
PIITracker: Automatic Tracking of Personally Identifiable
Information in Windows

Meisam Navaki Arefi
University of New Mexico

Albuquerque, New Mexico, USA
mnavaki@unm.edu

Geoffrey Alexander
University of New Mexico

Albuquerque, New Mexico, USA
alexandg@cs.unm.edu

Jedidiah R. Crandall
University of New Mexico

Albuquerque, New Mexico, USA
crandall@cs.unm.edu

ABSTRACT
Personally Identifiable Information (PII) is information that
can be used on its own or with other information to distinguish
or trace an individual’s identity. To investigate an application for
PII tracking, a reverse engineer has to put considerable effort to
reverse engineer an application and discover what an application
does with PII. To automate this process and save reverse engineers
substantial time and effort, we propose PIITracker which is a new
and novel tool that can track PII automatically and capture if any
processes are sending PII over the network. This is made possible by
1) whole-system dynamic information flow tracking 2) monitoring
specific function and system calls. We analyzed 15 popular chat
applications and browsers using PIITracker, and determined that
12 of these applications collect some form of PII.

CCS CONCEPTS
• Security and privacy→ Software security engineering;

KEYWORDS
Privacy, Reverse Engineering, Dynamic Information Flow Tracking
ACM Reference Format:
Meisam Navaki Arefi, Geoffrey Alexander, and Jedidiah R. Crandall. 2018.
PIITracker: Automatic Tracking of Personally Identifiable Information in
Windows. In EuroSec’18: 11th European Workshop on Systems Security , April
23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3193111.3193114

1 INTRODUCTION
Personally Identifiable Information (PII) is information that can be
used on its own or along with other information to distinguish or
trace an individual’s identity. Other information that is linkable to
an individual, such as a MAC address or hard drive serial number,
also counts as PII. As users face new threats to their privacy and
anonymity, VPNs and anonymity tools such as Tor [14] are becom-
ing increasingly popular. However, applications that send PII over
the network still pose a threat to user privacy and anonymity.

In this paper, we propose PIITracker, a reverse engineering tool
for automatic tracking of PII. PIITracker can determine whether
an application is collecting PII, and, if so, does it send it out over

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EuroSec’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5652-7/18/04.
https://doi.org/10.1145/3193111.3193114

the network. PIITracker is based on dynamic information flow
tracking (DIFT) [29], also known as Dynamic Taint Analysis [22],
which is a promising technology for making systems transparent. It
works by tagging certain inputs or data with meta information and
then propagating tags as the program or system runs, usually at the
instruction level, so that the transparency of the flow of information
can be achieved.

The PII that we have investigated in this paper are (1) MAC
address, (2) hard drive serial number, (3) hard drive model name,
(4) volume serial number, (5) host name, (6) computer name, (7)
security identifier number (SID), (8) CPU model, and (9) Windows
version and build.

Our goal is to develop a tool that can automatically reveal how a
Windows application treats PII and determine whether an applica-
tion sends any form of PII out using the network. For this end, we
have three requirements. (i) We must be to able to monitor reading
of PII by the application. As an input to our system, we need to
know when and where PII may be read. (ii) We must be able to
track PII throughout the system. Applications often read PII but
use it for other purposes, never sending it our over the network.
(iii) We must be able to automatically analyze an application and
return the result back to the analyst.

To fulfil these requirements, we have developed PIITracker as a
plugin for PANDA [15], which is a framework for dynamic analysis.
We have monitored specific function and system calls to track
reading PII, and we have used PANDA’s taint analysis engine to
track PII throughout the system.

In summary, this paper presents the following contributions:

• We propose PIITracker, a DIFT-based reverse engineering
tool for PII tracking, which can automatically track PII and
capture if a process sends any form of PII over the network.
• We implement PIITracker as a PANDA plugin supporting
Windows 7 as the guest operating system. We also make
PIITracker open source for the community, which is available
for public download.
• Weanalyze 15 popularWindows applications using PIITracker.
Our analysis show that the majority of these application col-
lect some form of PII and send it over the network.

