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Abstract
In this paper we demonstrate a side-channel technique to
infer whether two machines are exchanging packets on
the Internet provided that one of them is a Linux ma-
chine. For ICMP and UDP exchanges, we require that
at least one machine is a Linux machine, and for TCP
connections, we require that at least the server is a Linux
machine. Unlike many side-channel measurement tech-
niques, our method does not require that either machine
be idle. That is, we make no assumptions about either
machines’ traffic patterns with respect to other hosts on
the Internet. We have implemented our technique, and
we present the results of a proof-of-concept experiment
showing that it can effectively measure whether hosts are
communicating.

1 Introduction
One of the most basic assumptions that privacy and anti-
censorship technologies commonly make is that it is not
possible for an adversary to count the packets sent from
one machine to another on the Internet without being in
the routing path between the two machines. In this paper
we challenge this basic assumption.

Every IPv41 packet has a 16-bit field called an IP iden-
tifier (IPID). If an IP packet is too large to travel over a
link, it may be broken up into smaller fragments that are
then sent over that link. The final destination is able to re-
assemble the original datagram by collecting all incom-
ing fragments into a fragment cache and using the IPID
to determine which fragments belong to which original
datagram.

Different machines use varying algorithms for assign-
ing an IPID to outgoing packets. Some machines such as
Windows assign IPID’s by using a global IPID counter.
For every outgoing packet, the value of this counter is as-
signed to the outgoing packet’s IPID, and the counter is

1Hereafter referred to simply as IP, as we make no claims about
IPv6.

then incremented so that the next outgoing packet’s IPID
will be plus one (mod 216).

Antirez [1] proposed a technique called an “idle scan”
that uses the global IPID as a side channel to scan
ports. In this method, an “attacker” attempts to discover
whether a port on a “victim” is open or closed. By utiliz-
ing information flow between the status of the victim’s
port and the global IP identifier counter of a “zombie,”
the attacker infers whether the victim’s port is open with-
out having to send any packets to the victim containing
the attacker’s address. The attacker instead sends TCP
SYN’s spoofed from the zombie to the victim, faking a
connection request from the zombie to the victim. If the
victim’s port is open, the victim will send a TCP SYN-
ACK to the zombie, attempting to complete the connec-
tion. However, the zombie, never actually initiating the
connection, will send a TCP RST to the victim. Sending
the RST increments the zombie’s global IPID counter,
which the attacker can measure.

In addition to assuming that the zombie has a global
IPID counter, this scan also assumes that the zombie is
idle, i.e., that the zombie would not otherwise be sending
any packets. This is so that increases to the zombie’s
global IPID counter can be unambiguously attributed to
RST’s sent by the zombie to the victim.

Before this scan’s discovery, the Linux kernel had a
global IPID counter, but in response to its discovery,
the kernel’s developers replaced the global IPID counter
with two new types of counters which we refer to as per-
connection and per-destination counters. Per-connection
counters are counters that the kernel maintains for each
TCP connection, whereas per-destination counters are
counters used for all other packets outside of connec-
tions. The kernel maintains a per-destination counter for
each host it recently sent packets to in a cache. It was be-
lieved that this implementation defeated Antirez’s scan,
since any reset packets sent from the zombie to the vic-
tim will draw from a different counter than the attacker’s
counter.
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Figure 1: Selected illustrations of packets we send at different stages of our algorithm to L orM.

In this paper, we will show how to infer a Linux ma-
chine’s per-destination counters using a different side
channel. We utilize the information flow between a
Linux machine L’s per-destination IPID counter for ma-
chine M and M’s fragment cache. Discovering the
value of per-destination counters reintroduces the pos-
sibility of idle scans and eliminates the requirement that
the zombie be idle. Moreover, it also introduces a new
attack where the existence of ICMP, UDP, and TCP
communication between L and M can be inferred,
and the number of packets sent in a given time period
can be counted.

The rest of the paper is structured as follows: we ex-
plain our method for inferring per-destination counters
and inferring communication between L andM in Sec-
tion 2. We then describe our proof-of-concept experi-
ment and its results in Section 3, followed by related
work in Section 4, and our discussion and our conclu-
sions in Section 5.

