in a suspended state, unmaps and overwrites
the memory of the child process, and resolves imports and
exports for the new code. The attack is stealthy because the
exploit code hides behind a legitimate process, bypassing
process monitoring tools.

Code/Process injection. Malware leverages code injection to
force another process to perform actions on its behalf, such
as downloading another malware or stealing information from
the system. Code injection is accomplished by writing directly
into a remote target process’s memory or making the new
process load a malicious DLL [12]. After the code injection,
the malicious process may obtain access to the target process’s
memory, elevated privileges, and system resources, while
remaining undetected.

III. BACKGROUND - DIFT

Dynamic information flow tracking (DIFT [6], also called
dynamic taint analysis) is a promising technology for making

const char strl = "Tainted string";
char str2[80];
char lookuptable[256];

for (i = 0; 1 < 256; i++)
lookuptable[i] = i;

for (j = 0; J < strlen(strl); J++)
str2[j] = lookuptable[strl[jl];

Fig. 1: An example of address dependencies in C code.

systems transparent. DIFT works by tagging certain inputs or
data and then propagating tags as the program or system runs,
so that something can be learned about the flow of information.

There are two main types of flows that DIFT systems can
track [6]: direct and indirect. Direct flows are data-flow based,
while indirect flows are control-flow based. For example, in
r = y + 1, there is a direct flow from y to x. However, in
code z =0; if (y ==1) x = 1;, the value of = is dependent
of y, meaning that there is an indirect flow from y to z.

There are two types of direct flows: copy and computation
dependencies. In a copy dependency, a value is copied from
one location to another, where a location can be a byte, a
word of memory or a CPU register. The straightforward way
to track this information flow is to propagate the tag so that
the destination location is tainted with the same tag as the
source location. In computation dependencies, tags must be
combined. For example, after the computation for x = y + z,
the tag for x should contain the union of the tags for y and
z; or, in single-bit tag DIFT systems, x should be tainted if
either y or z is tainted.

An indirect flow occurs when information dependent on
program input determines from where and to where informa-
tion flows. There are two types of indirect flows: address and
control dependencies. Figure 1 provides an example of address
dependencies. In this figure, if the characters in strl are
tainted, then the characters in str2 at the end should also
be tainted, because they carry the exact same information.
This example may seem contrived at first, but versions of
it occur in many situations from special handling of ASCII
control characters to ASN.1 encodings. The only way to ensure
that str2 is properly tainted is to propagate tags through the
address dependency where str1[7j] is used as an offset to
index into lookuptable.

Control dependencies, illustrated in Figure 2, present
a dilemma for all existing DIFT systems. In Figure 2
taintedinput is copied to untaintedoutput bit by
bit. Information flows one bit at a time through the control
dependency in the if statement.

IV. OVERCOMING THE CHALLENGE OF INDIRECT FLOWS

One challenge with existing DIFT systems is that they
cannot track indirect flows effectively. Should all address and
control dependencies lead to tag propagation? Not propagating
tags in these cases leads to undertainting, where important
information flows are missed. Propagating tags for all address
and control dependencies leads to overtainting, where quickly



char taintedinput;

char untaintedoutput = 0;
for (bit = 1; bit < 256; bit <<= 1) {
if (bit & taintedinput)
untainedoutput |= bit;

}
Fig. 2: An example of control dependencies in C code.

every piece of data in the system is tagged with every tag
because the tagging system is too conservative. In either case,
very little is learned about the actual information flow of
the system. Thus, the handling of indirect flows forces DIFT
systems to choose between undertainting or overtainting.

The example of indirect flow illustrated in Figure 1 rep-
resents types of information flows that occur in real systems
all the time. In modern systems, operations such as indexed
data structures, compression and decompression, encryption
and decryption, hashing, switch statements, encodings, and
string manipulations are the rule, not the exception, and all
of the aforementioned operations involve address and control
dependencies.

Capturing indirect flows is one of the major impedances for
the widespread usage of DIFT in security applications, includ-
ing reverse engineering applications. On the surface, DIFT is
a perfect technology for reverse engineering: it gives visibility
into how information flows in a live system. However, because
of the challenge of addressing indirect flows, DIFT systems
are not accurate enough for reverse engineers to get usable
results.

To have a principled way for making decisions about
whether or not to propagate tags for address or control
dependencies, one would need to do a full analysis of a target
program/system to discover, for example, the range an offset
used to index into a lookup table could take or how commonly
a branch is taken vs. not taken. In other words, one would have
to consider code paths that do not happen, which moves away
from the main attraction of DIFT: operation without access to
source code.