The paper is organized as follows. Section 2 provides background
information on dynamic information flow tracking systems. Section
3 discusses PIITracker architectural design and implementation
details. Section 4 presents our experimental results, analysis of false
positives and false negatives, as well as performance evaluation.
Section 5 discusses related works and finally section 6 concludes
the paper.

https://doi.org/10.1145/3193111.3193114
https://doi.org/10.1145/3193111.3193114
https://doi.org/10.1145/3193111.3193114


EuroSec’18, April 23–26, 2018, Porto, Portugal M. Navaki Arefi et al.

x = y + 1;

(a) Direct flow.

x = 0;
if (y == 1)

x = 1;

(b) Indirect flow.

Figure 1: Examples of direct and indirect flow

const char str1 = "Tainted string";
char str2[80];
char lookuptable[256];
for (i = 0; i < 256; i++)

lookuptable[i] = i;
for (j = 0; j < strlen(str1); j++)

str2[j] = lookuptable[str1[j]];

Figure 2: An example of address dependencies in C code

2 BACKGROUND - DIFT
Dynamic Information Flow Tracking (DIFT) [29], also called dy-
namic taint analysis [22], has been used for over a decade but has
still seen limited application in real reverse engineering tasks. DIFT
works by tagging certain inputs or data and then propagating tags
as the program or system runs. In this way the information flow of
a program can be determined.

There are two main types of flows that DIFT systems can track:
direct and indirect [29]. Direct flows are data-flow based, while
indirect flows are control-flow based. For example, in Fig. 1a, there
is a direct flow from y to x . However, in Fig. 1b, the value of x is
dependent on y, meaning that there is an indirect flow from y to x .

There are two types of direct flows: copy and computation depen-
dencies. In a copy dependency, a value is copied from one location
to another, where a location can be a byte, a word of memory or a
CPU register. The simplest way to track this information flow is to
propagate the tag so that the destination location is tainted with the
same tag as the source location. In computation dependencies, tags
must be combined. For example, after the computation for x = y+z
the tag for x should contain the union of the tags for y and z; or, in
single-bit tag DIFT systems, x should be tainted if either y or z is
tainted.

An indirect flow occurs when information dependent on program
input determines how information flows. There are two types of
indirect flows: address and control dependencies. Figure 2 provides
an example of address dependencies. In this figure, if the characters
in str1 are tainted then the characters in str2 at the end should
also be tainted, because they carry the exact same information. This
arises in real reverse engineering tasks in everything from special
handling of ASCII control characters to ASN.1 encodings. The only
way to ensure that str2 is properly tainted is to propagate tags
through the address dependency where str1[j] is used as an offset
to index into lookuptable.

Control dependencies, illustrated in Figure 3, present a dilemma
for all existing DIFT systems. In Figure 3 taintedinput is copied
to untaintedoutput bit by bit. Information flows one bit at a time
through the control dependency in the if statement. Control de-
pendencies can also arise in real reverse engineering applications,

char taintedinput;
char untaintedoutput = 0;
for (bit = 1; bit < 256; bit <<= 1){

if (bit & taintedinput)
untainedoutput |= bit;

}

Figure 3: An example of control dependencies in C code

but how to handle them in a purely dynamic environment is still
an open area of resaearch. See Espinoza et al. [17] for more details.

The taint2 PANDA plugin that we utilize in this paper tracks
direct flows in the standard fashion (by copying or combining taint
tags). It also handles one type of indirect flow, namely address de-
pendencies. It achieves this by propagating the taint from addresses
used to load data used in computations or copies. The taint2 plugin
does not handle control dependencies. One of the interesting results
of our paper is that tracking address dependencies, but not control
dependencies, is sufficient to handle common operations applied to
PII such as encryption and hashing.

3 IMPLEMENTATION AND DESIGN
This section describes in details PIITracker architectural design and
implementation details.