2 Implementation
To measure communication between L and M, our
method first infers the value of L’s per-destination
counter forM, which we call CL→M. At a high level,
this consists of the following (see Figure 1 for an illus-
tration):

1. We place fragments called canaries in M’s frag-
ment cache by sending fragments spoofed fromL to
M with IPID’s carefully chosen to guess CL→M.

2. We spoof large echo requests fromM to L, causing
L to reply with fragmented echo replies toM with
IPID’s chosen from CL→M.

3. If the IPID’s of the echo replies match any of those
of the canaries that we placed, then those canaries
will be knocked out ofM’s fragment cache.

4. We then send and query probes from us to M to
measure SM, the number of missing canaries.

5. If SM is significantly high, we know that some of
our canaries’ guesses of CL→M were correct.

By repeatedly using this technique to guess values of
CL→M, we eventually discover CL→M.

Once we know CL→M, we track its value to count
the number of ICMP or UDP packets L has sent toM.
Additionally, by spoofing carefully crafted TCP packets
from M to L, we can measure the existence of a TCP
connection by tracking CL→M.

In the remainder of this section, we expound on our
method in three parts. In the first part, we detail how
to infer CL→M using SM. In the second part, we set
out how to use probes to measure SM on a variety of
operating systems. In the final part, we explain how to
use knowledge of CL→M to test if L is communicating
withM.

2.1 Measuring CL→M

To find CL→M, we utilize information flow between
CL→M andM’s fragment cache. Like many other side-
channel measurement techniques such as the idle scan,
our technique utilizes packet spoofing, i.e., sending pack-
ets with a forged source address. Our technique also uti-
lizes the fact that fragment caches have finite memory,
i.e., they can only hold so many fragments at once. We
will infer CL→M by measuring SM, the number of ca-
naries missing inM’s fragment cache, by spoofing pack-
ets fromM to L.

The packets we spoof from M to L are large ICMP
echo requests or “pings.” ICMP echo requests con-
tain a variable-length data section, and this data is al-
ways echoed back in the echo reply. When L receives
the spoofed packet, L (believing M to be the original
sender) sends the echo reply toM. We choose a size for
our spoofed echo requests large enough so that L’s echo
replies toM will become fragmented. The IPID of this
fragmented reply will be CL→M − 1 (since our spoofed
packet has incremented CL→M), and thus by knowing
its value, we know the value of CL→M.2

Before sending our spoofed echo requests, we first
place canaries in M’s fragment cache. These canaries
are fragments that contain only the first 400 bytes of data-
grams with spoofed source addresses from L. We care-
fully choose the IPID’s of these canaries. Any incoming

2For simplicity, from here on we exclude our spoofed packets’ ef-
fects on CL→M from our description, but an implementation must
maintain bookkeeping to automatically track its effects on CL→M.
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Figure 2: How r = 100 fragmented echo replies from L
toM affectM’s fragment cache.

fragmented echo reply from L, if it has the same IPID
as the canary, will overwrite and complete the canary’s
datagram, clearing its entry from the cache and increas-
ing SM by one. By choosing our canaries’ IPID’s, we
can test different values of CL→M based on its effect on
SM.

Before describing how to measure SM, we will de-
scribe how to efficiently find CL→M assuming that we
can query for SM. One naive approach to measure
CL→M is to, for each of the 216 possible values of
CL→M, place a canary on M with IPID of that value,
spoof an ICMP echo request fromM to L, and measure
SM to determine ifM is missing a canary in its cache.
However, this is time consuming, and querying SM will
be expensive, so we will wish to reduce the number of
queries SM as much as possible.

A simple improvement is to, instead of spoofing one
ICMP echo request fromM to L, spoof r requests. This
allows r values of CL→M to be tested per query of SM.
Alternatively, one may instead place c canaries, allowing
c values of CL→M to be tested per query of SM.

These two improvements can be combined. By spoof-
ing r echo requests and placing c canaries whose IPID’s
x1, . . . , xc are r apart, i.e., such that all xi − xi−1 = r,
we can test an interval of c · r values, (x1 − r, xc], per
single query of SM. See Figure 2 for an illustration.

This test will increase SM by 1 when CL→M is in
the tested interval. However, we will want to increase
SM by more than 1 so that the effect of our test will be
easily distinguished. If we wish our test to eliminate k
canaries when CL→M is in the tested interval, then we
must increase the density of our canaries’ IPID’s by a
factor of k, reducing our test interval size I to

I(c, r, k) = (c− (k − 1))
⌊ r
k

⌋
,

testing the interval(
x1 −

⌊ r
k

⌋
, xc − (k − 1)

⌊ r
k

⌋]
.