In this paper, we overcome the challenge of capturing
indirect flows in a per security policy fashion and inspired by
the concept of dataflow tomography introduced by Mazloom
et al. [7]. The idea is as follows. The DIFT system support tags
of different types, for example, netflow (the byte came from
a network source), string (the byte is known to be part of an
ASCII or UTFS8 string based on context), pointer (the byte
represents a pointer), and export-table (the byte came from
the kernel area where linking and loading operations occur).
Two or more tags of different types can “come together” (like
a river confluence) in a certain memory address as DIFT
instructions are executed. In other words, when a byte tag
contains at least two tags of different types, we say that these
tags came together (tag confluence). For example, a byte can
enter the system and be associated with a tag of type netflow.
Then, if this byte is written into a memory area corresponding
to kernel areas where linking/loading occur, then the byte
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Fig. 3: FAROS architecture.

becomes associated with two different types of tags: netflow
and export-table.

FAROS leverages the unique properties of tag confluence in
a given memory location as attack invariant. In particular, the
hallmark of in-memory-only attacks from a DIFT perspective
is the association of tags of type netflow and export-table to
the same byte in memory. We say these tags “came together*
— indicating that data from the network is being executed as
part of a linking/loading process.

V. FAROS DESIGN AND IMPLEMENTATION

FAROS was implemented as a plugin to PANDA [8], which
is an open-source platform for dynamic analysis. PANDA
is built upon the QEMU whole-system emulator [13] and
adds to it three main features: (i) the ability to record and
replay executions to enable whole-system analyses; (ii) an
architecture to streamline the addition of other plugins to
QEMU, and (iii) the ability to use LLVM [14] as the QEMU’s
intermediate language instead of TCG [15] for analysis.

Figure 3 shows an overview of FAROS architecture. The
FAROS/PANDA plugin runs on top of Linux OS Ubuntu 14.04
(host OS) and supports Windows 7 as the guest OS.

FAROS interacts with two other plugins, namely syscalls2
and OSI/Win7x86intro. The syscalls2 plugin provides callbacks
that allow notifications whenever system calls are invoked in
the guest. We have modified the syscalls2 plugin to get the
system calls arguments and follow their pointer arguments.
The OSI plugin provides callbacks whenever a process-related
event happens in the system, such as start/end of a new
process. It also provides APIs to get the current process
information.

A. FAROS Provenance and Taint Tracking System

Compared to basic DIFT (1-bit tags), provenance tracking
can provide much richer information about what is happening
in the system. Provenance can capture various types of infor-
mation about a byte, such as (i) what the origin of a byte is;
(i) which bytes are affected by another byte, and (iii) what
the life cycle of a byte looks like (e.g. came from a network
source, then was copied to the address space of a process, then
was written to a file, whose data was consumed by another
process, etc.). In this context, a byte could come from different
sources such as network, file system, and memory.
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Fig. 4: An example of a provenance list for a particular byte.

FAROS uses provenance information to flag an in-memory
injection attack and to give an analyst additional information
about how the attack was conducted or where it was originated.

FAROS combines DIFT with provenance in a DIFT-
provenance system, whose tags track the source and the history
of a given byte. To implement provenance, FAROS introduces
different tags for three basic types of system activities: network
(netflow tag), process/memory (process tag), and file-system
(file tag). FAROS also introduces an (export-table) tag to
represent bytes coming from the memory region where the
OS keeps its export table.

FAROS maintains a provenance list for each byte in the
system. The provenance list for a byte is a combination of
process, netflow, file, and/or export-table tags. A process tag
is a CR3 value, which uniquely identifies a process at the
architecture level. A netflow tag is a data structure containing
source and destination IP addresses and port numbers. A file
tag has a file name and a version that indicates how many
times a file has been accessed.

Figure 4 shows the high-level view of a provenance list
for a particular memory address. In this list, data comes in
from network and goes to Process 1. Next, it goes to Process
2, and then it is written into File 1, which is read by Process 3.

Tag Insertion. For network activity, once a network packet
comes in, FAROS constructs a netflow tag and taints every
byte of that packet with the created netflow tag. The complete
tracking of this tag type requires whole-system taint analysis
(tainting with tags and propagating them as the CPU
operates on the tainted data) including inside the kernel.
For process/memory activity, if a process accesses a byte in
memory, FAROS adds a process tag into the head of that
byte’s provenance list. For file system activity, when a file gets
loaded into memory, FAROS taints the file contents with a file
tag. Further, when a buffer is written into a file, FAROS taints
the buffer with a file tag. FAROS’ tag insertion mechanism
is implemented at the OS level via a driver hooking into
corresponding Windows system calls. For example, for file
tag insertion, FAROS leverage 26 filesystem-related system
calls (e.g. NtFileRead () and NtFileWrite ()) to get
the file names and buffers. Finally, for export table read
activity, FAROS scans all loaded modules and taints the
function pointers in the export tables with the export-table tag.