3.1 Architecture
PIITracker was implemented as a plugin to PANDA [15, 33] which is
an open-source platform for dynamic analysis. PANDA is built upon
the QEMU whole-system emulator [5]. PANDA added to QEMU
three main features:

(1) The ability to record and replay executions to enable whole
system analysis.

(2) An architecture to streamline the addition of other plugins
to QEMU.

(3) The ability to use LLVM [26] as QEMU’s intermediate lan-
guage instead of TCG [4] for analysis.

Figure 4 shows an overview of the PIITracker architecture. PI-
ITracker runs on top of Linux (we used Ubuntu 14.04 for develop-
ment and testing) as the host OS, and supports Windows 7 32-bit as
the guest OS. PIITracker interacts with three other plugins, namely
taint2, syscalls2 and OSI/Win7x86intro which are described below:
• taint2: This plugin tracks information flow throughout the
system via whole-system taint analysis. It provides APIs
and callbacks to tag memory locations and later query a
memory location to find out what tags it has. The taint2
plugin is implemented by translating TCG code to LLVM
and then inserting extra LLVM operations to propagate taint
as instructions execute [33].
• syscalls2: This plugin provides callbacks that allow notifi-
cations whenever system calls are invoked in the guest. We
have modified the syscalls2 plugin to add hooks and monitor
network sockets for the outgoing network flows using the
NtDeviceIoControlFile system call.
• OSI/Win7x86intro: This plugin provides callbacks when-
ever a process-related event happens in the system, such as



PIITracker: Automatic Tracking of Personally Identifiable Information in Windows EuroSec’18, April 23–26, 2018, Porto, Portugal

the start/end of a new process. It also provides APIs to get
information about the current process.

Figure 4: PIITracker architecture.

3.2 Placing Hooks
In order to track PII, we first need to add hooks to monitor any read-
ing of PII. For this purpose, we have utilized Windows API function
calls and system calls as hooks. Thus, once a specific function or
system call occurs we get a callback and we parse the arguments
of that function or system call and get the memory address of
the desired argument. Then we taint that memory location using
the taint2 plugin API. For instance, once the target process calls
GetAdaptersAddresses, we taint the memory location of the returned
MAC address with a unique tag that indicates MAC address.

To monitor function calls, we have parsed the export table to
get a callback once a function gets called. This callback includes
the function name along with its arguments. Table 1 shows what
function and system calls are used for each PII data point.

3.3 Query
To monitor the outgoing network traffic, PIITracker uses the NtDe-
viceIoControlFile system call. All device communications that we
are concerned with utilize this system call. We parse the arguments
of this system call to get the memory address of the outgoing TCP
or UDP buffers. Then we query the memory address of every byte
in that buffer, using a taint2 plugin API, to determine if it has any
tags. If so, we log the memory address, the destination IP address,
along with the tags associated with that byte.

3.4 Usage scenario
To use PIITracker, an analyst needs to set up aWindows 7 VM, start
the PANDA recording mode, and then run theWindows application
they want to analyze inside the VM. Once the interesting activities
are completed, the analyst stops the recording mode and initiates
the PANDA replay of the recorded capture with the PIITracker
plugin loaded. As a plugin input argument, analyst can specify a
target process that they are interested in tracing its PII activities.
Eventually, PIITracker generates an output file indicating whether
the target process has sent any form of PII over the network. If
such an activity is captured, PIITracker also provides the relevant
memory addresses of the PII, the destination IP address, along with
the full tag list of every byte.

>> The following PII are going over the network:
MAC, Volume Serial Number, Hard Drive Serial Number

>> Target process: baidu-browser.exe
>> Destination address: 103.235.46.114
>> See below for details:
Memory Address | Taint Labels
---------------------------------
134203702 | Hard Drive Serial Number,
134203706 | Hard Drive Serial Number,
134203710 | Hard Drive Serial Number,
134203714 | Hard Drive Serial Number,
131910452 | MAC Address, Volume Serial Number,
131910456 | MAC Address, Volume Serial Number,
131910460 | MAC Address, Volume Serial Number,
131910464 | MAC Address, Volume Serial Number,

Figure 5: A sample output of PIITracker.