Due to bandwidth restrictions and the implementation
and size ofM’s fragment cache, r and c cannot be arbi-
trarily large. Rather, they have max sizes rmax and cmax.
We can calculate the largest testable interval Imax(k) as

Imax(k) = I(cmax, rmax, k) = (cmax−(k−1))
⌊rmax

k

⌋
.

For testing intervals of size less than Imax(k), we keep
c and r fixed, provided that c does not exceed the tested
interval size. This allows our tests to causeM to remove
k′ > k canaries.

To efficiently find CL→M, we might want to perform
binary search. However, we found that using a type of 3-
ary search that splits the interval evenly into 3 different
tested sections is more robust, namely at handling the
case when CL→M lay near the boundary of two tested
sections. Instead of searching for the section with k′

missing canaries, we instead search for the section or
two adjacent sections with more than k′/2 missing ca-
naries. If two adjacent sections are found, their combined
section is recursively searched. (If any other pattern of
sections is found whose tests resulted in more than k′/2
missing canaries, then we consider this anomalous, and
our algorithm aborts the binary search and fails.)

Often Imax(k) is too small to perform 3-ary search
over the initial search space of all 216 possible values.
In this event, we first perform one round of n-ary search,
where n = d216/Imaxe. We use the same criteria as
above to determine which interval to recursively search.

Once the searched interval size is 20 or less, we per-
form a linear search over the remaining possible values
in ascending order. For each of these possible values, we
place one canary testing whether that value is CL→M,
then wait one second, spoof one request, and then wait
another second. We then repeat this another four times
before querying SM.3 If our guess is correct, we will
eliminate 5 canaries. We select the first tested value that
is missing 3 or more canaries to be CL→M.

Once we know CL→M, we must keep it from expiring
from inactivity, as L may time out the counter’s storage
if its value has not been recently read by the kernel. One
way we can indefinitely keep its counter from timing out
on L is by spoofing echo requests fromM to L. How-
ever, this requires some bookkeeping, as each echo re-
quest will also increase CL→M. We found that we can
keep CL→M’s counter from timing out without modify-
ing its value by spoofing a fragment fromM to L every
minute. (Linux uses the same data structure that contains
CL→M to also maintain a counter of the number of frag-
ments recently received from each host.) Note that the

3It may seem as if each of these canaries will fill the same entry in
M’s fragment cache, but each of our spoofed requests actually incre-
ments CL→M, and so our implementation will automatically incre-
ment its guessed IPID’s too.
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spoofed fragment must not contain the first 8 bytes of the
datagram, else when the fragment expires in L’s cache,
L may send M an ICMP “reassembly time exceeded”
message, incrementing CL→M after all.

2.2 Measuring SM

Now we will discuss how we can query the number of
missing canaries SM inM’s fragment cache. Although
this procedure varies depending on M’s operating sys-
tem, all procedures we discuss will make use of sending
probes toM. Each probe consists of two parts: planting
the probe inM’s fragment cache and querying the probe
to test if it is in there.

We have implemented two probes. The first type is a
TCP ACK probe. We plant the probe by sendingM the
first 400 bytes of a TCP datagram with only the ACK
flag set. We query the probe by simply sending the re-
maining bytes to complete the datagram and waiting for
a TCP RST in response. The second type is an ICMP
echo probe. We plant the probe by sendingM the first
400 bytes of an ICMP echo request. We query the probe
by again simply sending the remaining bytes and waiting
for an ICMP echo reply.4

Choosing which probe to use is first determined by
which probesM responds to. For example,Mmay filter
blind ACK’s, making the TCP ACK probe ineffective.
In general, we prefer the TCP ACK probe to the ICMP
echo probe because, unlike the ICMP echo probe whose
response is the same size as the request, the ACK’s RST
response is of a fixed, small size, reducingM’s required
upstream bandwidth.

Now we will show how to use probes to query SM
across a variety of operating systems.

2.2.1 Windows

Windows XP implements its fragment cache as a queue.
Its queue has a configurable limit of n datagram entries
(100 by default), and once its queue is full, it no longer
accepts new datagram entries until another has been re-
moved due to either being completed or due to timing
out [10].