Tag propagation. After a basic block (i.e. a list of instructions

[ Taint operation [ Taint propagation policy 1]

copy(a,b) prov(a) <— prov(b)
union(a, b) prov(c) «— prov(a) U prov(b)
delete(a) prov(a) «— 0

TABLE I: FAROS propagation rules. prov indicates the prove-
nance list associated with an address.

terminated by a branch instruction) is executed in the guest OS,
FAROS gets a list of CPU instructions for that basic block.
It then processes these instructions and propagates the taint
information into a shadow memory and a shadow register
according to DIFT rules for propagation of tags (explained
below). Table I shows our propagation policy. Of note, an
address can be a byte in memory or a register. The details of
each operation are as follows:

¢ copy(a,b): Copy the provenance list associated with
address b to address a. Copy operations happen in in-
structions such as MOV, STR, and LD.

e union(a, b, c): Assign the union of provenance lists
associated with address b and address ¢ to address a.
Union operations happen in instructions such as AND,
OR and MUL.

o delete(a): Delete the provenance list associated with
address a. Delete operations happen in instructions such
as MOVI, or XOR when the operands are the same.

Data Structures. FAROS maintains three hash maps, one
for each tag types netflow, process, and file (Figure 5). All
entries in these hash maps have been involved in activities
related to tainted bytes. The Process hash map contains the
processes currently captured by taint analysis. The value field
represents the value of the CR3 register (which uniquely
identifies a process at the architecture level) and the key
represents an index. The Netflow hash map contains the
netflow tags currently captured by taint analysis. The value
field is a netflow tag and the key is an index. The File hash
map contains the files currently captured by taint analysis.
The value is a file tag and the key is an index. FAROS current
implementation does not incorporate a hash map for export
table activity because its corresponding tag does not contain
additional information (besides the tag itself) as the other
tag types do. For example, a netflow tag contains additional
information about IP addresses and port numbers. The current
implementation of FAROS just required information about
the existence of export-table tags to flag in-memory-only
attacks. As future work and to further aid an analyst, we plan
to augment this tag with information about function name,
which will require the addition of a corresponding hash map.

FAROS uses three bytes to represent a tag data structure,
which we call prov_tag. The first byte indicates the tag type
(i.e. netflow, process, file, or export-table), and the next two
bytes indicate the tag index in the corresponding hash map
as described above (see Figure 6). FAROS maintains all
provenance tags in main memory for fast access.



NetFlow hash map Process hash map

struct netflow_tag{

Index | NetFlow — Source IP: Index | CR3
tag Source Port Value
number;

Destination IP;
Destination port
number;

}

File hash map

Index

File tag — struct file_tag{
File name;
File version;

}

Fig. 5: Structure of Process, Netflow, and File hash maps.

Byte 1 Byte 2 Byte 3
L J\ )
I Y

Tag Type Tag hash index
* Network

Tag |, Fie

Type
* Process

+ Export-table

Fig. 6: Structure of prov_tag.

FAROS also adds two hash maps to keep a shadow memory
and a shadow register bank. The shadow memory stores
provenance information associated with the corresponding
memory address in the actual memory. Similarly, the shadow
register bank stores provenance information associated with
actual CPU registers. In both shadow memory and shadow
register bank, a hash map entry contains a provenance list.

B. Flagging in-memory injection attacks

As explained in Section IV the hallmark of in-memory-
only attacks is the colliding of netflow and export-table tags.
Of note, as FAROS is a reverse engineering tool, the analyst
already knows which process is malicious and which process is
the victim, and his goal is to detect and analyze the attack. The
flagging criteria is as follows. All in-memory injection attacks
have a common information flow: a flow coming from the
network goes into a client process and that process injects the
malicious payload into a target process memory. Then, the in-
jected code tries to resolve imports/exports and gets executed.
For example, consider a victim machine running malware X,
which entered the system via a phishing attack. Then malware
X downloads a malicious payload and injects it into a benign
process Y, to make the attack harder to detect. Then, the
injected malicious payload resolves its imports/exports and

then gets executed within process Y. Note that to resolve the
imports and exports, this malicious payload needs to read the
export table.