Figure 5 shows the actual output of PIITracker once it captures
PII going out over the network.

4 EXPERIMENTAL EVALUATION
This section presents the results we obtained when evaluating
PIITracker‘s effectiveness in capturing of PII by Windows applica-
tions. We have investigated 15 popular Windows applications using
PIITracker. In addition, we have conducted several experiments
to show the correctness of our tool. We have also evaluated the
performance overhead of PIITracker compared to PANDA.

4.1 Analyzing Popular Windows Applications
We have investigated 15 popular Windows applications (see Ta-
ble 2 column 1), mostly chat applications and web browsers. We
have used the last version of these applications at the time of pa-
per submission. Using PIITracker, we determined that 12 of these
applications collect some form of PII, meaning that they send PII
over the network.

Table 2 shows our results using PIITracker. It shows whether
applications collect or read the PII. In case an application collects
the PII, PIITracker provides the destination address of the outgoing
PII. As we can see, most of these applications collect some form of
PII. The chat applications that we could not find any serious PII-
related privacy issues were Telegram and Viber. In addition, our
study showed that all Chinese chat and web browser applications
that we investigated collect some form of PII.

In addition, our results show that Firefox and Chromimum also
collect some form of PII. We verified that Chromimum actually
sends this information over the network by reading in the source
code that there is a GetMachineID function that creates a machine
ID using the volume serial number and security identifier number,
which is then sent to Google.

4.2 False Positive and False Negative Analysis
To evaluate the correctness of PIITracker we have conducted sev-
eral experiments which can be represented in the following two
categories:
• Comparison with previous works: We have compared
our results with the results of other researchers who have



EuroSec’18, April 23–26, 2018, Porto, Portugal M. Navaki Arefi et al.

PII data point Monitored function and system calls

MAC address GetAdaptersInfo, GetAdaptersAddresses, NtDeviceIoControlFile
Hard Drive Serial Number NtDeviceIoControlFile, ZwDeviceIoControlFile, DeviceIoControlFile
Hard Drive Model Name NtDeviceIoControlFile, ZwDeviceIoControlFile, DeviceIoControlFile
Volume Serial Number GetVolumeInformation, GetVolumeInformationByHandle,
Host Name gethostname
Computer Name GetComputerName, GetComputerNameEx
Security Identifier Number (SID) LookupAccountName, LookupAccountNameLocal
CPU Model GetSystemInfo
Windows Version and Build GetVersion, GetVersionEx

Table 1: Hook placement in PIITracker.

XXXXXXXXXApplication
PII Network

MAC
Address

Hard
Drive
Serial
Number

Hard
Drive
Model
Name

Volume
Serial
Number

Host
Name

Computer
Name

Security
Identifier
Number

CPU
Model

Windows
Version
and
Build

Destination address

[1] Baidu Browser
V7.6.100.2089

Yes Yes Yes Yes Read No Yes Yes Yes *.br.baidu.com

[2] QQ Browser
V9.2.5748.400

Yes Yes Yes No Yes No Read Yes Yes wup.imtt.qq.com

[3] UC Browser
V5.5.10106.5

No Yes Read Yes Read Yes Read Yes Yes uc.ucweb.com

[4] 360 Secure
Browser V9.1.0.358

No Yes Yes No No Read Yes Read Read dd.browser.360.cn

[5] WeChat V2.6.0.56 Yes No No No Yes Yes No No Yes qq.com
183.232.96.107

[6] Tencent QQ Inter-
national V2.11

Yes Read Yes No Read No No Read Read 203.205.144.238

[7] Viber V7.5.0.97 No No No No No Read No Read Yes content.cdn.viber.com
[8] Line V5.4.2.1560 No Yes Read No No No No No Yes webmaster.naver.com
[9] Telegram V1.1.23 No No No No No No No No No NA
[10] IMO V1.1.2 No No No Read No No Yes Yes Yes 192.12.31.77

38.90.96.67(PageBites
Inc.)