For this fragment cache, we place up to cmax = n
canaries. To measure SM, we then plant 11n/10 probes.
For each canary that is missing, we will fit one additional
probe into the fragment cache. We then query all probes
in the reverse order that we had originally sent them. If
p is the number of probes that respond, then SM = p −
(n− c).

We found via experimentation and reverse engineering
that Windows Vista, 7, 8, and 8.1 have a more compli-

4Another possible probe would be to send no packets in our query
and wait for an ICMP “reassembly time exceeded” message to test
whether our probe was still present in M’s cache, but this type of probe
requires more time, and many operating systems do not send these mes-
sages, and so we did not implement it.

cated fragment cache implementation. Their cache has a
limit of N bytes for storing all fragments and their cor-
responding data structures, where N is 1/128 the num-
ber of bytes of the Windows machine’s physical RAM.
Once the cache becomes over half full, if the cache is
presently using M bytes of storage, incoming fragments
are probabilistically rejected with probability 2M/N−1.
Although this cache still leaks information about SM,
the random component in deciding whether to accept
fragments makes measuring SM difficult. We have not
yet implemented a measurement for SM for these newer
Windows caches.

2.2.2 FreeBSD and OS X 10.9

We found via experimentation and source code analysis
that FreeBSD and OS X 10.9 implement their fragment
caches as a 64-bucket hash table. Incoming fragments
are hashed into buckets according to the hash function

h(src, id) = id ⊕ (src & 0xf) ⊕ ((src & 0xf00) >> 4)

(mod 64), where src is the source address of the incoming
fragment in host byte order and id is its IPID.

Both caches have a configurable limit of n datagram
entries (800 by default in FreeBSD, 1024 in OS X). Un-
like Windows, when the fragment cache is full and a frag-
ment is received for a new datagram, it is not rejected,
but rather another datagram entry is chosen to be evicted
from the cache to make room for the new entry.

If the bucket that the incoming fragment was hashed to
is non-empty, then the oldest fragment in that bucket is
evicted. Otherwise, the hash table’s buckets are scanned
in ascending order, and the oldest fragment is evicted
from the first non-empty bucket found.

When probing these caches, we found that this evic-
tion behavior was difficult to analyze. To simplify our
analysis, we might choose IPID’s for our probes such that
our probes always hash to bucket 0, thus emulating LRU
eviction for our probes. However, this only allows us to
plant 216/64 = 1024 probes, which is insufficient for
probing OS X’s default cache size. Instead, we alternate
sending probes that hash to buckets 0 and 1, allowing us
to plant 2048 probes, which is enough to probe OS X.

To measure SM, before we place our canaries, we first
plant n/2 probes inM’s fragment cache. We then place
up to cmax = 2n/5 canaries. To later measure SM, we
plant another 3n/5 probes. For each additional canary
that is missing, one fewer probe that we had originally
planted will be evicted by these probes. We then query
all 11n/10 probes in the reverse order that we had origi-
nally sent them. If p is the number of probes that respond,
then again we have SM = p− (n− c).

2.2.3 Linux

We studied the fragment caches of Linux across a range
of versions via experimentation and source code analy-
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sis. All versions of Linux that we analyzed use a hash
table to implement their fragment caches. The Linux
fragment cache has a configurable limit of N bytes of
storage. Our canaries and probes are both the same size,
400 bytes, so in our measurement, this is equivalent to a
fragment cache with a datagram entry limit of n entries,
where n is some value less than N/400 that can be exper-
imentally measured. We will hereafter model the Linux
cache as thus.

When the Linux fragment cache is full and needs more
room for an incoming fragment, unlike FreeBSD, which
evicts one entry, Linux evicts entries until there are only
n′ < n entries in the queue. The value of n′ is config-
urable, but by default n′ = 3n/4. This behavior compli-
cates our analysis, since, unlike with FreeBSD, we can-
not exactly measure SM, as our probes are no longer be-
ing evicted one at a time as a function of the remaining
canaries. However, we will show how to still test whether
SM is greater than some value. Namely, we will show
how to still test whether SM is greater than k′/2.