As previously mentioned, FAROS tags the bytes corre-
sponding to the export table with an export-table tag, so that
any readings of the export table can be monitored. Moreover,
FAROS monitors all load/mov instructions to check whether
they read the export table. Thus, whenever FAROS processes
a load/mov instruction that has a provenance list containing
a netflow tag, a process tag corresponding to the malicious
process (CR3), and a process tag corresponding to the target
process (CR3), and this instruction attempts to read the export
table (i.e. reads a memory location associated with an export-
table tag), FAROS flags this activity as an in-memory injection
attack. In other words, FAROS considers this instruction as
part of the DLL/process/code that has been copied into the
target process. In addition, FAROS outputs the address of
this instruction along with its provenance info, as shown in
Figure II.

One might argue that FAROS does not need to keep
the whole provenance information for the flagging criteria.
However, FAROS’ design goal is to give reverse engineers
enough information so that they can start their analysis, in case
an in-memory injection attack has been detected, and save the
analyst hours of reverse engineering effort. FAROS is not a
malware detector, but rather a reverse engineering tool, whose
main goal is to help an analyst to better understand in-memory
injection attacks. By providing provenance information, an
analyst can answer the following questions: (i) what the life
cycle of the malicious process looks like?; and (ii) where does
it come from? Such information can only be obtained via the
provenance lists.

Further, one may wonder whether there are other ways to
get a 1ibc function pointer that does not rely on the export
table. In practice, any pointers in a process’s memory that
would lead to a desired system service will likely have been
derived in some way from the kernel’s export tables that are
mapped into the process’s address space.

These insights show that defining attacks in terms of in-
formation flows allows analysis tools to better adapt their
operations against future and more sophisticated malware and
exploits.

C. Usage scenario

To use FAROS, an analyst needs to set up a Windows 7 VM,
start PANDA in recording mode (to enable instruction emu-
lation), and then run the malware he wants to analyze along
with any other applications or activities that he is interested
in observing inside the VM. Once the interesting activities are
completed, the analyst stops the PANDA recording mode and
initiates the PANDA replay of the recorded capture with the
FAROS plugin loaded and performing taint analysis. FAROS
will generate an output file indicating whether there are any in-
memory injection attacks. If such an attack has been captured,
FAROS provides the memory addresses of the instructions that
were captured as part of the malicious injected payload, along



Memory Address

Provenance List

0x83B07019 NetFlow: {src ip,port: 169.254.26.161:4444, dest ip.port:
0x83B07018 NetFlow: {src ip,port: 169.254.26.161:4444, dest ip.port:
0x83B07017 NetFlow: {src ip,port: 169.254.26.161:4444, dest ip.port:
0x83B07016 NetFlow: {src ip,port: 169.254.26.161:4444, dest ip.port:
0x83B07006 NetFlow: {src ip,port: 169.254.26.161:4444, dest ip.port:
0x83B07005 NetFlow: {src ip,port: 169.254.26.161:4444, dest ip.port

169.254.57.168:49162} ->Process: inject_client.exe ->Process: notepad.exe;

169.254.57.168:49162} ->Process: inject_client.exe ->Process: notepad.exe;

169.254.57.168:49162} ->Process: inject_client.exe ->Process: notepad.exe;

169.254.57.168:49162} ->Process: inject_client.exe ->Process: notepad.exe;

169.254.57.168:49162} ->Process: inject_client.exe ->Process: notepad.exe;

: 169.254.57.168:49162} ->Process: inject_client.exe ->Process: notepad.exe;

TABLE II: An example of FAROS output for a particular in-memory injection attack.

with the provenance list associated with each one of these
memory addresses (see Table II where the provided memory
addresses indicate the address of mov instructions that have
read the export table).

VI. EXPERIMENTAL EVALUATION

FAROS’ experimental evaluation considered three types of
advanced in-memory attacks, as described below.

Reflective DLL injection. We performed three reflective DLL
injection experiments using three different modules in Metas-
ploit [16]: reflective_dll_inject, reverse_tcp_dns, and bypas-
suac_injection. FAROS flagged these attacks successfully. The
experiment set-up and results for the attacks are as follows.

1) reflective_dll_inject: We used the Meterpreter mod-
ule in Metasploit. We set up two VMs (victim and
attacker), and put them in the same network. Then,
we set up Metasploit on the attacker machine, and
generated a Meterpreter shell code using Kali Linux
[17] to run on the victim machine. We ran the shell
code (inject_client.exe), in the victim machine to open
a session for the attacker, and then performed a remote
reflective DLL injection targeting notepad.exe from the
attacker machine using Metasploit. The injected DLL
only showed a pop-up message from the target process,
representing a successful injection.