[11] KakaoTalk
V2.6.3.1672

Read Read Read Read No Read Yes Read Read app.pc.kakao.com

[12] Firefox V57.0.3 No Read Yes Read No Read Yes Read Yes 184.51.0.249 (detect-
portal.firefox.com)

[13] Internet Ex-
plorer V8.0.7601

No No No No No No Yes Yes Yes 204.79.197.200 (Mi-
crosoft)

[14] Chromium
V63.0.3239.108

No Read Read Yes No Read Yes Read Yes 172.217.12.3 (Google
Inc.)

[15] Mullvad No No No No No No No Read Read NA
Table 2: Results of analyzing Windows applications using PIITracker. “No” means that the application does not read the data
point and thus does not send it over the network. “Yes” means the application collects that data point. “Read” means the
application only reads the data point, but does not send it out over the network.

already manually reverse-engineered the Windows applica-
tions under study in this paper. To the best of our knowledge,
only three of them had previously been reverse-engineered
for PII tracking, namely QQ Browser, UC Browser, and Baidu

Browser. We have compared our results in these applications
with the results in [11, 23–25]. We were able to verify the pre-
vious results about these three applications using PIITracker.



PIITracker: Automatic Tracking of Personally Identifiable Information in Windows EuroSec’18, April 23–26, 2018, Porto, Portugal

• EvaluatingPIITracker via our owndevelopedWindows
applications:Wedeveloped three test applications that read
some PII with different settings and send them over the net-
work. The three applications developed were:

(1) An application that reads hard drive serial number and
encrypts it using AES256-CBC and then sends it over the
network.

(2) An application that reads hard drive serial number and
encrypts it using AES256-CBC and then creates a MD5
hash of that ciphertext and sends it over the network.

(3) An application that reads a combination of PII, but does
not send them over the network.

We ran PIItracker against the above-mentioned test appli-
cations, and it worked as expected. PIITracker successfully
determined that hard drive serial number is going over the
network in the first and second test applications, and also
correctly did not discover any PII going over the network.

4.3 Performance Evaluation
Whole-system information flow tracking is intrinsically heavy-
weight, and thus performance has not been a priority for PIITracker.
Instead, we have focused on the accuracy and correctness of PI-
ITracker. However, we have evaluated the performance overhead of
PIITracker compared to PANDA. We have recorded the replay time
in PANDA, once without PIITracker and once with PTTTracker
loaded for six random applications, and thenmeasured the overhead
for each PANDA recording.

Table 3 illustrates the slowdown of PIITracker compared to
PANDA. PIITracker exhibited a 67X slowdown on average com-
pared to PANDA replay. Additionally, table 3 illustrates that PI-
ITracker performance overhead depends on the workload of the
recorded application. In other words, PANDA recordings with more
complex behavior present more performance overhead.

Experimental Setup All experiments were done on a system
with an Intel Core i7-6700K 4.00GHz processor, and 32G RAM
running on Ubuntu 14.04. The guest was Windows 7 Ultimate 32-
bit.

5 RELATEDWORKS
Our research intersects with reverses engineering, DIFT, and pri-
vacy. Thus, in this section we summarize the previous works in
these areas and highlight their features.

5.1 Reverse Engineering
Reverse engineering tools, such as CWSandbox [34], Norman Sand-
box [3], Cuckoo Sandbox (or, CuckooBox) [2], and Anubis [1], focus
on malware. The emphasis of these tools is on sandboxing the ma-
licious code [20], identifying it, and extracting markers such as
domain names. PIITracker is built on PANDA [15], and the em-
phasis is on using information flow tracking to detect leaks of PII.
Panorama [35] and VMscope [21] were proposed as whole system
QEMU-based malware analysis systems [5]. Ether was proposed to
perform transparent malware analysis based on the extension of
hardware virtualization [13].

In some cases exfiltration of data, such as passwords or credit
card numbers, is tracked with DIFT, but with a focus on malware.