Before we place our canaries, we first plant n/2 probes
inM’s fragment cache and then place up to cmax = n/2
canaries. Afterwards, to test SM, we plant another n/2−
c+k′/2+1 probes. Unless greater than k′/2 are missing,
this will exceed the fragment cache’s limits, and n − n′

probes will be removed. We then query the probes in the
reverse order that they were sent. If p is the number of
probes that responded, we conclude that SM > k′/2 iff
p < n − c + k′/2 + 1 − (n − n′)/2, i.e., if more than
(n− n′)/2 probes are missing.

The fragment cache in Linux 2.4.21 and later main-
tains an LRU queue to ensure that entries can be evicted
in LRU order; however, the eviction order in versions be-
fore 2.4.21 requires special handling similar to FreeBSD.
These older Linux versions reduce the number of cache
entries to no more than n′ by removing the oldest entry
(if present) from all 64 buckets in the cache’s hash ta-
ble, then checking if enough entries have been removed
yet, and finally repeating if necessary. These versions
use a hash function that takes the xor of all bytes of
the destination address, source address, IPID, and pro-
tocol number of the incoming fragment (mod 64). To
test SM, to ensure that only our probes are removed
by our measurement and not our canaries, we first plant
b = 64dn/(4 · 64)e probes such that each sequence of
64 probes hashes to each of the 64 different buckets. By
planting dn/(4 · 64)e probes into each bucket (assuming
that n′ = 3n/4), we ensure that our probes are removed
before the canaries in all possible dn/(4 · 64)e rounds of
eviction. After this, we are now able place our canaries
and proceed as before, where now cmax = n− b.

2.3 Measuring communication

Now that we know CL→M, we can determine if L and
M are exchanging ICMP or UDP packets. Specifically,
we can measure if (and optionally, how many) packets L
sends to M outside of a TCP connection. Since send-
ing these packets increments CL→M, to measure if L is
sending M packets, we can verify that CL→M has not
changed a minute, hour, or day later, to test if any such
packets have been sent in the last minute, hour, or day,
respectively. (We assume that CL→M’s counter is being
kept from timing out on L as explained in Section 2.1.)
If we determine that L is sending such packets to M,
we can optionally re-measure CL→M to determine how
many of these packets have been sent.

Measuring TCP communication is more difficult,
since packets belonging to a TCP connection draw from
that connection’s per-connection counter, not CL→M.
However, by spoofing certain TCP packets, we can cause
L to send packets to M outside of any connection. A
naive way we might measure if L is connected toM is
to, for each port inM’s e-many ephemeral ports, spoof
an ACK fromM to L. If L is not connected toM on a
port, L will sendM a RST drawing from CL→M. Oth-
erwise, L will send M an ACK from that connection’s
counter. If CL→M increases by e, then we know that L
is not connected toM. Otherwise, if it increases by less
than e, we might conclude that L is connected, and even
calculate the number of connections. Unfortunately, this
is in many cases impractical, as it may be difficult to dis-
tinguish between L having one connection toM and one
of our spoofed ACK packets being dropped.

Although the previous method measures if the server
has a connection in the ESTABLISHED state with the
client, we discovered another measurement method that
measures if the server has a closed TCP connection in
the TIME-WAIT state with the client. This measure-
ment also has the desired property that CL→M will only
increase if there is a connection. A server reaches the
TIME-WAIT when it initiates a connection close, which
is common with protocols such as HTTP, where servers
close persistent HTTP connections when they go unused
for too long. The purpose of this state is to continue to re-
serve the closed connection’s addresses and ports in case
any stray packets from that connection trickle in later. On
Linux, we found that this state typically lasts for at least
60 seconds.

We measure if L has a connection in TIME-WAIT
with M by, for each port in M’s e-many ephemeral
ports, spoof a SYN fromM to L. If there is no connec-
tion, then L will send a SYNACK toM with IPID zero
(Linux always sends SYNACK’s with IPID zero). Other-
wise, if there is a connection in TIME-WAIT, L’s behav-
ior will depend on the sequence number of our spoofed
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SYN. If the sequence number is newer5 than the last se-
quence number received, then L interprets this as a new
connection request and responds with a SYNACK any-
ways. Otherwise, if with 1/2 probability we guess a se-
quence number that is older, L responds with an ACK
with an IPID from and incrementing CL→M.