Figure 7 shows the output of our system for this
experiment. A mov instruction has a provenance list
that shows this instruction is coming from the network,
then going to inject_client.exe and next to the target
process notepad.exe. Also, this instruction is reading the
memory address of 7fff0960 which is already tainted as
export-table. These two types of provenance information
coming together (netflow and export-table) represented
a true positive in-memory injection attack.
reverse_tcp_dns: The environment setup was the same
as the one used in the previous experiment. However,
in this experiment the shell code and the target pro-
cess were the same. Figure 8 depicts the result of
this experiment, where we can observe the same flow
of information as shown in the previous example —
netflow and export-table tags coming together at the
same memory location, thus enabling FAROS to flag
the tag confluence as an in-memory injection attack.

2)

Source IP:
169.254.26.161
Source port no: 4444
g Destination IP:
169.254.57.168
Destination port no:

NetFlow
\’ 49162
E— &
client.exe .exe
Export
Table

W/

Provenance list associated
with this memory address

Mov eax, [7fff0960]

Provenance list associated
with this instruction

Memory Address:
7fff0960

Fig. 7: Provenance tracking for reflective DLL injection using
the Meterpreter module.

Source IP:
169.254.26.161
Source port no: 4444
Destination IP:
169.254.57.168
Destination port no:
49156

Inject_
client.exe
Export
Table

7

Mov eax, [8f900ff7] NetFlow

P4

(

Provenance list associated
with this instruction

Memory Address:
8f900ff7

‘H

Provenance list associated
with this memory address

Fig. 8: Provenance tracking for reflective DLL injection using
the reverse_tcp_dns module.



Source IP:
169.254.26.161
Source port no: 4444

& Destination IP:
NetFlow 169.254.57.168
Destination port no:

\1 48186
I_nject_ Firefox.
client.exe exe
Export
Table

/

Provenance list associated
with this memory address

Mov eax, [5f8ff770]

Provenance list associated
with this instruction

Memory Address:
5f8ff770

Fig. 9: Provenance tracking for reflective DLL injection using
the bypassuac_injection module.

Process_
hollowing.
exe

Mov eax, [5ff280ff]

/

Provenance list associated
with this instruction

Table

Provenance list associated
with this memory address

Memory Address:
5ff280ff

Fig. 10: Provenance for hollow-

ing/replacement.

tracking process

3) bypassuac_injection: Similarly, we performed another
reflective DLL injection using the bypassuac_injection
module in Metasploit. The environment setup was the
same as in the previous experiments, however, the target
process was firefox.exe. Figure 9 represents the result of
this experiment. The results are similar to the previous
experiments.

Process hollowing/replacement. Our simulated attack used a
malware sample from Lab 3-3 [11], which performs process
replacement on svchost.exe to launch a keylogger. FAROS
successfully flagged the malware as memory injecting. Fig-
ure 10 shows the provenance list captured for this experiment.
This list shows the flow of data from process_hollowing.exe
to svchost.exe, and to the export table. In this list svchost.exe
is a child of process_hollowing.exe.

Java Applets AJAX websites

acceleration gmail.com
equilibrium maps.google.com
pulleysystem kayak.com
projectile netflix.com/top100
ncradle kiko.com
keplerlaw1 backpackit.com
inclplane sudokucarving.com
lever pressdisplay.com
keplerlaw?2 rpad.com

collision brainking.com

TABLE III: Java applets selected from http://www.walter-
fendt.de/phl4e/ and AJAX websites used in FAROS false
positive evaluation.

Code/Process injection. We used two real-world code-
injecting malware in this evaluation: DarkComet and Njrat
(for remote shell behavior). DarkComet is one of the most
popular Remote Administration Tools (RAT) in use today. This
RAT allows a user to control the system with a Graphical
User Interface (GUI). Njrat allows attackers to hack and steal
information from the victim machine. FAROS successfully
flagged the malware as in-memory injecting. Results for the
provenance list for these malware samples were similar to
those for the reflective DLL injection experiment.

A. False positive analysis

Languages that use JIT compilation (e.g., Java and .NET)
can be a source of false positive for FAROS. To analyze
FAROS’ false positive rate we tested it with 20 different Java
applets and AJAX websites. Table III shows the list of the Java
applets and websites we evaluated. FAROS flagged only two
of the Java applets (10%) as memory injecting. Java applets
operate similarly to memory injection attacks: the system
receives data over the network, which is linked and loaded
with export tables. However, JITs software (e.g., JAVA and
AJAX) is relatively uncommon and can be white-listed by an
analyst.