Because these systems look for specific things and our focus is on
widely used applications which requires a broader view of infor-
mation flow, where there are many possibilities for how PII can be
leaked. This is in contrast to malware analysis, where often there
is a specific prescribed information flow (e.g., a key logger).

5.2 Dynamic Information Flow Tracking
Most early DIFT systems ignore indirect flows, or use simple heuris-
tics. In Suh et al. [29] address dependencies are not propagated if
the address is calculated using a scaled index base (an x86 construct
for calculating addresses). In Minos [9, 10], address dependencies
are only propagated for 8- and 16-bit loads and stores, but not for
32-bit loads and stores. Additionally, as an attempt to mitigate con-
trol dependencies, 8- and 16-bit immediate values (i.e., constants
that are compiled into the program’s machine code) were tainted
automatically even if the code did not come from a tainted source.
TaintCheck [27] and Vigilante [8] ignore indirect flows.

More recent DIFT systems either are designed for flexibility but
offer no policies that address indirect flows [6, 12, 22, 28, 32], or are
overly conservative in how they handle indirect flows [18, 30, 31].

5.3 Privacy
TaintDroid [16] detects data leakage of Android applications using
variable-level tracking within the VM interpreter. It does not track
taints for native code, and only applies a heuristic that propagates
taints from input arguments to that of the return value of functions.
Vision [19] is an extension of TaintDroid to detect indirect informa-
tion flows. TaintEraser [36] identifies whether an application leaks
sensitive data such as password and credit card numbers in Win-
dows, but they require users to manually specify what actually is a
password or credit card number. Continella et al. [7] proposes an
obfuscation-resilient privacy leak detection approach for Android
applications based on a black-box differential analysis technique.
To the best of our knowledge, none of the previous works track PII
in Windows in an automatic fashion.

6 CONCLUSION
In this paper, we presented PIITracker, a novel tool for tracking
personally identifiable information (PII) in Windows by leveraging
the synergy of whole-system taint analysis and monitoring spe-
cific function and system calls. Using PIITracker, we analyzed 15
popular Windows applications and showed that the majority of
these applications collect some form of PII. PIITracker not only
saves reverse engineers substantial time and effort in practice, but
also provides valuable information including the relevant memory
addresses of leaked PII, as well as network socket info. PIITracker
demonstrates that DIFT can be a useful tool in a reverse engineer’s
toolbox.

ACKNOWLEDGEMENTS
This material is based on research supported by the U.S. National
Science Foundation under grant Nos. #1518878 and #1518523. We
would like to thank the anonymous EuroSec reviewers for their
valuable comments to improve our paper. We would also like to
thank Antonio Espinoza for commenting on drafts.



EuroSec’18, April 23–26, 2018, Porto, Portugal M. Navaki Arefi et al.

Application Number of Instructions Replay time w/o PIITracker Replay time w/ PIITracker X overhead
QQ Browser 2281062205 45s 46m 62X
UC Browser 763167441 18s 21m 72X
Baidu Browser 825742849 20s 22m 66X
360 Secure Browser 1085848918 22s 26m 65X
Tencent QQ International 1551545206 24s 26m 68X
WeChat 3476153268 32s 37m 69X

Average = 67X
Table 3: Performance evaluation: PANDA vs PANDA + PIITracker

REFERENCES
[1] Accessed May 13, 2017. Anubis. http://anubis.iseclab.org/. (Accessed May 13,

2017).
[2] Accessed May 13, 2017. Cuckoo Sandbox. https://cuckoosandbox.org/. (Accessed

May 13, 2017).
[3] Accessed May 13, 2017. Norman Sandbox. http://download.norman.no/\product_

sheets/eng/SandBox_analyzer.pdf. (Accessed May 13, 2017).
[4] Accessed May 13, 2017. Tiny Code Generator (TCG). http://wiki.qemu.org/

Documentation/TCG. (Accessed May 13, 2017).
[5] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In Pro-

ceedings of the annual conference on USENIX Annual Technical Conference. ACM,
Berkeley, CA.