2.3.1 Network Address Translation

WhenM is a NAT router, we are effectively measuring
whether L is communicating not just with that router but
also any host behind it. Our canaries and probes enter the
router’s fragment cache, and so we measure according to
the operating system ofM, the router, and not any of the
hosts behind it.

3 Experimental setup and results
To verify that our technique can measure communication
between hosts, we created a network consisting of the
following machines:

• Ubuntu 14.04 measurement machine
• Ubuntu 14.04 server running Apache 2
• Windows XP client using Mozilla Firefox
• OS X 10.9 client using Google Chrome
• Linksys NAT router (running Linux 2.4.20), behind

which was
– OS X 10.7 client using Apple Safari

We first inferred the value of the IPID counter be-
tween the server and each of the three machines, choos-
ing rmax = 500 and k = 10 for our experiment. For
Windows XP and OS X 10.9, we used the TCP ACK
probe, but for the Linksys router, we used the ICMP echo
probe as it filtered blind ACK’s. For Windows XP, OS X
10.9, and the Linksys router, inferring their counters took
75.2, 46.8, and 69.2 minutes, respectively. We found
that the OS X machine took less time because it had
a larger fragment cache that could hold more canaries.
These times, while they may seem long, are one-time
setup costs that can be considered analogous to installing
a wiretap.

For each machine, we then began spoofing SYN pack-
ets from that machine to the server, cycling through each
machine’s ephemeral port range every 60 seconds. Af-
ter an hour, we then measured that none of the server’s
per-destination IPID counters to these machines had in-
creased.

Finally, we had Windows XP, OS X 10.9, and OS X
10.7 (the latter from behind the router) browse to the
default index page that came installed with the server.
To simulate browsing behavior, we then refreshed each
client’s browser every 60 seconds for an additional four

5We say that a sequence number y is newer than x if y occurs in x’s
upcoming half of the entire sequence space.

page loads. We then searched linearly for their new
counter’s values starting from their last known value and
found that Window XP’s, OS X 10.9’s, and the router’s
counters increased by 3, 7, and 4, respectively, success-
fully measuring their communication with the server.

4 Related work
The work most closely related to ours is the body of
work by Gilad and Herzberg. They demonstrated that IP
fragmentation could be used to allow off-path intercep-
tion and denial-of-service [7], in scenarios that involve
NAT or tunneling and where a zombie agent behind the
same NAT or tunnel-gateway as the victim or a puppet
agent on the victim run attacker code. Part of their at-
tacks involve inferring the Linux per-destination IPID,
but their inference techniques rely heavily on the zombie
or puppet whereas our technique for inferring the Linux
per-destination IPID can be done completely remotely
and off-path. Gilad and Herzberg also explored three
types of side channels for inferring traffic between hosts
and assessed impact on the Tor network [6]. The three
side channels considered were a global IPID counter,
packet processing delays, and bogus-congestion events.
Per-host IPIDs have a much higher signal-to-noise ratio
than any of these three side channels, especially when
the server is communicating with many other clients—
as might be expected in a scenario such as the Tor net-
work. Gilad and Herzberg also demonstrated attacks
on the Same Origin Policy by combining puppets with
TCP/IP side channels to perform TCP injection [8]. Our
attack requires no zombies or puppets.

There has been some work on detecting stepping
stones [18, 19], which is a problem that the side-channel
technique we present in this paper could perhaps be ap-
plied to.

TCP-IP hijacking [13, 2, 11] has a long history, but
typically assumes an attacker on the path between the
client and server. TCP-IP hijacking also requires that the
sequence number be guessed, which we do not attempt
to do in this paper. For an off-path attack on TCP, see
Qian et al. [17]. Our work is not an attack on TCP/IP,
but rather an attack on the assumption that IP hosts can
communicate with each other without revealing this fact
to off-path third parties. Note that our attack can infer
ICMP and UDP traffic in a more straightforward way
than for TCP. Our attack is very much an attack on the IP
protocol itself.

Using global IPID counters for inference is very com-
mon. Chen et al. [4] use the IPID field to perform ad-
vanced inferences about the amount of internal traffic
generated by a server, the number of servers in a load-
balanced setting, and one-way delays. Bellovin describes
a technique for counting NAT’d hosts [3]. Kohno et al.
use the IPID for remote device fingerprinting [12]. Our
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work, as far as we know, is the first work to infer a per-
destination IPID without assuming any puppet agents or
zombies on the victim’s network.