In addition, we evaluated FAROS’ false positive rate with
102 non-in-memory injecting malware samples and benign
software from different categories. FAROS produced a 0%
false positive rate. Table IV shows the list of malware samples
and benign software used in this evaluation along with their
associated behavior.

B. Comparison with CuckooBox

As FAROS focuses on flagging in-memory injection attacks,
we compared it with the most popular open source analysis
tool in this category. Cuckoo sandbox is an open-source
malware analysis system, which retrieves: (i) traces of system
and function calls made by the malware; (ii) files created
and modified by the malware; (iii) a memory dump of the
malware; (iv) network traffic traces; (v) screen shots, and (vi)
a full machine memory dump. It is also an expandable system
compatible with plugins such as Volatility and malfind.



Behavior

Idle Run | Audio Record | File Transfer

Program

Key logger | Remote Desktop | Upload | Download | Remote Shell

Real-world malware

Pandora v2.2

v

Darkcomet v5.3

Njrat v0.7

SNENENEN

Spygate v3.2

NENENEN
ANENENEN

Blue Banana

Blue Banana v2.0

Blue Banana v3.0

Bozok

Bozok v2.0

Bozok v3.0

ENENENENENENEN

DarkComet v5.1.2

DarkComet legacy

ENENEN

Extremerat v2.7.1

SNENENENENENENENENENENENEN

ANENENENENEN

Ispy

Jspy v2.0

SNENENENENENENENENENENENENENENEN

Jspy v3.0

Quasar v1.0

SNENENENENENENENENEN

Benign software

Remote Utility

ENIENENENENEN

TeamViewer

Win7-snipping tool

SN ENENENENENENENENENENENENENENENENENENENEN

ENENENEN
ENENENEN

Skype v

TABLE IV: FAROS’ false positive analysis dataset: Malware samples (non-in-memory injecting) and benign software along
with their behaviors. Each checkmark identifies a malware/benign sample behavior.

To analyze a Cuckoo sandbox memory dump, we used
the Volatility plugin. Similarly to the tests we performed
with FAROS, we tested Cuckoo sandbox with reflective DLL
injection, process hollowing/replacement, and process/code
injection. For these experiments, we ran Cuckoo sandbox
2.0.0 and Volatility 2.6 on Ubuntu 14.04. The guest VM
for Cuckoo sandbox was a 32-bit Windows 7 with 2 GB
of RAM. We analyzed Cuckoo sandbox with and without
malfind plugin.

Reflective DLL injection. We analyzed reflective DLL
injection attack via Cuckoo sandbox by observing a reflective
injector injecting a benign DLL into Explorer.exe. Without
the malfind plugin, we failed to identify a trace of our DLL
under the DLL list either under the injector or the victim
process which in this case was Explorer.exe. Although we
could find that both Explorer.exe and the DLL were referred
to separately by the injector in the injector trace, CuckooBox
could not flag the attack. Using the malfind plugin to analyze
the victim process, multiple reflective DLL injection memory
segments were found, which allowed the attack to be detected.
However, CuckooBox could not link the attack directly to the
DLL or the process injector. Furthermore, in this experiment,
CuckooBox could not trace the provenance of the injected
DLL back to a netflow record.

Process hollowing/replacement. Similarly to the reflective
DLL injection experiment, we setup Cuckoo sandbox to
analyze process hollowing as it injected a Hello World
program into svchost. We tried to analyze the attack using

the Volatility pslist command to list all the processes, but
we could not find the Hello World process in the process
list. However, having used vadinfo to examine each svchost,
we discovered that one of them was different from the rest,
which allowed attack detection. However, an analyst would
still not know anything about how the attack was conducted
and he would not have any provenance information related to
the attack.

Code/Process Injection. For code/process injection, we used
Cuckoo sandbox to analyze a bot program from a RAT,
while running the RAT server. We successfully found the
process in the memory dump list, and also with the trace
of the privilege of the bot program, we discovered that it
had unusual privileges. Using these insights along with the
package capture, we could identify it as a RAT. But again,
an analyst would be blind about how the attack was conducted.