[6] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dy-
namic Taint Analysis Framework. In Proceedings of the 2007 International Sym-
posium on Software Testing and Analysis (ISSTA ’07). ACM, New York, NY, USA,
196–206. https://doi.org/10.1145/1273463.1273490

[7] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti,
Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-resilient
privacy leak detection formobile apps through differential analysis. In Proceedings
of the ISOC Network and Distributed System Security Symposium (NDSS). 1–16.

[8] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou,
Lintao Zhang, and Paul Barham. 2005. Vigilante: End-to-end containment of
internet worms. In ACM SIGOPS Operating Systems Review, Vol. 39. ACM, 133–
147.

[9] Jedidiah R. Crandall and Frederic T. Chong. 2004. Minos: Control Data Attack
Prevention Orthogonal to Memory Model. MICRO (December 2004), 221–232.

[10] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. 2006. Minos: Architec-
tural support for protecting control data. ACM Trans. Archit. Code Optim. 3, 4
(2006), 359–389. https://doi.org/10.1145/1187976.1187977

[11] Jakub Dalek, Katie Kleemola, Adam Senft, Christopher Parsons, Andrew
Hilts, Sarah McKune, Jason Q. Ng, Masashi Crete-Nishihata, John Scott-
Railton, and Ron Deibert. 2015. Privacy and Security Issues with UC
Browser. (2015). Retrieved Febrarury 2018 from https://citizenlab.ca/2015/
05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/

[12] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha: A Flexible
Information Flow Architecture for Software Security. In Proceedings of the 34th
Annual International Symposium on Computer Architecture (ISCA ’07). ACM, New
York, NY, USA, 482–493. https://doi.org/10.1145/1250662.1250722

[13] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: Mal-
ware Analysis via Hardware Virtualization Extensions. In Proceedings of the 15th
ACM conference on Computer and communications security.

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.

[15] B. F. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. 2014. Repeatable
Reverse Engineering for the Greater Good with PANDA. In Columbia University
Computer Science Technical Reports. New York.

[16] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[17] Antonio M Espinoza, Jeffrey Knockel, Pedro Comesaña-Alfaro, and Jedidiah R
Crandall. 2016. V-DIFT: Vector-Based Dynamic Information Flow Tracking
with Application to Locating Cryptographic Keys for Reverse Engineering. In
Availability, Reliability and Security (ARES), 2016 11th International Conference on.
IEEE, 266–271.

[18] J. S. Fenton. 1973. Information Protection Systems. In Ph.D. Thesis, University of
Cambridge.

[19] Peter Gilbert, Byung-Gon Chun, Landon P Cox, and Jaeyeon Jung. 2011. Vision:
automated security validation of mobile apps at app markets. In Proceedings of
the second international workshop on Mobile cloud computing and services. ACM,

21–26.
[20] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi, and Davide

Balzarotti. 2015. Needles in a Haystack: Mining Information from Public Dynamic
Analysis Sandboxes for Malware Intelligence. In Proceedings of the 24th USENIX
Security Symposium.

[21] Xuxian Jiang and Xinyuan Wang. 2007. “Out-of-the-BoxâĂİ Monitoring of VM-
Based High-Interaction Honeypots. In International Workshop on Recent Advances
in Intrusion Detection.

[22] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propaga-
tion. In Proceedings of the 18th Annual Network and Distributed System Security
Symposium. San Diego, CA.

[23] Jeffrey Knockel, Sarah McKune, , and Adam Senft. 2016. Privacy and Security
Issues with Baidu Browser. (2016). Retrieved Febrarury 2018 from https://
citizenlab.ca/2016/02/privacy-security-issues-baidu-browser/

[24] Jeffrey Knockel, Adam Senft, and Ron Deibert. 2016. Privacy and Security Issues
in QQ Browser. (2016). Retrieved Febrarury 2018 from https://citizenlab.ca/2016/
03/privacy-security-issues-qq-browser/

[25] Jeffrey Knockel, Adam Senft, and Ronald J Deibert. 2016. Privacy and Security
Issues in BAT Web Browsers.. In FOCI.