5 Discussion and Conclusion
The most obvious way to address the attack we present
in this paper would be to fix a vulnerability. It is not
clear that there is any specific vulnerability that we have
exploited. Information flow that reveals IPID’s is apro-
pos to the requirement in RFC 791 [15] that states that
IPID’s must be unique for every in-flight packet. There
will always be non-zero information flow in any shared
sequences of numbers that has restrictions on repetition,
thus non-interference [9] with respect to off-path traffic
inference cannot be achieved by any IP implementation
that is RFC-compliant.

That said, we recommend that the Linux per-
destination IPID scheme be redesigned. Various flavors
of BSD have implemented randomized IPID schemes
that leak much less information. Even the long-
denounced practice of global IPID counters, such as im-
plemented by Microsoft Windows, leaks less informa-
tion than the Linux per-destination IPID implementation
because it aggregates information from all traffic to all
hosts, and is therefore a noisier signal.

To ameliorate this attack, Linux could also maintain
IPID counters per-protocol in addition to per-destination.
Since RFC 791 [15] specifies that datagrams be com-
bined according to a fragment’s id, source, destination,
and protocol number, the counters for each protocol
could be maintained independently without fear of frag-
ments from different protocols being erroneously com-
bined, even if they have the same IPID. Since our at-
tack only leaks a Linux machine’s per-destination IPID’s
via its fragmented ICMP echo replies to other machines,
this modification would prevent an attacker from count-
ing UDP packets or inferring TCP connections via our
attack. However, this approach would still allow an at-
tacker to count ICMP packets, and future attacks may
allow an attacker to count packets specific to additional
protocols.

Until the per-destination IPID scheme of Linux is
redesigned, implementation and deployment efforts for
onion routing (e.g., Tor [5]), Virtual Private Networks
(VPN’s), and other privacy technologies should consider
using TCP instead of UDP. Many servers for privacy
technologies are based on Linux. Our attack is much
more straightforward and powerful against UDP than it
is against TCP, so the combination of UDP and Linux
should be considered dangerous.

Linux servers that need to mitigate against the attack
presented in this paper until the issue is fixed (e.g., Tor
relays) should consider the role of IP fragments in the
attack. It may be possible to mitigate the attack with-

out impacting legitimate traffic by placing limitations on
IP fragments via firewall rules or kernel runtime param-
eters.

While our attacks assume that one machine is run-
ning Linux and we take advantage of information flows
particular to Linux, this does not necessarily mean that
servers running other operating systems are less suscep-
tible to off-path attacks that infer their communications
with clients. Modern network stacks are highly complex
and have many inter-dependent modules and shared, lim-
ited resources. Even for Linux we do not yet know the
extent of possible information flow leaks.

Effectively, the attack presented in this paper gives
malicious actors the following capability (based on some
assumptions, of course): given two arbitrary IP addresses
anywhere on the Internet, measure the exact number of
packets sent from one machine to the other between two
points in time. This has implications for privacy, but also
for connectivity and censorship circumvention technolo-
gies, as well. For example, “Is a remote server communi-
cating with Tor directory authorities?” is a very powerful
way to detect bridges irrespective of any protocol obfus-
cation that occurs between a client and bridge.

To summarize the bigger picture, a large fraction of re-
search and practice on free and open communications on
the Internet is based on the assumption that the specifica-
tions and implementations for protocols such as IP, UDP,
TCP, and ICMP have non-interference properties with
respect to off-path traffic. Such non-interference proper-
ties were never a design goal of any of these protocols,
and implementations of them are even less careful about
preventing information leaks.

This problem is analogous to the observation by
Ptacek and Newsham [16] (and concurrently by Pax-
son [14]) that network intrusion detection systems
(NIDS) can be easily defeated if they are built on the
assumption that the NIDS’s view of network traffic is the
same as the end host’s view. Similar to how NIDS sys-
tems can never expect to perform perfect traffic normal-
ization, we can expect that the Internet and its integral
protocols will never have perfect non-interference prop-
erties. However, in keeping with the NIDS analogy, it
is important that we research the information flow prop-
erties of all of the Internet’s integral protocols and their
implementations so that we have a better understanding
of how to mitigate attacks that threaten fundamental as-
sumptions on which privacy enhancing systems and cen-
sorship circumvention technologies are based.
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