In sum, even though Cuckoo sandbox can flag all attacks
with the malfind plugin, compared to FAROS, malfind does not
provide the following forensics information about the attack:
netflow, memory addresses, and full provenance history. As
malfind does not necessarily target in-memory-only attacks, its
underlying assumptions can be easily violated by such attacks.
More specifically, malfind assumes that the injected memory
has a certain structure and that this structure persists for a long
time to be captured in a memory dump. Lastly, the malfind
plugin provides the data that an analyst needs to find an in-
memory injection attack, but does not detect all types of in-
memory attacks automatically. FAROS gives visibility in a way
that no other tool does: into memory throughout the execution



Application Replay time w/o

FAROS (second)

Replay time w/ X
FAROS (second)

Skype 69 1260 18.2
Team Viewer 25 322 12.8
Bozok 7 50 7.1
Spygate 30 420 14
Pandora 4 28 7
Remote Utility 67 1320 19.7

TABLE V: Performance evaluation: PANDA vs PANDA +
FAROS

of a sandboxed VM environment. Thus, while it may be possi-
ble to evade FAROS’ specific policy for detecting in-memory
injection attacks, it will in turn be possible to update the policy
and even to do so proactively because of FAROS’ flexibility.
ROP (Return Oriented Programming) chains, techniques that
search for functions in memory to avoid tainted library linking
pointers, or methods to launder taint marks are examples of
evasion techniques that can be addressed by the policy given
to FAROS, because fundamentally they all happen in memory
and are based on information flow, which is exactly what
FAROS is designed to give visibility into. Because FAROS
is based on whole system taint analysis and generates rich
provenance tags, it has large flexibility in terms of what to
taint and how to propagate it, proving itself a general tool for
reverse engineering that can be adapted to emerging and future
attack techniques.

C. Performance Evaluation

Whole-system DIFT is intrinsically heavy-weight, and thus,
performance is not a priority for FAROS. Instead, FAROS’
design and implementation focused on providing a low false
positive rate. In spite of that, we have analyzed the perfor-
mance overhead of FAROS to PANDA.

All experiments were done on a system with an Intel
Core 17-6700K 4.00GHz processor, and 32G RAM running
on Ubuntu 14.04. The guest was Windows 7 Ultimate 32-
bit with 4GB memory. Table V shows the slowdown of
our system for seven random samples of software. FAROS
exhibited a 14x slowdown on average compared to PANDA
replay. In addition, PANDA replay is almost 4x slower than
standard QEMU [8], which makes FAROS’ slowdown a 14*4
= 56x compared to QEMU. Moreover, table V illustrates
that FAROS’ performance overhead depends on the workload.
PANDA recordings with more complex behavior have more
performance overhead.

D. Discussion and Limitations

Any automated malware analysis tool is vulnerable to
evasion by an attacker who has knowledge of the tool’s
technical details and has the time, resources, and motivation
to evade it. For example, FAROS maintains a large amount
of provenance information in the form of provenance tags.
An evasion technique could leverage this design to exhaust
FAROS’ memory.

Another example is the execution of code specifically

overhead gegioned to evade FAROS’ information flow tracking logic

(e.g., by using control flow dependencies), by generating a
great amount of tagged data, and by increasing FAROS’
performance/memory overhead to a level higher than the guest
system can handle. For example, because we do not directly
track control dependencies, a dedicated attack could copy data
bit-by-bit using an i f statement in a for loop that simply sets
zero-initialized bits to 1 only if they were 1 in the input. The
output produced by such a loop would be identical to the input
but would be untainted.

Further, an important caveat about FAROS’ current im-
plementation, is that FAROS currently requires the analyst
to identify the process to be analyzed. Reverse engineers
typically have a small set of processes of interest, but we still
plan to address this issue via performance improvements in
future work so that FAROS can analyze the whole system at
once in only one deterministic replay.

VII. RELATED WORK

Our work intersects the areas of reverse engineering, mal-
ware analysis, and DIFT. This section summarizes the state-
of-the-art in these areas, and highlights under-studied areas.

A. Reverse Engineering and Malware Analysis

Dynamic analysis tools, such as CWSandbox [18], Norman
Sandbox [19], Cuckoo Sandbox (namely, CuckooBox) [20],
and Anubis [21], were proposed for reverse engineers to ana-
lyze malware. These tools typically execute malware in a con-
trolled environment via sandbox techniques [22] and monitor
malware’s behavior via extracting system calls or API function
calls. However, these tools make assumptions about the mem-
ory layout used by the attack (e.g., the relevant memory will
be persistent) and do not provide full provenance information
about memory. Although CWSandbox hooks the APIs related
to the DLL library [23], it does not provide the meaningful and
comprehensive provenance information provided by FAROS.
The Volatility plugin for Cuckoo Sandbox is also specific to
only reflective DLL loading, and cannot flag other types of
in-memory injection attacks. To streamline dynamic malware
analysis, some tools adopt emulation and hardware-aided
visualization techniques. For example, Panorama [24] and
VMscope [25] were proposed as whole system QEMU-based
malware analysis systems [13]. Ether performs transparent
malware analysis leveraging hardware virtualization [26]. B.
Dolan-Gavitt et. al. developed a QEMU plugin (PANDA) to
automate vulnerability detection [27]. Bacs et al. [28] proposed
a semi-automated approach to recover infected systems via
DIFT. None of these aforementioned DIFT-based tools were
designed to detect advanced in-memory injection attacks, and
are, therefore complementary to FAROS.