[26] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization.

[27] James Newsome and Dawn Song. 2005. Dynamic taint analysis: Automatic
detection, analysis, and signature generation of exploit attacks on commodity
software. In In In Proceedings of the 12th Network and Distributed Systems Security
Symposium. Citeseer.

[28] Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim, Yuanyuan Zhou, and Youfeng
Wu. 2006. LIFT: A Low-Overhead Practical Information Flow Tracking System
for Detecting Security Attacks. MICRO-39 (December 2006), 135–148.

[29] G. Edward Suh, Jaewook Lee, and Srinivas Devadas. 2004. Secure Program
Execution via Dynamic Information Flow Tracking. In Proceedings of ASPLOS-XI.

[30] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. 2009. Complete information flow tracking from
the gates up. SIGPLANNot. 44, 3 (2009), 109–120. https://doi.org/10.1145/1508284.
1508258

[31] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme
Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and David I. August.
2004. RIFLE: An Architectural Framework for User-Centric Information-Flow
Security. In Proceedings of the 37th International Symposium on Microarchitecture
(MICRO). citeseer.ist.psu.edu/711861.html

[32] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. 2008.
FlexiTaint: A programmable accelerator for dynamic taint propagation.. In HPCA.
IEEE Computer Society, 173–184.

[33] Ryan Whelan, Tim Leek, and David Kaeli. 2013. Architecture-Independent
Dynamic Information Flow Tracking. In Proceedings of the 22nd International
Conference on Compiler Construction (CC’13). Springer-Verlag, Berlin, Heidelberg,
144–163.

[34] Carsten Willems, Thorsten Holz, and Felix Freiling. 2007. Toward Automated
Dynamic Malware Analysis Using CWSandbox. In IEEE Security and Privacy.

[35] Heng Yin, Dawn Song, Manuel Egele, and Engin Kruegel, Christopher a nd Kirda.
2007. Panorama: capturing system-wide information flow for malware detection
and analysis. In CCS ’07: Proceedings of the 14th ACM conference on Computer and
communications security. ACM, New York, NY, USA, 116–127. https://doi.org/10.
1145/1315245.1315261

[36] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
2011. TaintEraser: Protecting sensitive data leaks using application-level taint
tracking. ACM SIGOPS Operating Systems Review 45, 1 (2011), 142–154.

http://anubis.iseclab.org/
https://cuckoosandbox.org/
http://download.norman.no/\ product_sheets/eng/SandBox_analyzer.pdf
http://download.norman.no/\ product_sheets/eng/SandBox_analyzer.pdf
http://wiki.qemu.org/Documentation/TCG
http://wiki.qemu.org/Documentation/TCG
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1187976.1187977
https://citizenlab.ca/2015/05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/
https://citizenlab.ca/2015/05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/
https://doi.org/10.1145/1250662.1250722
https://citizenlab.ca/2016/02/privacy-security-issues-baidu-browser/
https://citizenlab.ca/2016/02/privacy-security-issues-baidu-browser/
https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/
https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/
https://doi.org/10.1145/1508284.1508258
https://doi.org/10.1145/1508284.1508258
citeseer.ist.psu.edu/711861.html
https://doi.org/10.1145/1315245.1315261
https://doi.org/10.1145/1315245.1315261

	Abstract
	1 Introduction
	2 Background - DIFT
	3 Implementation and Design
	3.1 Architecture
	3.2 Placing Hooks
	3.3 Query
	3.4 Usage scenario

	4 Experimental Evaluation
	4.1 Analyzing Popular Windows Applications
	4.2 False Positive and False Negative Analysis
	4.3 Performance Evaluation

	5 Related Works
	5.1 Reverse Engineering
	5.2 Dynamic Information Flow Tracking
	5.3 Privacy

	6 Conclusion
	References