B. DIFT

Most past works attempt to resolve the undertainting vs.
overtainting dilemma, rather than re-gaining accuracy lost
by the absence of handling indirect flows, such as FAROS



does. For example, in Suh et al. [6] address dependencies
are not propagated if the address is calculated using a scaled
index base (an x86 construct for calculating addresses). It
is debatable whether this is effective for even the simple
application considered in that paper of tainting network inputs
and checking control data transfers, and this heuristic is very
unlikely to be effective for other uses of DIFT. A scaled index
base is necessary for looking up 32-bit pointers (by shifting
the offset left by 2), but if the data of interest to DIFT is
strings or pixels, for examples, the heuristic does not apply.

In the Minos system [29], [30], address dependencies are
only propagated for 8- and 16-bit loads and stores, but not
for 32-bit loads and stores. Additionally, as an attempt to
mitigate control dependencies, 8- and 16-bit immediate values
(i.e., constants that are compiled into the program’s machine
code) were tainted automatically even if the code did not come
from a tainted source. Without these heuristics, there were
several attacks the authors tested that Minos would not have
been able to catch. Even with these heuristics, an existing
attack at the time (CVE-2003-0818, which was not designed
to evade Minos specifically) was not detected by Minos at the
control flow transfer because the exploit code caused a heap
link operation, involving 32-bit address dependencies, to link
a heap object into the control flow of the program without
using any base pointers that came from the tainted input [30].

More recent DIFT systems that are designed for flexibility
[31]-[33] enable address and/or control dependencies to be
tracked, but provide no satisfactory method for doing so in
practice. Panorama [24], for instance, relies on a human to
manually label which address and control dependencies tags
should be propagated. Other systems such as DTA++ [34] or
DYTAN [35] rely on off-line analysis, which does not scale
to full systems.

Systems designed with correctness as the primary goal,
such as RIFLE [36] or GLIFT [37], propagate all tags all
the time unless a compiler statically analyzes the information
flow and deems a particular operation safe. Fenton’s data mark
machine [38] suffers from the same problem. Specifically,
Fenton assumes that tainted information is only ever put in
tainted registers and untainted information is only ever put in
untainted registers, which implies that the compiler already
knows the taint information of every piece of data for every
program point because, the compiler needs to decide what type
of register to store any given piece of data in. TaintDroid [39]
detects data leakage of Android applications using variable-
level tracking within the VM interpreter. It does not track taints
for native code, and only applies a heuristic that propagates
taints from input arguments to that of the return value of
functions.

Other works have discussed the applicability of DIFT for
malware analysis. Cavallaro et al. [40] focused on the possibil-
ity of an attacker specifically evading DIFT. Because FAROS
focuses on posthoc attack analysis it does not address this
concern, since it assumes that the malicious code is not specif-
ically attempting to evade DIFT. More research is needed to
address these type of DIFT evading threats. Slowinska and Bos

[41] quantified the DIFT overtainting problem. FAROS does
not provide general-purpose tainting, which was the focus of
Slowinska and Bos’s analysis. Rather, FAROS shows that, for
certain applications, focusing on tag confluence can provide
good precision, overcoming the challenge of overtainting in a
per security policy fashion.

VIII. CONCLUSION

In this paper, we presented FAROS, a DIFT-based reverse
engineering tool, which can illuminate in-memory injection
attacks by leveraging the synergy of (i) whole-system taint
analysis; (ii) the mitigation of the inacuracy of traditional
DIFT in a per security policy fashion via the application
of tags of different types and observing their confluence as
attack invariants, and (iii) the use of tags with fine-grained
provenance information. FAROS accurately flagged all six
in-memory injection attacks evaluated in this paper, while
achieving a very low false positive (2%). FAROS not only
saves reverse engineers substantial time and effort in practice,
but also provides them with valuable information about any
in-memory injection attacks, including process information for
injecting and injected processes, relevant memory addresses,
and netflows.
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